反例在数学教学中的应用

合集下载

反例在数学教学中的作用

反例在数学教学中的作用

反例在数学教学中的作用摘要:数学是所有科目中对思维要求最缜密的学科之一,它有自己独特的思维方式和逻辑推理体系,那么,对于数学这门课程,教师如何来教,学生如何来学,方法固然是最重要的。

本篇论文就将浅谈一下反例在数学教学中的作用。

本篇论文是经过在网上查阅大量的相关期刊和在图书馆查阅大量的相关书目,结合自己的学习以及工作阅历最终完成的。

本文的创新点在于通过引用一些非常典型的例题做分析说明,而且例题都涉及到了中学数学的重要章节和必考内容。

本篇论文的目的在于改变现有的教学状态,能够激发学生的学习热情,培养学生的创造能力,鼓励学生要有敢于质疑和敢于探究的科学精神,培养学生良好的思维品质和学习习惯。

【关键词】教学作用构造逆向思维一、反例的含义在数学中,要证明一个命题是正确的,就必须经过严格的推理论证[[1]]。

而要证明一个命题是错误的,非常简单的做法就是举出反例。

反例,顾名思义就是指反面的例子,通常是指能够满足命题条件却不满足命题结论的例子。

在数学教学中,反例的作用不容小觑。

反例在判断对错时很有说服力,因此,在数学教学中重视运用反例,能让学生牢记所学内容,激发学生的学习热情,增加学生的见识,使其灵活多变,也学会换角度思考问题。

二、反例的来源与构造证明一个猜想是合理的、正确的,就必须经过严格的、缜密的推理论证;而证明一个猜想是不正确的,只需找到猜想命题的反例就可以了。

在教学过程中往往会有这样的情形,要说明一个命题是假命题, 教师就会直接给出一个反例, 说明反例虽然符合命题的各种条件, 却不能使命题的结论成立, 教师很少给学生分析甚至不做分析说明反例是如何得到的。

学生非常佩服老师学识渊博,能信手拈来一个又一个非常具有说服力的反例,却只能对老师的才华望其项背。

仿佛舞台上的魔术师,能从口袋里变出很多观众意想不到的东西,观众觉得特别神奇,但却永远也学不会。

所以,在教学过程中,教师应该尽可能地给学生讲解如何来构造反例,让学生知其然,更知其所以然。

反例在初中数学教学中的运用

反例在初中数学教学中的运用

反例在初中数学教学中的运用初中数学教学中的反例是一种教学方法,通过引入反例,展示错误的思路和结论,帮助学生更好地理解和掌握数学概念和原理。

反例在初中数学教学中的运用有以下几个方面:1. 验证和理解定理:通过引入反例,可以验证和理解定理的条件和结论。

在学习平行线性质时,可以引入一组平行线的反例,让学生发现平行线具有不相交的性质,从而理解平行线的定义和性质。

2. 理解数学概念和特性:通过引入反例,可以帮助学生理解和区分数学概念和特性。

在学习三角形的分类时,可以引入一组具有边长比例相等但不全等的三角形的反例,让学生理解边长比例相等不是全等的必要条件。

3. 纠正错误观念和认识:通过引入反例,可以帮助学生纠正错误的观念和认识。

在学习数列的有界性时,可以引入一个无界数列的反例,让学生认识到数列有界性的重要性以及无界数列的性质。

4. 引导学生思考和解决问题:通过引入反例,可以激发学生的思考和解决问题的能力。

在学习方程解的性质时,可以引入一个只有一个解的反例,让学生思考为什么这个方程只有一个解,从而培养学生的逻辑思维和问题解决能力。

5. 加深对数学原理的理解和应用:通过引入反例,可以加深学生对数学原理的理解和应用。

在学习函数性质时,可以引入一个不满足函数定义的反例,让学生理解函数定义的必要性和应用范围,从而提高对函数性质的理解和运用能力。

反例在初中数学教学中的运用可以帮助学生真正理解和掌握数学概念和原理,培养学生的逻辑思维和问题解决能力,提高数学学习的效果和质量。

教师在运用反例时应注意引入的反例要具有代表性和启发性,能够引发学生思考和讨论,同时也需要合理安排教学环节,使得学生能够在实践中发现和理解数学原理。

反例在中学数学教学中的应用

反例在中学数学教学中的应用

反例在中学数学教学中的应用
随着数学教学的进步,反例的重要性正在被认识到。

反例是数学中的一种基本概念,它能够帮助学生构建准确的概念,而不是盲目地相信法则。

因此,在中学数学教学中应用反例是一个非常重要的概念。

首先,可以帮助学生理解数学概念。

反例可以帮助学生更准确地掌握概念,而不是把它们当作陈述的基础。

反例是一个能够支持学生理解的可视化图形,给学生一个证明数学概念的可见性,而不是把它们当作一个不透明的基础。

学生可以使用这些反例来更好地理解习题。

其次,反例可以帮助学生掌握技巧。

反例是一个能够给学生一个真实案例,让他们能够更准确地掌握数学技巧和方法的方法。

学生可以利用这些反例来更好地掌握技巧,而无需一味地靠自己思考而失去把握。

另外,反例也可以帮助学生思考深层次的问题。

反例能够帮助学生深入了解数学模式,同时能够帮助他们探索其中的复杂关系。

反例能够帮助学生进行更多的探索,并将探索的结果拓展到更复杂的关系中,从而使学生更加深入地理解数学概念。

最后,反例可以帮助学生构建精确的概念。

学生在使用反例时,可以更加准确地构建出精确的概念,而不是把它们当作一种模糊的概念。

反例能够给学生一个更全面的视角,从而帮助他们建立准确的概念,而不会陷入盲从的观念。

综上所述,反例在中学数学教学中具有重要的作用。

反例可以帮助学生更好地理解数学概念,掌握技巧,思考深层次的问题,并构建
准确的概念。

因此,中学数学教学中应更加重视反例的应用,以帮助学生更加准确有效地学习数学。

反例在数学中的应用

反例在数学中的应用
ERA
方程解存在性反例
1 2
一元二次方程无实根
对于一元二次方程 $ax^2 + bx + c = 0$,当判 别式 $b^2 - 4ac < 0$ 时,方程无实数解,如 $x^2 + 1 = 0$ 在实数域内无解。
高次方程无解或多解
高次方程可能无解或多解,例如 $x^3 + 1 = 0$ 在实数域内有一个解,但在复数域内有三个解。
03
几何领域反例应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
几何图形构造性反例
构造不满足某性质的图形
01
例如,构造一个不是凸集的图形,以说明凸集性质在某些情况
下不成立。
反证法中的图形构造
02
在反证法中,通过构造一个与假设相矛盾的图形来证明原命题
不成立。
极限位置的图形构造
某些奇异点或边界处发生的突变现象。
04
分析领域反例应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
函数性质否定性反例
01
02
03
非连续性函数
例如Dirichlet函数,在任 意点都不可导,从而说明 不是所有函数都是连续的 。
非单调性函数
在某些区间内,函数值并 不总是随着自变量的增加 而增加或减少,如正弦函 数和余弦函数。
掌握反例构造方法
学习和掌握常见的反例构造方法,如反证法、举例 法等,以便在数学研究和解题过程中灵活运用。
加强反例的实践应用
通过解决具体的数学问题,加强反例的实践 应用,提高运用反例解决实际问题的能力。
THANKS
感谢观看
非周期性函数

