初中数学知识点及公式大全学习资料
初中数学知识点和公式大全
第一章 有理数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 :负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如…等; (4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念-1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式:数与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
~用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则:整式的加减法:(1)去括号;(2)合并同类项。
{第三章 一次方程考点一、一元一次方程的概念1、方程:含有未知数的等式叫做方程。
最完整初中数学知识点总结及公式大全
最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全初中数学知识点总结及公式大全一、基本运算1.加法的运算规则:交换律、结合律、加零律2.减法的运算规则:减去一个负数等于加上一个正数3.乘法的运算规则:交换律、结合律、乘以1等于它本身、乘以0等于04.除法的运算规则:分子为0,结果为0;分母为0,结果不存在;分子分母相等,结果为1二、整数运算1.整数的加减法运算2.整数的乘法运算3.整数的除法运算三、分数与小数1.分数的加减法运算2.分数的乘法运算3.分数的除法运算4.小数与分数的互相转换四、百分数1.百分数的意义和表示方法2.百分数的分数形式与小数形式的转化3.百分数的加减法运算4.百分数的乘法运算5.百分数的除法运算五、比例与比例的应用1.比例的基本概念2.比例的性质:平行性、对应性3.比例的相等关系4.比例的扩大和缩小5.比例问题的应用:速度、时间、长度等六、图形的性质与计算1.面积:长方形、正方形、三角形、平行四边形、梯形2.周长:长方形、正方形、三角形、平行四边形、梯形、圆形3.体积:长方体、正方体、三角柱、圆柱、圆锥、球体七、方程与方程的应用1.一元一次方程的概念和解法2.一元一次方程的应用:问题的数学表达和求解3.一元一次方程与图象的关系4.含有括号的一元一次方程的解法5.一元一次方程的和差问题6.一元一次方程组的概念和解法八、比较大小、不等式与不等式的应用1.整数的比较大小2.分数的比较大小3.小数的比较大小4.数与式的大小比较5.不等式的性质与解法6.解不等式方程组的图解法7.不等式的应用:问题的数学表达和求解九、平方根与整式1.平方根的概念、性质及运算法则2.含有平方根的整式的加减乘除运算3.一元二次方程的定义与解法4.二次函数与抛物线的基本性质十、统计与概率1.统计的基本概念:调查、样本、总体、频数、频率2.统计图的绘制与解读:条形图、折线图、饼图3.概率的基本概念:随机试验、样本空间、事件、概率4.概率的计算:基本概率、加法原理、乘法原理。
初中生数学公式和知识点
初中生数学公式和知识点
1. 几何公式:
- 周长:正方形周长=4边长,长方形周长=2×(长+宽),圆周长=2πr
- 面积:正方形面积=边长²,长方形面积=长×宽,三角形面积=底边×高÷2,圆面积=πr²
- 体积:长方体体积=长×宽×高,圆柱体积=πr²×高,球体积=4/3×πr³
2. 代数知识点:
- 负数与正数相加:符号相异取差,符号相同取和
- 以字母表示未知数:代数式可以包含数字、字母和运算符号
- 一元一次方程:形如ax=b的方程,其中a和b为已知数,x为未知数,可用倒数的运算法则解方程
3. 比例和百分数:
- 比例关系:a∶b可以表示为a/b,两者成比例时,比值不变
- 百分数:以百分号表示的比例,如30%表示30/100=0.3
4. 数据与统计:
- 平均数:一组数值之和除以数的个数
- 中位数:将一组数值按大小排序后的中间值
- 纵轴与横轴:在坐标平面中,纵轴垂直向上,横轴水平向右
- 正方形:四条边相等,四个顶角都是直角
- 长方形:相邻边相等且角为直角,但对边不相等
- 三角形:三边相交于三个顶角,角的和为180度
- 圆形:由等距离于一个点的所有点组成的平面图形
以上公式和知识点是初中数学中常见的内容,希望能对你有所帮助。
初中数学知识点及公式大全
初中数学知识点及公式大全1.数的基本性质:- 一元二次方程的解公式:对于方程ax^2+bx+c=0(a≠0),它的解可以通过公式x=(-b±√(b^2-4ac))/(2a)求得。
-绝对值的性质:对于任意实数a,有,a,≥0,且,a,=0的条件是a=0。
-有理数和无理数的性质:有理数是可以表示为两个整数的比,而无理数是不能表示为两个整数的比的实数。
-分数的运算性质:分数的两个分数相加减时,应先找到它们的最小公倍数后,再根据通分进行相加减,然后再对得到的分数进行约分。
