最新国家开放大学高等数学基础真题2
电大高等数学基础考试答案完整版
若,贝寸—9sin3x.
5-23.0.0下列积分计算正确的是(B).
ABCD
三、计算题
(
(1)利用极限的四则运算法则,主要是因式分解,消去零因子。
(2)利用连续函数性质:有定义,则极限 类型1:利用重要极限|,,|计算
1-1求.解:
1-2
1-3求解:=
类型2:因式分解并利用重要极限,化简计算。
1-1
解:
1-2
解:
1-3设,求.
解:
类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导
2-1,求解
2-2,求
解:
2-3,求,
解:
类型3:
乘积与复合函数混合运算的求导,先乘积求导,后复合求导
,求。
解:
其他:,求。
解:
0807.设,
求解:
0801.设,
求解:
0707.设,
求解:
0701.设,
核准通过,归档资 料。
未经允许,请勿外
传!
高等数学基础归类复习
、单项选择题
1-1下列各函数对中,(C)中的两个函数相等.
1-2.设函数的定义域为,则函数的图形关于(C)对称.
A.坐标原点轴轴
设函数的定义域为,则函数的图形关于(D)对称.
轴轴D.坐标原点
.函数的图形关于(A)对称.
(A)坐标原点(B)轴(C)轴(D)
1.函数的定义域是(3,+8).
函数的定义域是(2,3)U(3,4
函数的定义域是(—5,2)
若函数,则1.
2若函数,在处连续,则e.
.函数在处连续,则2函数的间断点是x=0.
函数的间断点是x=3^函数的间断点是x=2
高等数学基础-国家开放大学电大易考通考试题目答案
高等数学基础1、函数为基本初等函数.A. 是B. 否正确答案:B2、一切初等函数在其定义区间内都是连续的。
A. 是B. 否正确答案:A4、1755年,_________给出了另一个定义:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”A. 欧拉B. 伽利略C. 梅根D. 柯西正确答案:A7、设Δx是曲线y=f(x)上的点M的在_____上的增量,Δy是曲线在点M对应Δx在_____上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。
A. 纵坐标;横坐标B. 横坐标;纵坐标C. 横坐标D. 以上都不对正确答案:B10、印度喀拉拉学校也曾发现可用于计算圆周率的无穷级数,并利用它将圆周率的值精确到小数点后第9位和第10位,后来又精确到第()位。
A. 18B. 15C. 17D. 19正确答案:C11、1821年,_________从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。
”A. 康托B. 梅根C. 欧拉D. 柯西正确答案:D12、变量x的变化范围叫做这个函数的?A. 值B. 定义域C. 真集D. 以上都不是正确答案:B14、如果变量的变化是连续的,则常用()来表示其变化范围。
A. 区间B. 集合C. 子集D. 补集正确答案:A15、十七世纪_________在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
A. 笛卡尔B. 伽利略C. 柯西D. 欧拉正确答案:B16、两偶函数和为()函数。
A. 奇B. 偶C. 反D. 以上都不对正确答案:B18、定积分的大小。
A. 与y=f(x)和积分区间[a,b]有关,与ξi的取法无关B. 与y=f(x)有关,与积分区间[a,b]和ξi的取法无关C. 与y=f(x)和ξi的取法有关,与积分区间[a,b]无关D. 与y=f(x)、积分区间[a,b]、ξi的取法均无关正确答案:A19、微分可以近似地描述当函数_____的变化量取值作足够小时,函数的值是怎样改变的。
电大高等数学基础考试答案完整版(整理)
核准通过,归档资料。
未经允许,请勿外传!高等数学基础归类复习一、单项选择题1-1下列各函数对中,( C )中的两个函数相等.A. 错误!未找到引用源。
,错误!未找到引用源。
B. 错误!未找到引用源。
,错误!未找到引用源。
C.错误!未找到引用源。
,错误!未找到引用源。
D. 错误!未找到引用源。
,错误!未找到引用源。
1-⒉设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(C )对称.A. 坐标原点B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 错误!未找到引用源。
设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(D )对称.A. 错误!未找到引用源。
B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 坐标原点.函数错误!未找到引用源。
的图形关于(A )对称.(A) 坐标原点(B) 错误!未找到引用源。
轴(C) 错误!未找到引用源。
轴(D) 错误!未找到引用源。
1-⒊下列函数中为奇函数是(B ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为奇函数是(A ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为偶函数的是( D ).A 错误!未找到引用源。
B 错误!未找到引用源。
C 错误!未找到引用源。
D 错误!未找到引用源。
2-1 下列极限存计算不正确的是( D ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2-2当错误!未找到引用源。
时,变量( C )是无穷小量.A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
当错误!未找到引用源。
时,变量( C )是无穷小量.A 错误!未找到引用源。
国家开放大学《高数基础形考》1-4答案
2020年国家开放大学《高等数学》基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2x y = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x >.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 1122211lim(1)lim(1)22x x x x e x x ⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x =.⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为 x →x 0时的无穷小量.(二) 计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯= ⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111lim lim lim 2sin(1)sin(1)sin(1)11xx x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→. 