反例教学法在初中数学教学中的应用

反例教学法在初中数学教学中的应用

反例教学法在初中数学教学中的应用摘要:反例教学法是一种行之有效的教学方法。

在数学教学中,通过恰当地开发和利用反例辅助教学,可以培养学生的创造性思维能力,能有效地提高教学质量。

因此,反例教学法是一个值得研究的课题。

关键词:反例教学法;反例;内容构建反例教学法是指在教师指导下,根据教学目标和内容的需要,采用典型例题的典型错误解法或错误认识组织学生进行学习、寻找、探讨错误的地方与原因,达到真正完全掌握数学基本概念、性质,并最大限度地避免解题出错的一种教学方法。

要判断一个命题的正确性必须经过严密的推断论证,而要否定一个命题,只需举出一个与结论矛盾的例子即可,这种与命题相矛盾的例子称为反例。

在数学的发展史中,反例和证明同样重要。

反例教学法是一种行之有效的教学方法,通过设置适当的反例可以使正确的知识凸现、明晰,使学生对知识的理解和掌握更加深刻。

在数学教学中,通过恰当地开发和利用反例辅助教学,引导学生合理构造反例,长期训练学生构造反例的能力,可以培养学生的创造性思维能力,将能有效地提高教学质量。

一、反例教学法中教学内容的构建教师在教学中根据学生年龄、生理、心理特点,以及学生所学知识结构的不完整性或还不具备独立系统的推理论证能力,要注意反例教学引入的合理性和可行性;同时要为学生创建探索情境,引导学生构建反例,调动学生的数学功底展开想象,发现问题或提出问题,还要呵护一切具有创造性的思想与活动,从而提高学生的思维能力。

另外,反例的构建要从学生的认知水平出发,就像引小孩学走路一样,把问题以梯度开展,有“跳一跳摘到葡萄吃”才能引起学生的注意,激起课堂教学地高潮。

教育家说过:科学知识是不该传授给学生,而应该引导学生去发现它们,并独立地掌握它们。

所以,恰当地运用反例教学,往往会有事半功倍的教学效果。

在教学中,常用的构建反例的方法有:具体数值代入法。

对于字母类的命题,我们可以将字母改成具体数字代进去检验,尤其是特殊值“0”,万万不能忽视,很多命题只要把0代入计算就可以得出结论。

高等数学教学中的反问题及反例

高等数学教学中的反问题及反例

高等数学教学中的反问题及反例
【原创实用版】
目录
一、引言
二、高等数学中的反问题
三、高等数学中的反例
四、反问题和反例在高等数学教学中的应用
五、结论
正文
一、引言
高等数学是现代科学和技术领域的重要基础学科,其教学目的是培养和加强学生的基本运算能力、基本应用能力和逻辑思维能力。

在高等数学教学过程中,反问题和反例的教学方法被广泛应用,它们对于加深学生对概念的理解、提高学生的运算能力和应用能力具有重要的作用。

二、高等数学中的反问题
反问题是指将问题的条件和结论互换,从而形成的新问题。

在高等数学中,反问题的提出可以帮助学生更好地理解原问题的解决过程,同时也能够培养学生的逆向思维能力。

例如,在求解微分方程时,通过提出反问题,可以帮助学生更好地理解微分方程的解法。

三、高等数学中的反例
反例是指在某个命题中,存在的一个对象使得该命题不成立。

在高等数学中,反例的存在可以帮助学生更好地理解概念和定理的适用范围,防止学生片面理解概念和定理。

例如,在极限的求解过程中,通过引入反例,可以帮助学生理解极限存在的条件。

四、反问题和反例在高等数学教学中的应用
在高等数学教学过程中,教师应该注重反问题和反例的教学方法。

通过引入反问题,可以帮助学生更好地理解原问题的解决过程;通过引入反例,可以帮助学生更好地理解概念和定理的适用范围。

同时,教师应该引导学生主动寻找反问题和反例,培养学生的自主学习能力和探索能力。

五、结论
反问题和反例在高等数学教学中具有重要的作用,它们可以帮助学生更好地理解概念和定理,提高学生的运算能力和应用能力。

实践数学教学反例(3篇)

实践数学教学反例(3篇)