2.平面几何:-直角三角形的勾股定理:对于直角三角形,设直角边的长度分别为a、b,斜边的长度为c,则有c^2=a^2+b^2-圆的周长和面积:设圆的半径为r,则圆的周长L=2πr,圆的面积S=πr^2-平行线的性质:平行线具有两个重要的性质,即平行线的任意两条线上的任意一对对应角相等,以及平行线被一条截线截断时,对于被截断线的任意一条线上的对应角,有与之对应的角相等。
-三角形的三边关系:设三角形的三条边的长度分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
3.立体几何:- 空间直角坐标系:设空间直角坐标系中的一条直线的方程为ax+by+cz+d=0,则该直线的方向向量为(±a, ±b, ±c)。
- 二次曲面的方程:常见的二次曲面包括球体、圆锥面、抛物面、椭球面等,它们的方程分别为x^2+y^2+z^2=r^2,x^2+y^2-z^2=0,z=ax^2+by^2,(x/a)^2+(y/b)^2+(z/c)^2=1等。
- 立体图形的体积和表面积:立方体的体积V=a^3,表面积S=6a^2;圆柱的体积V=πr^2h,表面积S=2πrh+2πr^2;球体的体积V=(4/3)πr^3,表面积S=4πr^2;锥体的体积V=(1/3)πr^2h,表面积S=πrl+πr^24.代数运算:-同底数幂运算:对于同底数的幂相乘,可以直接将指数相加,即a^m*a^n=a^(m+n)。
初中数学知识点总结与公式大全
初中数学知识点总结与公式大全一、代数1.因式分解公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²a²-b²=(a+b)(a-b)a³ + b³ = (a + b)(a² - ab + b²)a³ - b³ = (a - b)(a² + ab + b²)a² + 2ab + b² = (a + b)²a² - 2ab + b² = (a - b)²2.方程求解公式:一次方程:ax + b = 0,x = -b/a二次方程:ax² + bx + c = 0,x = (-b ± √(b² - 4ac))/2a 一元二次方程组求解:联立两个方程,解得未知数的值3.指数与幂公式:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐa⁰=1aⁿ⁻ᵐ=aⁿ/aᵐa⁽ⁿ⁺ᵐ⁾=aⁿ×aᵐ4.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²二、几何1.图形面积公式:长方形的面积:S=长×宽正方形的面积:S=边长²三角形的面积:S=底边×高/2梯形的面积:S=(上底+下底)×高/2圆的面积:S=πr²2.图形周长公式:长方形的周长:P=2(长+宽)正方形的周长:P=4×边长三角形的周长:P=边1+边2+边3梯形的周长:P=上底+下底+两腿圆的周长:P=2πr3.相似三角形公式:对应边的比例:AB/DE=BC/EF=AC/DF对应角的相等性:∠A=∠D,∠B=∠E,∠C=∠F4.圆的相关公式:弧长公式:L=2πr(θ/360°)弦长公式:l = 2r × sin(θ/2)弧度和角度的转换:θ(弧度)=θ(角度)×π/180°弧度的定义:圆的半径所对的圆心角的弧长等于半径的长度三、统计与概率1.统计相关公式:平均值:平均值=总和/个数中位数:将一组数据按大小排列后,取中间位置的数众数:出现次数最多的数极差:一组数中最大值与最小值之差2.概率相关公式:事件的概率:P(A)=发生事件A的次数/总次数互斥事件的概率:P(A或B)=P(A)+P(B)独立事件的概率:P(A和B)=P(A)×P(B)。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全初中数学是学生数学学习的重要阶段,涵盖了许多基础和关键的概念、公式以及解题技巧。
以下是初中数学的主要知识点总结和公式大全,旨在帮助学生巩固和复习所学内容。
# 1. 数与代数整数 and Rational Numbers- 整数: 正整数、负整数、零- 有理数: 整数和分数,表示为a/b的形式,其中a和b为整数,b≠0整式 and Polynomials- 单项式: 数字与字母的乘积,如3x^2- 多项式: 单项式的和,如2x^3 + 5x^2 - 3x + 1- 多项式的加减法: 合并同类项- 多项式的乘法: (x+p)(x+q) = x^2 + (p+q)x + pq因式分解 Factorization- 提公因式: 找出多项式中的公共因子- 公式法: 使用平方差、完全平方等公式分解多项式- 十字相乘法: 利用交叉相乘求解二次多项式方程与不等式 Equations and Inequalities- 一元一次方程: ax + b = 0- 二元一次方程组: 使用加减消元法、代入消元法求解- 不等式的性质: 如不等式两边加/乘以同一数,不等号方向不变- 一元一次不等式: 解集表示和基本性质函数 Functions- 函数定义: 描述x与y之间关系的数学表达式- 线性函数: y = kx + b (k≠0)- 函数的图像: 直线、抛物线等# 2. 