解:20001lim sin x x x x→→→-== ()00lim 0sin 1111)x xx x→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x . 解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+---- ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续 由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( C ). A. )0(f B. )0(f ' C. )(x f ' D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设x x f e )(=,则=∆-∆+→∆xf x f x )1()1(lim( A ). A. e B. e 2 C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 21=k ⒋曲线x x f sin )(=在)1,4π(处的切线方程是 )41(2222π-==x y ⒌设x x y 2=,则 ='y )ln 1(22x x x + ⒍设x x y ln =,则 =''y x1(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:x xe x e x y 212323)3(++='⑵x x x y ln cot 2+= 解:x x x x y ln 2csc 2++-='⑶xx y ln 2=解:xxx x y 2ln ln 2+=' ⑷32cos xx y x+= 解:4)2(cos 3)2ln 2sin (x x x x y x x +-+-='⑸xx x y sin ln 2-=解:xxx x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= 解:x x xxx y ln cos sin 43--=' ⑺xx x y 3sin 2+=解:xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y x ln tan e +=解:xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=解:2112xx ey x -='-⑵3cos ln x y =解:32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =解:87x y = 8187-='x y⑷3x x y +=解:)211()(31213221--++='x x x y⑸x y e cos 2=解:)2sin(xxe e y -=' ⑹2e cos x y=解:22sin 2xx e xe y -='⑺nx x y n cos sin =解:)sin(sin cos cos sin 1nx x n nx x x n y n n -='- ⑻2sin 5x y =解:2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=解:xxey 2sin 2sin ='⑽22ex x x y +=解:222)ln 2(x x xex x x x y ++='⑾xxx y e e e+=解:x e x x e e e x e xe xy x x++=')ln ( ⒊在下列方程中,y y x =()是由方程确定的函数,求:⑴y x y 2e cos =解:y e x y x y y '=-'22sin cosyex xy y 22cos sin -=' ⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=解:222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'2020年国家开放大学《高等数学答案》22cos 2sin 22x y xy yy xy y +-='⑷y x y ln += 解:1+'='yy y 1-='y y y ⑸2e ln y x y =+ 解:y y y e xy '='+21)2(1y e y x y -='⑹y y x sin e 12=+解:x x e y y y e y y .sin .cos 2+'='ye y ye y x x cos 2sin -=' ⑺3e e y x y -= 解:y y e y e x y '-='2323y ee y y x+='⑻y x y 25+=解:2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot += 解:dx xxx dy )sin cos cos 1(22--= ⑵xxy sin ln =解:dx xx x x x dy 2sin cos ln sin 1-= ⑶xxy +-=11arcsin 解:dx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 解:两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31xx y y +---=' )1111(11313xx x x y ++-+--=' ⑸x y e sin 2=解:dx e e dx e e e dy x x x x x )2sin(sin 23== ⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln = 解:x y ln 1=='xy 1='' ⑵x x y sin = 解:x x x y sin cos +='x x x y cos 2sin +-=''⑶x y arctan =解:211x y +=' 22)1(2x xy +-='' ⑷23x y = 解:3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=- 两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。
国家开放大学《高等数学基础》第1—4次作业参考答案
3.在下列方程中, y y ( x ) 是由方程确定的函数,求 y :
(1) y cos x e 2 y
(2) y cos y ln x
(3) 2 x sin y
x2
y
(4) y x ln y
(5) ln x e y y 2
(6) y 2 1 e x sin y
D. f ( x) x 1 , g ( x)
x2 1
x 1
2.设函数 f (x) 的定义域为 (,) ,则函数 f ( x) f ( x) 的图形关于(C)对
称.
A.坐标原点
B. x 轴
C. y 轴
D. y x
3.下列函数中为奇函数是(B).
A. y ln(1 x 2 )
(3) y ln x
(4) y x sin x
ห้องสมุดไป่ตู้(四)证明题
设 f (x) 是可导的奇函数,试证 f (x) 是偶函数.
第三次作业
(一)单项选择题
1.若函数 f (x) 满足条件(D),则存在 (a , b) ,使得 f ( )
A. 在 (a , b) 内连续
B. 在 (a , b) 内可导
讨论 f (x) 的连续性.