第1篇摘要:本文通过分析实践数学教学中的反例,探讨当前数学教学中存在的问题,并提出相应的改进措施,旨在提高数学教学质量,促进学生全面发展。

一、引言数学作为一门基础学科,在培养学生逻辑思维、空间想象、问题解决等方面具有重要意义。

然而,在实际的数学教学中,我们常常会遇到一些反例,这些问题不仅影响了学生的学习效果,也制约了数学教学的深入发展。

本文将从以下几个方面对实践数学教学中的反例进行分析。

二、反例一:重理论轻实践在数学教学中,有些教师过于注重理论知识的传授,忽视了学生的实践操作能力培养。

这种教学方式导致学生在面对实际问题时,往往束手无策。

以下是一个典型的反例:案例:在讲解“三角形面积计算”时,教师只讲解了公式推导过程,而没有让学生动手操作验证。

当学生遇到实际问题时,如计算不规则图形的面积,他们无法运用所学知识解决问题。

改进措施:教师在讲解理论知识的同时,应注重实践操作环节,让学生通过动手操作、实验探究等方式,加深对知识的理解。

三、反例二:忽视学生个体差异在数学教学中,每个学生都有自己的学习特点和需求。

然而,有些教师忽视了学生的个体差异,采用“一刀切”的教学方式,导致部分学生跟不上教学进度,产生厌学情绪。

以下是一个典型的反例:案例:在讲解“分数乘法”时,教师按照统一进度进行讲解,对于基础薄弱的学生来说,他们很难跟上教师的节奏,导致学习效果不佳。

改进措施:教师应关注学生的个体差异,根据学生的实际情况调整教学进度,采用分层教学、个性化辅导等方式,满足不同学生的学习需求。

四、反例三:过度依赖教材,忽视创新教育在数学教学中,有些教师过度依赖教材,按照教材内容进行讲解,忽视了创新教育的重要性。

以下是一个典型的反例:案例:在讲解“圆的周长和面积”时,教师只讲解了公式推导过程,而没有引导学生进行创新思维训练。

改进措施:教师应关注创新教育,鼓励学生在学习过程中发挥想象力,提出自己的观点和想法,培养学生的创新思维。

五、反例四:忽视数学与其他学科的融合数学与其他学科之间存在着紧密的联系。

反例在中学数学解题中的应用

反例在中学数学解题中的应用

解题研究2023年4月上半月㊀㊀㊀反例在中学数学解题中的应用◉西华师范大学㊀潘叶秋㊀㊀摘要:反例教学是指教师根据教学内容和目标,采用概念和例题的典型错误认识或错误解法组织学生探讨错误的原因,从而达到真正掌握数学概念和性质的一种教学方法.本文中通过论述反例在数学解题教学中的作用,探索如何恰当运用反例,引导学生从反面视角看待问题,提高数学课堂效率和教学质量,从而提升学生的逻辑思维能力与数学核心素养.关键词:中学数学;反例;解题㊀㊀判断一个数学命题的正确性,需要严密的证明,而有时候,往往一个精妙的反例就能确定一个命题是否正确.在数学解题中运用反例,就是对数学猜想进行推翻和反驳的过程,教师若能引导学生使用恰当的反例,就可以化繁为简.在教学实践中,反例的学习还能培养学生的数学逻辑思维与数学知识的建构能力.教师应重视反例教学,运用合理的反例技巧,培养学生的解题能力和思维能力[1].1利用反例取特殊值选择题是数学考试中的必考题型,由于这种题型的特殊性,很多时候能够利用反例来检验所给选项的真伪,进而进行筛选判断.在时间有限的考试中,特殊值法不失为一种好方法.例1㊀如图1,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =a x 2的图象与正方形有公共点,则实数a 的取值范围是(㊀㊀).图1A.19ɤa ɤ3B .19ɤa ɤ1C .13ɤa ɤ3D.13ɤa ɤ1解:观察四个选项,A 与B 选项中都有19,C 与D 选项中都不含有19,利用特殊值法,当a =19时,抛物线y =19x 2与正方形有公共点(3,1),可排除C ,D 选项.观察A ,B 选项,此时可考虑a =3时的情况.当a =3时,抛物线y =3x 2与正方形有公共点(1,3),成立,由此排除选项B .故选项A 正确.2利用反例否定结论要证明一个命题为真命题,也就是说要证明这个命题的所有情况都为真,就必须在一般情形下进行论证;而要否定一个命题的真实性,不需要进行严格的论证,只需要举出反例即可,只要有一个条件不符合,那么此命题即为假命题[2].如何寻求适当的反例来否定结论,需要学生具有较高的思维能力.在教师的指导下,学生若能掌握运用反例思考问题的方法,不仅能帮助学生解题,还有利于拓展学生的思路.例2㊀已知函数f (x )=x 2+a x(x ʂ0,a ɪR ),试判断函数f (x )的奇偶性,并说明理由.解:根据a 的取值情况进行分类讨论.(1)当a =0时,f (x )=x 2(x ʂ0),则f (-x )=(-x )2=x 2=f (x ),所以由定义可知f (x )为偶函数.(2)当a ʂ0时,f (x )=x 2+a x,取特殊值,令x =1,则f (1)=1+a ,f (-1)=1-a ,从而f (1)ʂf (-1),且-f (1)ʂf (-1),所以f (x )既不是偶函数也不是奇函数.综上所述,当a =0时,f (x )为偶函数;当a ʂ0且a ɪR 时,f (x )既不是偶函数也不是奇函数.点评:奇偶性是函数的一个重要性质.本题分别对a =0与a ʂ0分情况展开讨论.当a =0时,依据偶函数的定义来证明;当a ʂ0时,采用举反例的方法进行说明.3利用反例完善解答探求一个命题在什么条件下成立时,我们往往通过直接论证的方式来解答,但得到的答案不一定准确,它可能包含了不满足的条件,此时,我们可以借助反例这一有用的工具,将不满足的情况剔除,使解答更加完善与准确.05Copyright ©博看网. All Rights Reserved.2023年4月上半月㊀解题研究㊀㊀㊀㊀例3㊀设函数f (x )=x 2+1-a x ,其中a >0.试求a 的取值范围,使函数f (x )在区间[0,+ɕ)上是单调函数.解:在区间[0,+ɕ)上任取x 1,x 2,使x 1<x 2,则㊀㊀㊀f (x 1)-f (x 2)㊀㊀㊀㊀=x 21+1-x 22+1-a (x 1-x 2)㊀㊀㊀㊀=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)㊀㊀㊀㊀=(x 1-x 2)(x 1+x 2x 21+1+x 22+1-a ).当a ȡ1时,由x 1+x 2x 21+1+x 22+1<1,可得x 1+x 2x 21+1+x 22+1-a <0.又x 1-x 2<0,则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以,当a ȡ1时,函数f (x )在区间[0,+ɕ)上是单调递减函数.当0<a <1时,在区间[0,+ɕ)上存在两个数x 1=0,x 2=2a1-a 2,满足f (x 1)=1,f (x 2)=1,即f (x 1)=f (x 2),所以函数f (x )在区间[0,+ɕ)上不是单调函数.综上所述,当且仅当a ȡ1时,函数f (x )在区间[0,+ɕ)上是单调函数,且是单调递减函数.点评:学生往往在得出了函数的某一单调区间后,便认为问题已经解答完毕,容易忽略说明在余下区间上的不单调.这时就可借助反例这一工具,来完善解答.4利用反例寻找解题思路有些问题从正面思考可能较困难,这时候可以引导学生举出反例,寻找解题思路.运用反例来思考问题,可以使思维更加严谨,进而提高分析㊁解决问题的能力.反例的提出不是凭空胡乱捏造,而是要随着问题的思考,对所得的结论进行不断地质疑㊁改进.这有利于促进学生思维能力的发展.例4㊀设a n {}是由正数组成的等比数列,S n 是其前n 次的和.试问是否存在常数c >0,使得l g (S n -c )+l g(S n +2-c )2=l g(S n +1-c )成立?并证明你的结论.分析:将a n =1代入上式,由计算结果得到此时c 不存在,猜想 常数c 可能不存在 ,即思考能否找到矛盾,证明c 不存在.故用反证法解答后续问题.解:假设结论成立,即假设存在常数c >0,使得l g (S n -c )+l g(S n +2-c )2=l g(S n +1-c )成立,则㊀㊀S n -c >0,㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀①S n +1-c >0,②S n +2-c >0,③(S n -c )(S n +2-c )=(S n +1-c )2.④ìîíïïïïï由④式,得㊀S n S n +2-S 2n +1=c (S n +S n +2-2S n +1).⑤由均值不等式以及①②③④式联立,得㊀㊀S n +S n +2-2S n +1=(S n -c )+(S n +2-c )-2(S n +1-c )ȡ2(S n -c )(S n +2-c )-2(S n +1-c )=0.因为c >0,所以c (S n +S n +2-2S n +1)ȡ0,而由已知易证S n S n +2-S 2n +1<0,所以⑤式不成立,矛盾.故不存在常数c >0,使得l g (S n -c )+l g(S n +2-c )2=l g(S n +1-c ).点评:本题是一个探索性问题,对学生来说难度偏高.解决这类问题时,举反例虽然不能直接证明结论是否成立而达到解题目的,但通过举反例,能让学生找到解决问题的灵感,从而为问题的解决指明一个方向.在利用反例解题的过程中,教师要引导学生变换思路,不直接证明命题的真假性,而是去思考在什么情况下这个命题是假的,如何去找到这个巧妙的反例.在运用举反例进行条件充分性的判断时,一定要注意题干中隐藏的已知条件,注意选用的反例是否恰当以及是否循序渐进地引入.认清反例在解题中的主次.在解题的过程中,反例并不是解答问题的核心,它只是解题的一个辅助性手段.反例有助于学生形成批判意识,学会对命题进行质疑,让学生在 证明 与 反例 这二者的相互比较㊁不断优化中,全面掌握知识,并不断优化结论,最终解决数学问题[3].参考文献:[1]王太广.巧用反例益处多 初中数学教学中反例的有效运用研讨[J ].数理化解题研究,2021(26):20G21.[2]张庆大. 反例法 在中学数学解题中的应用[J ].中学教学参考,2020(17):14G15.[3]曾春燕,姚静.反例作用的实验研究 以高一数学教学为例[J ].数学教育学报,2015(1):77G81.Z 15Copyright ©博看网. All Rights Reserved.。