几何平面几何 Plane Geometry- 点、线、面的基本性质- 角: 平行线、相交线的角度关系- 三角形: 类型、面积公式、内角和定理- 四边形: 矩形、平行四边形、梯形、菱形、正方形的性质和计算- 圆: 圆的性质、圆周角、圆心角、弧长、扇形面积立体几何 Solid Geometry- 立体图形: 长方体、正方体、圆柱、圆锥、球的基本性质- 表面积和体积的计算公式坐标几何 Coordinate Geometry- 坐标系: 点的位置由一对坐标(x, y)确定- 点的平移、对称变换- 距离公式、中点公式、斜率# 3. 统计与概率统计 Statistics- 数据的收集、整理和描述- 频数分布表和直方图- 平均数、中位数、众数、极差、方差和标准差概率 Probability- 随机事件和概率的定义- 事件的可能性和计算- 基本概率公式和计算# 公式大全- 平方差公式: (a±b)^2 = a^2 ± 2ab + b^2- 完全平方公式: (a±b)^3 = a^3 ± 3a^2b + 3ab^2 ± b^3- 面积公式: 三角形面积 = 1/2 * 底 * 高- 圆的周长: C = 2πr; 圆的面积: A = πr^2- 长方体体积: V = 长 * 宽 * 高- 球的体积: V = 4/3 * πr^3- 概率计算: P(A) = 事件A发生的次数 / 所有可能事件的总数通过掌握上述初中数学的知识点和公式,学生可以更好地理解和解决数学问题,为高中及以后的数学学习打下坚实的基础。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全一、整数与有理数1. 整数运算a. 加法:同号相加,异号相减,取绝对值相减,结果的符号由绝对值较大的数决定。
b. 减法:减去一个数,相当于加上它的相反数。
c. 乘法:同号得正,异号得负。
d. 除法:除法的定义与整数的性质保持一致。
2. 有理数运算a. 加法与减法:通分后进行加法或减法运算,结果再化为最简分数。
b. 乘法与除法:同号得正,异号得负;除法的定义与有理数的性质保持一致。
3. 整数与有理数的大小比较a. 同号比大小,绝对值大的数大;异号比大小,正数大于负数。
二、分数1. 分数的基本概念a. 分数的表示:分数由分子和分母组成,分子表示被分成的份数,分母表示总共的份数。
b. 真分数和假分数:分子小于分母的分数为真分数,分子大于分母的分数为假分数。
2. 分数的四则运算a. 加法与减法:通分后进行加减法运算,结果再化为最简分数。
b. 乘法:分子相乘,分母相乘,结果再化为最简分数。
c. 除法:分子乘以倒数,分母相乘,结果再化为最简分数。
3. 分数的大小比较a. 同分母比大小,分子大的分数大;异分母比大小,通分后再比大小。
三、代数1. 代数式a. 代数式的概念:表达式中含有字母的代数式。
b. 代数式的加减法:同类项相加减,非同类项不变。
2. 一元一次方程a. 一元一次方程的形式:ax+b=0。
b. 解一元一次方程的步骤:去括号、去分母、合并同类项、移项求解、检验解。
3. 实数集a. 自然数、整数、有理数、无理数、实数的包含关系。
b. 实数的性质:封闭性、比较性、连续性、稠密性。
四、平面图形1. 点、线、面的关系与性质a. 点:无宽度。
b. 线:由无数个点无限延申而成。
c. 面:由无数个线条围成的封闭区域。
2. 三角形a. 三角形的性质:内角和为180°,外角和为360°。
b. 三角形的分类:按照边长和角度的不同进行分类。
3. 四边形a. 四边形的分类:平行四边形、矩形、正方形、菱形、梯形等。
最全初中数学知识点总结及公式(可打印)
最全初中数学知识点总结及公式(可打印)最全初中数学知识点总结1.菱形的定义:一组相邻边相等的平行四边形称为菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学知识点总结及公式1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
(完整版)初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全1.数的计算:-四则运算:加法、减法、乘法、除法;-混合运算:含有多种运算符的算式的计算;-约分和通分:将分数化为最简形式或统一分母;2.数的性质与关系:-基本性质:整数、正数、零、负数的性质;-数轴与有理数:正数、零、负数在数轴上的位置与大小关系;-约数和倍数:两个概念的关系以及判断一个数是否为另一个数的约数或倍数;-质数和合数:判断一个数是否为质数或合数;3.代数初步:-数的代数性质:加法、减法、乘法、除法的性质;-代数式与多项式:包含字母和数字的表达式的运算与化简;-一元一次方程:解方程以及含有两个未知数的方程的解法;4.平面图形的性质与变换:-三角形与四边形:分类、命名以及性质;-各类三角形与直角三角形:分类、命名以及性质;-垂直、水平、平行线:判断和证明线段的关系;-图形的相似与全等:判断图形之间的相似与全等关系;-平移、旋转、翻转:图形在平面上的基本变换;5.动态与静态图形:-与平线的关系:判断线段与平面之间的位置关系;-圆的有关性质:半径、直径、圆心、弧、扇形等的性质;-直方图与折线图:数据的统计与图表的制作;6.其他数学知识点:-百分数:百分数的计算及运用;-合理估算:根据实际情况进行数值近似;-算术平方根:计算数的算术平方根;-统计与概率:数据收集、整理与分析,以及概率的计算。