参考答案:
第二次作业
(一)单项选择题
1.设 f (0) 0 且极限 lim
x 0
f ( x)
f ( x)
存在,则 lim
(B).
x 0
x
x
A. f (0)
B. f (0)
C. f (x)
D. 0
2.设 f (x) 在 x0 可导,则 lim
h 0
电大高等数学试题及答案
电大高等数学试题及答案一、选择题(每题3分,共15分)1. 下列函数中,哪一个是偶函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:D2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. 2D. 不存在答案:B3. 函数 \( y = e^x \) 的导数是什么?A. \( e^x \)B. \( e^{-x} \)C. \( \ln(e) \)D. \( \frac{1}{e^x} \)答案:A4. 积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 下列哪个选项是微分方程 \( y'' + y = 0 \) 的通解?A. \( y = c_1 \cos(x) + c_2 \sin(x) \)B. \( y = c_1 e^x + c_2 e^{-x} \)C. \( y = c_1 \ln(x) + c_2 \arctan(x) \)D. \( y = c_1 x + c_2 \)答案:A二、填空题(每题2分,共10分)6. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)7. 函数 \( y = x^2 - 4x + 4 \) 的最小值是 ________。
答案:08. 函数 \( y = \frac{1}{x} \) 的反函数是 ________。
答案:\( y = \frac{1}{x} \)9. 函数 \( y = \sin(x) \) 的周期是 ________。
答案:\( 2\pi \)10. 函数 \( y = \cos(x) \) 的值域是 ________。
国家开放大学《高数基础形考》1-4答案
C. y = x 2D. y = ⎧⎨2020 年国家开放大学《高等数学》基础形考 1-4 答案《高等数学基础》作业一第 1 章 函数第 2 章 极限与连续(一) 单项选择题⒈下列各函数对中,(C)中的两个函数相等.A. f ( x ) = ( x ) 2 , g ( x ) = xB. f ( x ) = x 2 , g ( x ) = xC. f ( x ) = ln x 3 , g ( x ) = 3ln xD. f ( x ) = x + 1 , g ( x ) = x2 - 1x - 1⒉设函数 f ( x ) 的定义域为 (-∞,+∞) ,则函数 f ( x ) + f (- x ) 的图形关于(C )对称.A. 坐标原点B.x 轴C. y 轴D. y = x⒊下列函数中为奇函数是(B ).A. y = ln(1 + x 2 )B. y = x cos xC. y = ax + a - x2 D. y = ln(1 + x)⒋下列函数中为基本初等函数是(C ).A. y = x + 1B. y = - x- 1 , x < 0⎩1 ,x ≥ 0⒌下列极限存计算不正确的是(D ).A. limx 2x →∞x 2 + 2= 1 B. lim ln(1 + x) = 0x →0x →∞x →x⒈函数 f ( x ) = x - 9 + ln(1 + x) 的定义域是 { x | x > 3 } . ⒊ lim(1 + 1 ) x = lim(1 + 1 ) x = lim(1 + 1 ) 2 x ⨯ 2 = e 2 0x →∞⎪(1 + x) x , x < 0 ,在 ⎩ ⒌函数 y = ⎧⎨x ≤ 0 的间断点是 x = 0 .x →xf ( x ) = ⎨求: f (-2) , f (0) , f (1) .C. lim sin x = 0D. lim x sin 1 = 0x →∞xx⒍当 x → 0 时,变量(C )是无穷小量.A. sin xB. 1xxC. x sin 1xD. ln( x + 2)⒎若函数 f ( x ) 在点 x 满足(A ),则 f ( x ) 在点 x 连续。
国开电大《高等数学基础》形考任务参考答案
国开电大《高等数学基础》形考任务参考答案一、选择题1.答案:B 解析:题意为求函数f(f)=f2−4f+3的零点个数。
首先根据一元二次方程的求解公式可得$x=\\frac{-b±\\sqrt{b^2-4ac}}{2a}$,其中f=1,f=−4,f=3。
代入求解得到两个解f=1和f=3,即方程有两个零点,所以选项 B 是正确的。
2.答案:C 解析:题目给出了两个不等式,要求找出满足两个不等式同时成立的f的范围。
首先解不等式2f+ 1>3得到 $x>\\frac{1}{2}$,然后解不等式f2−5f+6> 0可以化简为(f−3)(f−2)>0,根据零点的性质得到f<2或f>3,所以合并两个不等式的解集得到$x>\\frac{1}{2}$ 且f<2或 $x>\\frac{5}{3}$ 且f>3,化简得到 $x>\\frac{5}{3}$ 且f>3,即f>3。
所以选项C 是正确的。
3.答案:A 解析:题目给出了一个反比例函数$y=\\frac{a}{x}+b$,求其中的常数f和f。
根据题意,函数的图像经过点(2,3)和(4,1),代入这两个点的坐标可以得到两个方程:$$ \\begin{cases} 3=\\frac{a}{2}+b \\\\ 1=\\frac{a}{4}+b \\end{cases} $$4.解方程组得到f=−4和f=5,所以选项 A 是正确的。
5.答案:D 解析:根据角度的定义可知,一直线与平面的交角为直角。
所以选项 D 是正确的。
6.答案:B 解析:根据等差数列的通项公式f f=f1+(f−1)f,其中f f为第f项,f1为第一项,f为公差。
根据题意可得f f=3+(f−1)2。
代入f=10可得f10= 3+(10−1)2=21,所以选项 B 是正确的。
二、填空题1.答案:$\\frac{1}{10}$ 解析:根据条件所给出的正方形的性质,可以得到正方形的边长为 10。