反例在中学数学教学中的作用

反例在中学数学教学中的作用

反例在中学数学教学中的作用首先,反例可以帮助学生更好地理解抽象的数学概念。

在数学中,许多概念是抽象的,不容易直接理解。

通过引入反例,学生可以看到具体的例子,帮助他们形象地理解概念。

例如,在学习数列的收敛性时,引入一个反例可以让学生观察到一个不收敛的数列,从而理解收敛的概念。

其次,反例可以帮助学生发现和理解数学规律和定理。

数学中有许多规律和定理,它们的证明往往需要使用严谨的逻辑推理。

通过引入反例,学生可以发现一些规律不总是成立,从而激发他们思考为什么这些规律不成立,以及真实的规律是什么。

例如,学习三角形的内角和时,学生可能会发现一个反例,一个三角形的内角和大于180度,这有助于他们理解三角形内角和定理的真实含义。

此外,反例可以帮助学生培养他们的逻辑思维和推理能力。

在引入反例时,学生需要运用逻辑思维来找到一个合适的例子,并用推理来解释为何这个例子是一个反例。

通过这个过程,学生可以加深他们对逻辑思维和推理的理解,并且能够更好地运用这些技能解决数学问题。

这对他们在解决其他问题时也非常有用。

此外,引入反例还能帮助学生识别和纠正他们的错误。

在学习数学中,学生可能会犯错误或产生误解。

通过引入一个反例,学生可以发现自己的错误,并更好地理解正确的概念、规律和定理。

这有助于他们避免类似的错误,并帮助他们在学习和应用数学时更准确地思考。

在教学中,教师可以灵活运用反例。

他们可以在讲解新概念时引入反例,以便更好地帮助学生理解和记忆概念。

同时,在复习和巩固知识时,教师也可以通过让学生寻找和讨论反例来检验他们对知识的掌握程度。

这不仅能够加深学生对数学的理解,还能够激发学生的学习兴趣和思维能力。

然而,引入反例也需要一定的谨慎。

教师应该选择合适的反例,避免过于复杂或抽象的例子,以免给学生带来混淆。

此外,教师还应该确保学生充分理解反例的含义和作用,并与他们讨论为何这个例子是一个反例。

只有这样,学生才能真正受益于反例。

总的来说,反例在中学数学教学中具有非常重要的作用。

反例在中学数学中的应用

反例在中学数学中的应用

反例在中学数学中的应用第一章前言在社会实践和学习过程中,人们都有这样一个经验:当你对某一问题苦思冥想而不得其解时,从反面去想一想,常能茅塞顿开,获得意外的成功.“要明确一个命题是假命题,只要举出一个满足命题条件,而不满足命题结论的例子就行了.”这在数学中称为举反例.一位学者指出,举一反三和反证法激发人类的隐藏的潜力。

[]1通过举一反三可得到其他的结论,然而当所得出的结论中有的明显不正确时,可以通过反证法来进行相关验证。

一些教育学者表示,正方向的证明体现了概括性的内容,反方向的证明则从另一方面推翻猜想,增强信息的辨识度。

由此可见,反证法是推翻不正确猜想不可缺少的手段。

根据数学改革历程可以看出反证法发挥了十分重要的作用,这是由于研究数学猜想时,定理需要反复论证,而显而易见的错误猜想则需要用反例来推翻。

但是数学的发展离不开论证和反例两个重要工具。

那现在就让我们一起来谈谈什么是反例以及它在中学数学课程安排中的广泛应用.第二章反例的定义与分类2.1反例的相关理论知识反例主要指与命题条件相符,但与结论不相符的事实证明。

换一种说法,指的是证明猜想错误的事实证明。

从某一程度而言,实际存在的事实都能被称作反例,原因是一般事实能够确切地证明猜想的错误性。

然而本文探讨的反例则是与数学教学相关,其特点主要表现为:①.与数学猜想证明相关;②.是具体的实例;③.主要用于推翻数学不正确猜想的手段;④.以正确的数学定理为前提条件。

2.2反例的类型反例与数学猜想的证明相关,返利的出现与种类直接受到猜想内容的影响,所以数学方面的反例主要有下面几种分类:2.2.1 基本反例一般数学猜想主要表现为全称判断和特称判断两种形式,其中全称和特称判断又有肯定和否定之分。

其中互为反例主要包括全称肯定与特称否定等。

[]22.2.2 关于充分必要条件的反证实例充分条件反证主要指对前一情况是后一情况存在的前提条件的反证说明,可用p→q表示,也就是“前一结论是后一结论发生的条件之一”,但不是表示后一结论的发生完全依赖于前一结论。

反例教学法在数学分析中的作用和构造

反例教学法在数学分析中的作用和构造

反例教学法在数学分析中的作用和构造反例教学法在数学分析和数学教学中引起越来越多的重视,它不仅能够加深学生对基础概念的理解,还能使数学思维的形成更具有深度和准确性。

因此,本文讨论了反例教学法在数学分析中的作用和构造。

思路解析反例教学法(CET)是由R.I. Jucowitz提出的教学模式,它基于实例失败的原则,即学生通过掌握反例,学习和理解更普遍的数学概念。

反例教学法的目的在于,通过提供与学生知识水平相关的实例,培养学生的数学解决问题的能力和技能,以从反例中获得知识。

反例教学法在数学分析中的作用通常,反例教学法能够有效支持数学分析,主要表现在:首先,反例教学法能够帮助学生明确和更好地理解基本数学概念。

学生通过反例学习,能够更好地理解数学原理,以掌握数学分析的基础知识;其次,反例教学法能够锻炼学生的数学逻辑思维能力和分析能力,从而提升学生对数学分析的准确性;最后,反例教学法能够激发学生对数学分析的学习兴趣,在拓宽思路、增强能力上发挥积极作用,促进学生学习数学分析的兴趣。