1.常见代数式公式:- (a+b)^2 = a^2 + 2ab + b^2- (a-b)^2 = a^2 - 2ab + b^2-a^2-b^2=(a+b)(a-b)- a^3 + b^3 = (a+b)(a^2 - ab + b^2)- a^3 - b^3 = (a-b)(a^2 + ab + b^2)- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^32.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tanA = sinA/cosA3.直角三角形公式:-勾股定理:a^2+b^2=c^2- 正弦定理:sinA = a/c, sinB = b/c- 余弦定理:cosA = b/c, cosB = a/c 4.面积和体积公式:-三角形面积公式:S=1/2*底*高-平行四边形面积公式:S=底*高-梯形面积公式:S=1/2*(上底+下底)*高-等边三角形面积公式:S=(边长^2*√3)/4-圆的面积公式:S=π*半径^2-球的体积公式:V=4/3*π*半径^3。
初中数学公式_初中数学知识点大全
初中数学公式_初中数学知识点大全1.平均数公式平均数=总和/数量2.质数公式质数是大于1且只能被1和自身整除的数。
3.分数运算公式a/b + c/d = (ad + bc) / bda/b - c/d = (ad - bc) / bda/b × c/d = ac / bd(a/b) ÷ (c/d) = (ad) / (bc)4.百分比公式百分数%=(部分/整体)×100%5.比例公式a:b=c:d表示a与b的比例等于c与d的比例。
6.直角三角形勾股定理直角三角形的斜边的平方等于两直角边的平方和。
a²+b²=c²7.二次方程的解公式对于ax² + bx + c = 0 的二次方程:x = (-b ± √(b² - 4ac)) / 2a8.三角函数公式正弦函数:sinθ = 对边 / 斜边余弦函数:cosθ = 邻边 / 斜边正切函数:tanθ = 对边 / 邻边9.等腰三角形的面积公式S=1/2×底×高10.余角公式sin(90° - θ) = cosθcos(90° - θ) = sinθtan(90° - θ) = cotθ11.半径和弧长关系公式弧长=弧度×半径12.圆的面积公式圆的面积=π×半径²13.三角形面积公式海伦公式:S=√(p×(p-a)×(p-b)×(p-c))其中,p=(a+b+c)/214.空间几何公式长方体体积:V=长×宽×高圆柱体体积:V=圆的面积×高球体体积:V=(4/3)×π×半径³1.分数运算:包括分数的四则运算、分数的化简和分数的比较等。
2.小数运算:包括小数的四则运算、小数的化简和小数的比较等。
3.百分数:包括百分数的运算、百分数与分数、小数的转换等。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全数的性质和运算:1.自然数和整数性质2.有理数性质与运算3.实数的性质与大小比较4.数列的概念、特征与求和5.代数表达式的概念、运算和化简6.方程与不等式的概念、解法和应用7.根式的化简与运算平面图形与空间图形:1.平面角的概念、性质和计算2.平行线与平行线间角的关系3.三角形的性质、分类和判定4.四边形的性质、分类和判定5.圆与圆周角的性质和计算6.立体图形的性质和计算7.空间几何关系与证明数与代数:1.实数的运算与性质2.分式的运算与性质3.根式的运算与性质4.二次根式的性质与计算5.代数式(含多项式)的运算、化简与展开6.方程的应用与解法7.异或、绝对值与模运算函数与方程:1.函数的概念与性质2.一次函数的性质与图象3.二次函数的性质与图象4.指数函数与对数函数的性质5.消去法与代入法解方程6.方程及实际问题的应用7.二次函数及其图象的性质统计与概率:1.统计调查与数据整理2.数据分析与数据处理3.概率的概念、计算与应用4.事件与事件的概率计算5.概率的加法原理、乘法原理与推论6.统计图与统计量的计算7.正态分布与样本调查以上是初中数学的主要知识点,下面列举了一些常用的数学公式:1.平方公式:(a+b)²=a²+2ab+b²2.差平方公式:(a-b)²=a²-2ab+b²3.平方差公式:a²-b²=(a+b)(a-b)4.完全平方公式:a²+2ab+b²=(a+b)²5.勾股定理:a²+b²=c²(直角三角形中,a、b为直角边,c为斜边)6.正弦定理:a/sinA=b/sinB=c/sinC (非直角三角形中,a、b、c为边,A、B、C为角)7.余弦定理:c²=a²+b²-2ab*cosC(非直角三角形中,a、b、c为边,C为夹角)8.面积公式:矩形的面积=长*宽;正方形的面积=边长²;三角形的面积=底*高/29.圆的面积公式:A=πr²(A为圆的面积,r为半径)10.体积公式:长方体的体积=长*宽*高;圆柱体的体积=πr²h(r为底圆半径,h为高)。