构造反例教学法反例教学法的构造分为三个步骤:第一步,要求老师对学生的能力进行全面考察,准确把握学生学习和知识水平,从而实现针对性教学;第二步,根据学生的不同学习水平,老师在例题中使用不同的反例,以针对性地提高其学习效果,达到突出重点、强化训练的目的;第三步,老师在介绍反例时,要充分运用可视化技术,以图表、模型等形式表示反例,使学生更加清晰地理解反例的内涵,并深入学习和掌握反例。

结论从上面的分析可以看出,反例教学法在数学分析中发挥着重要作用,它不仅能够提高学生的分析能力和解决问题的能力,而且还能增强学生的数学思维能力,从而改善学生的学习效果。

而构造反例教学法既要考虑学生的学习能力和知识水平,又要注重可视化技术,只有这样,才能真正发挥反例教学法的优势,增强学生的数学分析能力。

反例在数学教学中的作用

反例在数学教学中的作用

反例在数学教学中的作用
数学是一门综合性学科,其中运用了证明、推理和假设等复杂的理论,对学生进行数学教学时,需要从不同的角度和多种方式来探讨和推动学生的学习进度。

通常给学生展示正例是广泛应用的一种教学方式,而反例在数学教学中也有重要的作用,具有十分重要的教育意义。

首先,反例在数学教学中能够更好地帮助学生理解知识点,这是因为正例可以提供一种假设,然后反例可以扩展该假设的有效范围。

比如,在学习内容是“定义域和值域”时,可以以反例的方式提出,“给定函数f(x) = x2 3x + 2,它的定义域是什么?该函数的值域是什么?”这样的反例,针对性更强,可以让学生对具体问题有更深刻的理解。

其次,反例能够有效地发展学生的创造能力和思维能力。

数学是客观性学科,学习时仅通过实例来理解规律是比较吃力的,只有借助反例,学生才能更清晰地看到数学规律,从而促进了学生学习兴趣和思维能力的培养。

另外,学生通过反例也可以善于发现问题,在解决实际问题时更具有创新能力。

最后,反例在数学教学中还有一个重要的作用,就是可以有效地帮助学生提高数学处理能力,这是因为反例提供的情景比正例更加完整,学生必须具备良好的数学处理能力才能解决问题。

比如,如果使用反例来教授“函数f(x)的导数”,而不是直接明示f(x)的导数,学生必须具备一定的处理能力,才能计算出函数f(x)的导数。

以上是反例在数学教学中的作用。

反例是一种有效的教学方式,能够使学生受益匪浅。

反例在数学教学中的运用

反例在数学教学中的运用

反例在数学教学中的运用在数学教学中,反例是一种非常重要的教学策略,可以帮助学生更好地理解和掌握数学概念和定理。

反例指的是通过给出一个特殊情况的例子,来否定一个命题或者证伪一个定理。

通过引入反例,可以帮助学生更好地理解和记忆数学的抽象概念,培养他们的推理能力和创新思维。

一、引发兴趣和好奇心在数学教学中,引入反例可以帮助激发学生对数学的兴趣和好奇心。

传统的数学教学通常是基于一般规律和定理来进行讲解和推导,这样容易让学生产生距离感,并且难以理解和记忆。

而通过引入反例,可以让学生从一个特殊的例子开始思考和探索,从而引发他们对数学问题的兴趣和好奇心。

例如,在讲解负数乘法时,可以引入一个反例:(-2)×(-3)=6,这个例子直观地展示了负数乘法规律的异常,引发学生思考、质疑和探索。

二、帮助理解抽象概念数学中存在很多抽象概念,如零的性质、负数的性质等等,这些概念对于许多学生来说很难理解和掌握。

通过引入反例,可以将抽象的概念具体化,使其更易于理解。

例如,在讲解零乘法时,可以引入一个反例:0×2=1,这个反例可以帮助学生理解零与任何数相乘都等于零的规律。

同样,可以引入反例来帮助学生理解其他数学概念,如对角线不一定相等、平行线不一定没有交点等等。

三、矫正错误观念学生在学习过程中往往会形成一些错误的观念和惯性思维。

而通过引入反例,可以帮助学生纠正错误观念,从而更好地掌握和理解数学概念和定理。

例如,在讲解奇数相乘和偶数相乘的特性时,可以引入反例:3×5=15(奇数相乘为奇数),4×6=24(偶数相乘为偶数),通过这两个反例可以帮助学生纠正“奇数相乘为偶数”和“偶数相乘为奇数”的错误观念。

四、培养推理能力引入反例可以培养学生的推理能力和思维方式。

通过分析反例,学生需要从中发现规律,进而得出一般结论。

这种思维过程可以帮助学生培养逻辑思维和推理能力。

例如,在讲解直角三角形的性质时,可以引入一个反例:两条边长相等的三角形不一定是直角三角形,通过这个反例学生可以发现只有两条边长相等并且夹角为90度的三角形才是直角三角形。

反例在初中数学教学中的运用

反例在初中数学教学中的运用

反例在初中数学教学中的运用引言:反例是数学教学中一个非常重要的概念和方法。

它指的是通过举出一个例子,证明一个命题为假。

在初中数学教学中,我们通常用反例来帮助学生更好地理解和掌握抽象的数学概念,培养他们的逻辑思维和推理能力。

本文将以初中数学教学中常见的几个概念为例,探讨反例在数学教学中的运用方法。

一、分数的加减乘除分数是初中数学中一个比较抽象和难以理解的概念。

为了帮助学生更好地理解和掌握分数的加减乘除运算规律,我们可以通过反例来进行教学。

在教学分数的加法时,我们通常会告诉学生分母相同的分数可以直接相加,而分母不同的分数需要化为相同分母再相加。

我们也可以通过一个反例来帮助学生理解这个规律。

我们可以举出一个例子:1/2 + 1/3 = 5/6,这个例子就是一个反例,它告诉学生分数的加法并不一定遵循分母相同就可以直接相加的规律。

同样的道理,在教学分数的减法、乘法和除法时,我们也可以通过反例来帮助学生更好地理解和掌握相应的运算规律。

这样,学生就能够通过实际的例子来感受到分数的加减乘除运算规律,从而更好地理解和掌握这些概念。

二、几何图形的性质几何图形的性质是初中数学中一个非常重要的内容。

为了让学生更好地理解和掌握几何图形的性质,我们可以通过反例来进行教学。

在教学平行四边形的性质时,我们通常会告诉学生对角线互相平分和相互等长。

我们也可以通过一个反例来帮助学生理解这个性质。

我们可以举出一个例子:一个不是矩形的平行四边形,它的对角线不互相平分和相互等长。

这个例子可以让学生明白,只有矩形才满足对角线互相平分和相互等长的性质。

在教学函数的定义时,我们通常会告诉学生每个自变量对应一个唯一的因变量。

我们也可以通过一个反例来帮助学生理解这个定义。

我们可以举出一个例子:f(x) = x^2,这个函数就不满足每个自变量对应一个唯一的因变量的性质。

反例在中学数学教学中的应用

反例在中学数学教学中的应用

反例在中学数学教学中的应用
在中学数学教学中,反例被广泛应用于证明或推翻某些数学命
题或结论。

例如:
1. 证明“所有的偶数都可以分解为两个质数之和”这个命题不
成立,可以举出反例:偶数38只能分解为19和19两个质数之和,
而19并不是偶数。

2. 常用于证明“存在性”的定理,即某件事情“存在的”证明。

通过举出反例,可以证明一些东西的“存在性”不成立。

3. 在数学归纳法的证明中,反例也经常被用到。

如果一个数学
结论在某个特定的情况下不成立,那么它在全部情况下都不成立。

4. 在代数、几何、概率等领域的证明中,反例通常是非常有用
的工具,可以通过举出一个反例来反驳一个假设或证明一个结论的
不正确性。

总之,反例在中学数学教学中是一个关键的概念,它不仅可以
帮助学生更好地理解数学思维和证明方法,而且也可以帮助他们更
好地理解概念和理论。

反例在数学教学中的应用

反例在数学教学中的应用

反例在数学教学中的应用
反例在数学教学中有很重要的应用,可以帮助学生更深入地理解和掌握数学概念。

具体来说,反例可应用于以下几个方面:
1. 明确概念的条件限制:对于某些数学概念来说,只有特定的条件下才能成立,反例可以帮助学生明确这些条件限制。

例如,学生可能会认为两个奇数的和一定是奇数,但给出反例后,例如
3+5=8,学生就会了解到这个结论只在两个奇数的和小于偶数的情况下成立。

2. 辅助证明定理:在学习证明数学定理时,反例可以作为一种辅助工具。

通过给出反例,学生可以了解到一个结论的确切形式,从而更容易理解和证明相关的定理。

反例也可以被用来发现证明定理的缺陷或不足。

3. 明确问题的限制范围:在解决数学问题时,有时需要明确题目限制的范围。

例如,如果要找到比2更小的正整数,反例可以帮助学生明确这个范围的限制,例如1和0都不是正整数,因此找到比2更小的正整数需要从1开始。

总之,反例是一个非常有用的工具,可以帮助学生更深入地理解和掌握数学概念,在解决问题和证明定理时也可以提供帮助。

反例在初中数学教学中的运用

反例在初中数学教学中的运用

反例在初中数学教学中的运用在初中数学教学中,教师通常会通过引入反例的方法来帮助学生理解一些概念和定理。

反例是指能够证明某个命题为假的具体例子,通过反例的引入,可以使学生不仅仅是通过抽象的推理和证明来理解数学概念,还能够通过实际的例子来更加深入地理解数学的规律和性质。

反例在初中数学教学中的运用可以帮助学生理解数学概念的本质和边界。

对于一些概念和定理,学生往往只是被告知它的定义和性质,但却没有真正理解它们的内涵。

通过引入反例,可以帮助学生发现一些特殊情况,从而更好地把握概念和定理的本质。

在教学过程中,教师可以通过引入一些特殊的三角形来说明三角形内角和的问题。

学生可能会认为对于任意三角形,三个内角和总是等于180度,但通过引入一些特殊的三角形,如等腰直角三角形(45度90度45度)、钝角三角形等,可以使学生发现在这些特殊情况下,三个内角和并不等于180度,从而帮助学生更好地理解三角形内角和的性质。

反例在初中数学教学中的运用可以帮助学生防止一些常见错误。

在学生的学习过程中,往往会出现一些常见错误,如迷信事例、盲目推理等。

这些错误往往会影响学生对数学概念和问题的理解和解决能力。

通过引入反例,可以帮助学生发现并纠正这些错误。

在教学过程中,当学生错误地认为两个互质数的积一定是互质数时,教师可以通过引入一个反例(如2和4),让学生发现这个命题并不成立,从而帮助他们纠正这个错误的观念。

反例在初中数学教学中的运用也可以培养学生的分析和解决问题的能力。

通过引导学生发现问题,分析问题的关键,并找到反例进行思考和探讨,可以激发学生的思维,培养学生的逻辑思维和解决问题的能力。

在教学过程中,当学生学习平方根的概念和性质时,教师可以通过引入一些特殊的数,如负数、0等,让学生思考这些特殊数的平方根是否存在,以及它们的性质是怎样的,从而培养学生的分析和解决问题的能力。

反例在初中数学教学中的运用具有重要的作用。

通过引入反例,可以帮助学生深入理解数学概念的本质和边界,避免常见错误,并培养学生的分析和解决问题的能力。

反例在小学数学教学中的作用

反例在小学数学教学中的作用

反例在小学数学教学中的作用在小学数学教学中,经常要用到反例:反例,就是故意变换事物的本质属性.使之质变为其他知识,在引导思辩中,从反面突出事物的本质属性的否定例证。

这样做有助于学生从正反两方面辩证地思考问题,促进学生全面、深刻地认识事物的内涵与外延,培养学生思维的深度。

一、深化概念的常用手段小学生的感知具有范围窄小。

不精确等特点,很难同时注意几件事物,常会出现“丢三落四”的现象,所以对一个有丰富内涵的概念来说,学生在感知过程中,可能只会抓住感知对象的部分本质特征.而丢掉另外一部分本质特征.形成错误的概念。

例如,学习“等腰直角三角形”知识时,等腰直角三角形的本质属性较多,内涵丰富,由“等腰”“直角”“三角形”三方面组成+一些学生学习后,不是丢了等腰,就是忘了直角,有的甚至丢了三角形三条边“首尾相连”的性质。

此时要举反例,如“直角”常为学生忽视,错把等腰三角形判定为等腰直角三角形,这时老师应出示等腰直角三角形的正确图形,引导学生在比较中再次认识“直角”,否定错误的认识。

另外“等腰”“首尾相连”等。

性质亦可如是强调、因此,当学生对内涵丰富的知识感知不全时可通过数学反例,凹显出所学知识中易为学生忽视的本质属性.促进学生对所学知识的全面认识,深刻理解。

二、理解新知的有力工具数学是一门严密的科学,是由知识点编织而成的稳固的网络系统,当一个新的知识点纳入原有知识结构时,学生常凭直观或想当然去理解它,这样往往会“失之毫厘,谬以千里”。