初中数学知识点总结及公式大全
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是—2。
2.一元二次方程3x 2+4x —2=0的一次项系数为4,常数项是-2。
3.一元二次方程3x 2-5x —7=0的二次项系数为3,常数项是—7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0。
知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0。
3.直角坐标系中,点A (1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(—2,1)在第二象限。
知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1。
2.当x=3时,函数y=21-x 的值为1。
3.当x=-1时,函数y=321-x 的值为1。
知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数.2.函数y=4x+1是正比例函数。
3.函数x y 21-=是反比例函数.4.抛物线y=-3(x —2)2—5的开口向下.5.抛物线y=4(x —3)2—10的对称轴是x=3。
6.抛物线2)1(212+-=x y 的顶点坐标是(1,2)。
7.反比例函数xy 2=的图象在第一、三象限。
知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10。
2.数据3,4,2,4,4的众数是4。
3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1。
3.2sin30°+ tan45°= 2. 4.tan45°= 1。
5.cos60°+ sin30°= 1。
知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆。
初中数学必备公式和知识点
初中数学必备公式和知识点一、代数知识点:1.平方公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^22.公式:(a+b)(a-b)=a^2-b^23.因式分解:a^2-b^2=(a+b)(a-b)ax^2 + bx + c = a(x-x1)(x-x2)a^3 + b^3 = (a+b)(a^2-ab+b^2)4.比例与变化:a/b = c/d => ad = bc百分数和简单利率公式:P=P0+P0*r*T复利公式:A=P0*(1+r)^n5.一元一次方程:ax + b = 0 => x = -b/a6.一元二次方程:ax^2 + bx + c = 0两根公式:x1, x2 = (-b ± √(b^2-4ac))/2a7.幂与根:欧拉公式:e^(iπ)+1=08.指数与对数:指数运算法则:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^0=1对数运算法则:logab + logac = loga(bc)loga1 = 0logaa = 1logaa^b = b二、几何知识点:1.直角三角形:勾股定理:a^2+b^2=c^2正弦定理:sinA/a = sinB/b = sinC/c余弦定理:cosA = (b^2+c^2-a^2)/2bc2.平行线与比例:三角形内部:两条平行线与角对应的边成比例三角形外部:两条平行线与横截距成比例3.三角形:中位线长度公式:m=√(2a^2+2b^2-c^2)/2高线长度公式:h=2A/b角平分线定理:m/n=b/c4.圆的相关知识:圆周长:C=2πr圆面积:S=πr^2弧长公式:L=2πrθ/360°5.棱锥与棱台:侧面积公式:S = 1/2pl全面积公式:S = 1/2pl + πr^2(锥)体积公式:V=1/3πr^2h(锥),V=1/3h(πr^2+πR^2+√(πr^2πR^2))(台)6.空间几何知识:线面平行公理:若平面α与直线l平行,那么直线外的直线与α平行。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全一、数与代数1. 有理数- 整数: 正整数、0、负整数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 分式的基本性质- 分式的加减乘除3. 方程与不等式- 一元一次方程、二元一次方程- 不等式及其解集- 一元一次不等式及其解集- 一元二次方程4. 函数- 函数的概念- 函数的表示方法- 线性函数、二次函数- 函数的简单性质二、几何1. 图形初步- 点、线、面、体- 直线、射线、线段- 角的概念及分类- 角的度量2. 