小学数学教学中.不仅要运用正确的例子深刻阐明新的知识,而且要运用恰当的反例,通过新、旧知识的对比,突出新知识的特点,从而真正理解新知识的本质。

例如,学生在学过整除之后,学习有余数除法,两者相比,对余数的处理以及引起的试商方法是教与学的难点和特点,为突出“余数比除数小”的特点,教学中出示如下反例:。

反例在初中数学教学中的运用

反例在初中数学教学中的运用

反例在初中数学教学中的运用初中数学教学中,反例具有重要的作用。

反例可以帮助学生理解知识点的本质,辨别正确与错误的推理,加深对数学概念的理解,提高数学思维能力等。

下面从数学教学中几个角度来探讨反例的运用。

一、辨别正确与错误的推理在数学教学中,常常会给出一个命题并要求学生证明其正确性。

此时,反例可以用来帮助学生辨别正确与错误的推理。

例如:正误命题:对于任意正整数 a、b,若 a+b 是奇数,则 a 和 b 必须一个是奇数,一个是偶数。

学生可能会直接用分类讨论法进行证明,但这种做法可能会感到比较繁琐。

此时,我们可以借助反例的思想来帮助学生更快、更简单地完成证明。

我们可以让学生举两组(a,b)使得 a+b 是奇数的反例,然后再分别讨论这两组反例中 a 和 b 的奇偶性,从而找到规律并证明原命题错误。

二、加深对概念的理解在数学教学中,反例可以用来帮助学生加深对概念的理解。

例如:定义:平方数是某个正整数的平方,例如 1、4、9 等。

学生有时候难以理解这个概念,很可能会以为只要是正整数就是平方数。

此时,我们可以通过举出非平方数的反例来加深学生对平方数的理解。

我们可以让学生分别判断 2、3、5、6、7、8、10 等数是否是平方数,从而使学生对平方数的概念有更加准确的认识。

三、发现问题、提高数学思维能力在数学教学中,反例不仅可以帮助学生理解知识点,也可以帮助学生发现问题、提高数学思维能力。

例如:问题:有一个班级,里面有 31 个学生。

他们每一个人的身高都在 1.4~1.8 米之间。

证明:这个班级里面至少有两个人的身高相差不超过 0.04 米。

此题中,如果学生直接进行分类讨论,可能会感到比较棘手。

此时,我们可以让学生尝试用反证法解决问题。

假设班级中不存在两个学生的身高相差不超过 0.04 米,然后找出两个身高相差最接近但又不相同的学生进行讨论,从而找出问题所在并进行证明。

通过这样的练习,学生不仅能够掌握反证法的使用方法,还能够提高自己的数学思维能力。

反例在初中数学教学中的运用

反例在初中数学教学中的运用

反例在初中数学教学中的运用
反例是指一个命题的反命题或者是一个错误的示例。

在初中数学教学中,反例是一种非常有用的教学方法,可以帮助学生更好地理解和掌握数学的概念和性质。

下面将详细介绍反例在初中数学教学中的运用。

反例可以帮助学生纠正错误的观念和思维方式。

在学习数学的过程中,学生可能会对一些概念和定义有一些误解或者错误的理解。

通过给学生展示一个具体的反例,可以让他们发现自己的错误,并重新修正自己的观念。

在讲解直角三角形的时候,老师可以给学生举一个不是直角三角形的例子,比如边长相等的等边三角形,让学生发现直角三角形的特点并纠正错误的观念。

反例可以帮助学生深入理解数学概念的本质。

有时候,学生只是机械地记住了一些规则和定义,却没有真正理解其背后的意义和原理。

通过给学生展示一些反例,可以帮助他们思考为什么这个规则或者定义是成立的。

在讲解加法交换律的时候,老师可以给学生举一个不满足加法交换律的例子,比如3+4和4+3的结果不相等,让学生思考为什么加法交换律在一般情况下是成立的。

反例还可以帮助学生提高数学问题解决能力。

在解决数学问题的过程中,学生可能会遇到一些困难和挑战。

通过给学生展示一些反例,可以帮助他们更好地思考和解决问题。

在讲解因式分解的时候,老师可以给学生一个不能因式分解的多项式,让学生思考如何解决这个问题。

通过解决这个问题,学生可以提高自己的问题解决能力和思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反例在数学教学中的应用【摘要】 本文就反例在数学教学中的应用及应用反例教学时应注意的问题提出了几点看法。

【关键词】 反例;反例教学;应用1引言著名的数学家盖儿鲍姆(Gel Baum )曾说数学由两大类───证明和反例组成。

而数学的发展也是朝着这两个主要目标—提出证明或构造反例。

当某些问题经人们绞尽脑汁去推演却仍悬而未决时(即使这种不彻底的推理并无差错)。

则应允许人们对此命题的真伪产生怀疑,这就需要去寻找符合题设条件而与命题相悖的反例。

反例因其具有简明、直观、说服力强等特点,决定了他在数学教学和数学的发展中起着不可替代的作用。

在教学过程中适当运用反例对提高学生的创造能力有良好的诱导作用,从而也会给数学教学带来美妙的感受和良好的效果。

教师在日常教学中,可经常选择一些发散性强的典型数学知识或问题,通过创设问题情景,引导学生构建反例,引导学生敢于和善于发现问题或提出问题,从而提高学生思维的发散性.那么在教学的过程中反例的运用、构建是猜想、试验、推理等多重并举的一项综合性、创造性活动,是培养学生创新精神、诱发学生创造力的一种很好的载体。

反例教学在数学教学中的重要性已越来越被人们重视和认可. 通过反例教学,加深了学生对数学中概念的理解,同时也解决了教学中的重点、难点问题,使学生在认识上产生了质的飞跃,从而提高了教学的有效性。

2 反例在数学教学中的作用2.1利用反例加深对数学概念的理解数学概念本身是抽象的,引入概念之后,还必须有一个去粗取精、去伪存真的过程,必须在感性认识的基础上对概念作辨证的分析,用不同的方式进一步揭示概念的本质属性。

通过构造反例,往往能够从反面消除一些容易出现的模糊认识,把握概念的要素和本质,从而达到学好的效果。

例2.1 人教版必修1《函数的基本性质》一节中,对函数的奇偶性这样定义:一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-那么函数)(x f 就叫做偶函数。

一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-那么函数)(x f 就叫做奇函数。

学生利用定义判断函数的奇偶性时往往忽略“定义域内任意一个x ”,直接去利用)(x f -与)(x f 之间的关系去判断,从而得出错误的结论。

如果教师只是从正面去解释“定义域内任意一个x ”学生就会感觉很抽象。

若教师利用反例会使学生感觉更直、更观容易理解。

例如判断[)2,2)(2-=x x f 的奇偶性。

若忽略“定义域内任意一个x ” 这个大前提就会得到)()()(22x f x x x f ==-=-从而得出此函数是偶函数的结论,而实际2是不在定义域内,所以此函数是非奇非偶函数。