三角形- 三角形的基本性质- 三角形的分类- 三角形的内角和外角- 特殊三角形(等腰三角形、等边三角形、直角三角形)3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形- 梯形的性质与判定- 四边形的面积计算4. 圆- 圆的基本性质- 圆的面积与周长- 扇形、弧长与弓形- 切线的性质与判定5. 几何变换- 平移- 旋转- 轴对称(镜像对称)三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的大小- 概率的计算四、公式大全1. 代数公式- 乘方公式: $a^n = a \times a \times \ldots \times a$ (n个a相乘)- 完全平方公式: $(a \pm b)^2 = a^2 \pm 2ab + b^2$- 一元一次方程: $ax + b = 0$- 二元一次方程组: $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$2. 几何公式- 矩形面积: $S = ab$- 三角形面积: $S = \frac{1}{2} \times base \times height$ - 圆的面积: $S = \pi r^2$- 扇形面积: $S = \frac{\theta}{360} \times \pi r^2$ (其中θ为扇形的圆心角)3. 统计公式- 平均数: $\bar{x} = \frac{\sum{x_i}}{n}$- 中位数: 将数据从小到大排序后位于中间位置的数- 众数: 一组数据中出现次数最多的数4. 概率公式- 加法原理: $P(A \cup B) = P(A) + P(B)$- 乘法原理: $P(A \cap B) = P(A) \times P(B)$ (当A、B为独立事件时)五、附录- 常用数学符号- 常见数学术语解释- 数学公式使用说明六、结束语本文总结了初中数学的主要知识点和常用公式,旨在为学生提供一个快速查阅和复习的参考。
初中数学知识点及公式大全
初中数学知识点及公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6789同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等1415161718推论119推论220推论3212223角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°37在直角三角形中,如果一个锐角等于30°38直角三角形斜边上的中线等于斜边上的一半39404142定理1关于某条直线对称的两个图形是全等形43定理244定理34546c的平方,即a^2+b^2=c^247c有关系a^2+b^2=c^2,那么这个三角形是直角三角形484950)×180°5152平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)67菱形判定定理1四边都相等的四边形是菱形68菱形判定定理269正方形性质定理170正方形性质定理271定理1关于中心对称的两个图形是全等的72定理273一点对称747576777879推论180推论281三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h 83(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)9293判定定理294判定定理3三边对应成比例,两三角形相似(95比例,那么这两个直角三角形相似96性质定理197性质定理2相似三角形周长的比等于相似比98性质定理399100101102103104105106107108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学知识点和公式大全
初中数学知识点和公式大全1.整数及其运算:-整数概念-整数的加减法-整数的乘法-整数的除法-整数的混合运算2.分数及其运算:-分数的概念-分数的加减法-分数的乘法-分数的除法-分数的混合运算3.百分数:-百分数的概念-百分数的转化-百分数的加减法-百分数的乘法-百分数的除法4.小数:-小数的概念-小数的加减法-小数的乘法-小数的除法-小数的混合运算5.平均数与比例:-算术平均数-加权平均数-比例的概念-比例的性质-比例的计算6.代数式:-代数式的概念-同类项与合并同类项-代数式的加减法-代数式的乘法-代数式的除法7.一元一次方程:-一元一次方程的概念-一元一次方程的解的性质-一元一次方程的解法-一元一次方程的应用问题8.一元一次不等式:-一元一次不等式的概念-一元一次不等式的解的性质-一元一次不等式的解法-一元一次不等式的应用问题9.平行线与相交线:-平行线与笛卡尔坐标系-平行线之间的关系-平行线之间的夹角-相交线的概念-相交线之间的关系10.图形的性质:-点、直线、线段和角的概念-三角形的性质-四边形的性质-圆的性质-常见几何图形的性质11.几何变换:-平移-旋转-对称-放缩-切变12.数据的收集与统计:-数据的收集-数据的整理与处理-数据的统计图与分析-数据的描述与比较-数据的预测与推断1.面积与周长公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-长方形的周长公式:周长=2×(长+宽)-正方形的周长公式:周长=4×边长-三角形的周长公式:周长=边1+边2+边3-圆的周长公式:周长=2×π×半径2.二次根式运算公式:-二次根式的加减法公式:√a±√b=√a±√b(a≠b) - 二次根式的乘法公式:(√a) × (√b) = √ab-二次根式的除法公式:(√a)/(√b)=√(a/b)(b≠0)3.线性方程和一元一次方程公式:- 线性方程的一般形式:ax + b = 0-一元一次方程的解的公式:x=-b/a4.几何图形的面积和体积公式:-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-球的体积公式:体积=(4/3)×π×半径³-长方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=π×半径²×高-圆锥体的体积公式:体积=(1/3)×π×半径²×高5.正比例和反比例公式:- 正比例公式:y = kx (k为常数) -反比例公式:y=k/x(k为常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点及公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2常用数学公式:乘法与因式分解:a²-b²=(a+b)(a-b) a³+b³=(a+b)(a²-ab+b²) a³-b³=(a-b(a²+ab+b²) 三角不等式:|a+b|≤|a|+|b| ;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解;-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系:X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式:b²-4ac=0 注:方程有两个相等的实根b²-4ac>0 注:方程有两个不等的实根b²-4ac<0 注:方程没有实根,有共轭复数根三角函数公式:两角和公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式:tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式:sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积:2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB特殊三角函数值:sin0°=0;sin30°=1/2;sin45°=√2/2 ;sin60°=√3/2 ;sin90°=1 cos0°=1 ;cos30°=√3/2 ;cos45°=√2/2 ;cos60°=1/2 ;cos90°=0 tan0°=0 ;tan30°=√3/3 ;tan45°=1 ;tan60°=√3cot30°=√3;cot45°=1;cot60°=√3/3;cot90°=0某些数列前n项和:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+…+n3=(1+2+3+……+n)2=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理:a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理:b²=a²+c²-2accosB 注:角B是边a和边c的夹角圆:圆的标准方程:(x-a) ²+(y-b) ²=r²注:(a,b)是圆心坐标圆的一般方程:x²+y²+Dx+Ey+F=0 注:D²+E²-4F>0棱柱:斜棱柱侧面积:S=c'*h直棱柱侧面积:S=c*h抛物线标准方程:y²=2px y²=-2px x²=2py x²=-2py正棱锥侧面积:S=1/2c*h'斜棱柱体积:V=S'L 注:其中,S'是直截面面积,L是侧棱长圆台侧面积:S=1/2(c+c')l=π(R+r)l正棱台侧面积:S=1/2(c+c')h'球:球的表面积:S=4π*r²圆柱圆锥:圆柱侧面积:S=c*h=2π*h圆锥侧面积:S=1/2*c*l=pi*r*l圆锥体体积公式:V=1/3*pi*r2h圆柱体:V=πr²h锥体体积公式:V=1/3*S*H柱体体积公式:V=s*h弧长公式:l=a*r a是圆心角的弧度数r >0扇形面积公式:s=1/2*l*r韦达定理:设一元二次方程ax²+bx+c =0(a,b,c,∈R,a≠0) 中,两根x1、x2有如下关系:x1+x2= -a/b;x1*x2=a/c十字相乘:。