又例如:在等差数列的定义中,举出例子:(1)2,4,6,7,8…… (2)-6,-4,-3,-1,1……让学生理解“第二项起” ,“同一”常数的含义。

2.2反例是理解定理、法则的有利工具例2.2 初中在教三角形全等的判定定理时,三角形三边和三个角六个元素中,一般需要三个元素对应相等(但其中至少有一边)比如两角和夹边(ASA ),两边和夹角(SAS ),三边对应相等(SSS )两角和一对边(AAS )。

特别强调 “对应”、“夹边”、“夹角”。

为了对定理的深刻理解可以采用反例教学,去掉“夹角”,如有两边及其其中一边所对的角对应相等(SSA)的两个三角形是否全等。

构造反例可以先固定///,C A AC A A =∠=∠,在此基础上引导学生进一步思考若a C B BC ==//说明//C B BC 或可以通过以下作图方法来画出:以C 或者/C 为圆心,a 为半径画弧,a 只要满足一定的条件,此时所画的弧就很可能与//B A AB 或’所在的直线有两个交点,这是再构造出不全等的三角形就减少了难度。

另外可以进一步讨论去掉“对应”,六个元素中已知三个元素相等能否判断两个三角形全等,六个元素中已知四个元素相等能否判断两个三角形全等,六个元素中已知五个元素相等能否判断两个三角形全等。

六个元素中已知三个元素相等两个三角形全等三角的反例比较容易列举,例如边长不等的两个等边三角形,三个角分别相等但两个三角形不全等。

六个元素中已知四个元素相等两个三角形全等三角的反例也比较容易列举,例如边长为1和边长为2的两个等腰直角三角形,三个角分别相等,斜边与另一三角形的直角边相等但两个三角形不全等。

判断五个元素对应相等的两三角形全等是否正确.对于这个问题,很多初中学生感到模棱两可.反例也较难列举,比如三角形三边分别是,,a b c 和,,b c d 的两个三角形,这里:::a b b c c d ==,则他们相似,故有三个角相等,加之,b c 两边,该三角形共有五个元素分别相等,但是两个三角形却不等.如8,12,18,27a b c d ====.反例的给出让学生对三角形的全等条件有了进一步的了解和掌握,使学生注意到两个全等三角形中“边”相等不是任意给出的.那么在这道题中,反例的及时出现给学生眼前一亮的感觉。

让学生体会到反例在数学教学中的作用是不可忽视的,加深对三角形全等判定定理的理解。

2.3利用反例可以激发学生学习的兴趣,提高教学效果一个问题的解答,通常我们会用各种方式验证结果,反例将会引导我们追寻问题的所在,从反例中修补相关知识,从而获得正确结论和解答.那么恰当的引导学生使用反例可以更好的提高学生学习兴趣。

例2.3 试问:在三角形中,边长越长,面积越大吗?分析:在三角形中若知道其三边,便可以计算其面积,这个事实早在两千多年前已为古希腊学者海伦所发现,他给出公式:))()((c p b p a p p S ABC ---=∆(海伦公式)其中,,a b c 为三角形ABC 三边长,1()2p a b c =++,另外我国数学家秦九韶在《数学九章》中提出的公式---“三斜求积”式实质上是相同的. 2222221()22c a b s a c +-=-(三斜求积式)从两个公式中,均无法明显得出边长越大三角形面积越大的结论.乍一看,很多学生对此毫无疑问,可是考虑下面的例子.已知三角形ABC 的三边a b c <<,又BC 边上高为AD ,在BC 延长线上取'c 使 ''B C BC >,另取'D 使'''BC C D =.若'(1)BC k k BC =>,只需1''A D AD k<,(''A D 为过'D 点'BD 的垂线), 显然有'''a b c a b c <<<<<,但.///////////21)()1(2121C AB ABC S D A C B D A k C B k AD BC S ∆∆=⋅⋅=⋅⋅⋅>⋅= 具体的例子如:取ABC Rt ∆且3,a =4b =,5c =;又考虑///C B A ∆中(A D ‘’=1),令'6a =,则'37b =,'145c =;显然'''a b c a b c <<<<<,而 36///=>=∆∆C B A ABC S S注1 对于两个锐角三角形来说,若它们的边长满足定理条件,则命题结论一定成立.这也可以用反证法去考虑,如下图两锐角ABC V 和'''A B C V 中,若'''a b c a b c <<<<<,而///C B A ABC S S ∆∆>。

这样,由之则有 sin ''sin 'ab C a b C >,sin ''sin 'ac B a c B >,sin ''sin 'bc A b c A >由设'',ab a b <''ac a c <,''bc b c <故sin sin 'A A >,'sin sin B B >,'sin sin C C >所以'A A >,'B B >,'C C >从而有'''A B C A B C ++>++=0180(矛盾)那么这个题目说明了能够恰当的引用反例在数学教学的过程中还是有很大作用的。

关键是我们能找到说服力强的反例.通过这个反例的讲解让学生再次觉得反例在揭示错误时有特殊的威力,从而能更好的激发他们学习数学的兴趣,达到提高教学质量的效果。

让学生体会到反例在数学教学中的作用是不可忽视的,从而增强了他们学习数学的兴趣,也激发了他们的学习热情。

2.4 反例可以培养学生思维的严密性数学思维就是解决数学问题的心智活动,所以问题是思维的“启发剂”,在数学教学中,举反例也是提出问题的常用方法.运用反例可以增强思维的缜密性,弥补解决问题出现的漏洞,培养思维的批判性,从而去发展学生的逆向思维和发散思维,全面提高思维能力和数学素养.寻找一个反例往往比证明更需要想像力和创造力。

例2.4 若关于x 的方程)lg(2)1lg(2x m x -=-有两个不等的实数解,求实数m 的取值范围.不少学生是这样做的:由2100x m x m x⎧->⎪->⎨=- 可以得到:⎪⎩⎪⎨⎧-=-<<-xm x x 2111 (1) ⎩⎨⎧-=-<<-22)(111x m x x (2) 从而将问题转化为方程221)(x x m -=-,即012222=-+-m mx x ,在)1,1(-内有两相异的根,求m 的取值范围。

乍看这种解法是正确的,但仔细分析便可发现该解法是错误的,这是因为在(1)中0>-x m ,而在(2)中x m -可正可负,即(1)与(2)并非等价,问题就出在x m x -=-21 两边平方后扩大了x m -的取值范围,因此,在解题时必须重视思维的严密性。

通过这个例题可以看出有些题目对学生思维严密性的考查,也有了一定的要求.因此,注重对技巧的实质把握,弄清通性、通法是十分重要的。

学生的模仿能力强,课堂讲授的知识容易接受,但题目一旦改样或时间稍久我们就无所适从.因而在数学教学中,除了高效地传授知识及基本技能外,还要通过一些题目的反例的学习加强学生思维的严密性。

以上的例子说明:反例思想是数学分析中的重要思想,在我们进行问题的研究和论证中都具有不可替代的独特作用.同时在数学教学中利用反例能更好的培养学生们的思维严密性。

相关文档
最新文档