02一元线性回归模型——【计量经济学】

合集下载

计量经济学第二章经典线性回归模型

计量经济学第二章经典线性回归模型

Yt = α + βXt + ut 中 α 和 β 的估计值 和
,
使得拟合的直线为“最佳”。
直观上看,也就是要求在X和Y的散点图上
Y
* * Yˆ ˆ ˆX
Yt
* **
Yˆt
et * *
*
*
**
*
**
**
*
Xt
X
图 2.2
残差
拟合的直线 Yˆ ˆ ˆX 称为拟合的回归线.
对于任何数据点 (Xt, Yt), 此直线将Yt 的总值 分成两部分。
β
K
βK
β1 β1
...
βK
βK
Var(β 0 )
Cov(β1 ,β
0
)
Cov(β 0 ,β1 )
Var(β1 )
...
Cov(β
0

K
)
...
Cov(β1

K
)
...
...
...
...
Cov(β
K

0
)
Cov(β K ,β1 )
...
Var(β K )
不难看出,这是 β 的方差-协方差矩阵,它是一 个(K+1)×(K+1)矩阵,其主对角线上元素为各 系数估计量的方差,非主对角线上元素为各系 数估计量的协方差。
ut ~ N (0, 2 ) ,t=1,2,…n
二、最小二乘估计
1. 最小二乘原理
为了便于理解最小二乘法的原理,我们用双
变量线性回归模型作出说明。
对于双变量线性回归模型Y = α+βX + u, 我 们
的任务是,在给定X和Y的一组观测值 (X1 ,

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

2.下列计量经济学方程哪些是正确的?哪些是错误的?为什么?
(1)Yi=α+βXi,i=1,2,…,n;
(2)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(3)Yi=α+βXi+μi,i=1,2,…,n;

∧∧
(4)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(5)Yi=α+βXi,i=1,2,…,n;
2 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
www.10Leabharlann
假定随机扰动项满足条件零均值、条件同方差、条件序列丌相关性以及服从正态分布。 (2)违背基本假设的计量经济学仍然可以估计。虽然 OLS 估计值丌再满足有效性,但 仍然可以通过最大似然法等估计方法或修正 OLS 估计量来得到具有良好性质的估计值。

4.线性回归模型 Yi=α+βXi+μi,i=1,2,…,n 的零均值假设是否可以表示为
1
n
n i 1
i

0 ?为什么?
n
1 0 答:线性回归模型 Yi=α+βXi+μi 的零均值假设丌可以表示为
i

n i1
原因:零均值假设 E(μi)=0 实际上表示的是 E(μi∣Xi)=0,即当 X 取特定值 Xi 时,
3.一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是否就 丌可以估计?
答:(1)针对普通最小二乘法,一元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于自变量的基本假设: 假定自变量具有样本变异性,且在无限样本中的方差趋于一个非零的有限常数。 ③关于随机干扰项的基本假设:

计量经济学复习

计量经济学复习

第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。

2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。

但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。

通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。

3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。

Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。

Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。

Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。

(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。

该值越大说明拟合得越好。

而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。

5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。

计量经济学第二章 一元线性回归模型(1)(肖)

计量经济学第二章 一元线性回归模型(1)(肖)

10
2.在经济学中,经济学家要研究个人
消费支出与个人可支配收入的依赖关系。
这种分析有助于估计边际消费倾向,就是
可支配收入每增加一元引起消费支出的平
均变化。
11
3.在企业中,我们很想知道人们对企
业产品的需求与广告费开支的关系。这种
研究有助于估计出相对于广告费支出的需
求弹性,即广告费支出每变化百分之一的
(2.3)
想想:结合表2.1的资料 ,怎样理解式(2.3)
变量Y 的原因, 给定变量X 的值也不能具
体确定变量Y的值, 而只能确定变量Y 的
统计特征,通常称变量X 与Y 之间的这种
关系为统计关系。
16
例如,企业总产出Y 与企业的资本投入
K 、劳动力投入L 之间的关系就是统计关 系。虽然资本K 和劳动力L 是影响产出Y 的两大核心要素,但是给定K 、L 的值并 不能确定产出Y 的值。因为,总产出Y 除 了受资本投入K、劳动力投入L 的影响外

在进入正式的回归理论之前,先斟酌一下变量y与变 量x可以互换的不同名称、术语。 Y 因变量 X 自变量
被解释变量 响应变量
被预测变量
解释变量 控制变量
预测变量
回归子
归回元
22
第二节
一、引例
一元线性回归模型
假定我们要研究一个局部区域的居 民消费问题,该区域共有80户家庭组成 ,将这80户家庭视为一个统计总体。
32
函数f (Xi)采取什么函数形式,是一个
需要解决的重要问题。在实际经济系统
中,我们不会得到总体的全部数据,因
而就无法据已知数据确定总体回归函数 的函数形式。同时,对总体回归函数的 形式只能据经济理论与经验去推断。

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

计量经济学实验二-一元线性回归模型的估计、检验和预测

计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。

实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。

实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。

实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。

实验二~实验十二主要都是用这些数据来完成一系列工作。

表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。

二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。

1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。

图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。

但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。

所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。

计量经济学第二章一元线性回归模型

计量经济学第二章一元线性回归模型
第二章 经典单方程计量经济学模型: 一元线性回归模型
回归分析概述 一元线性回归模型的参数估计 一元线性回归模型的检验 一元线性回归模型的预测 实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF)
2020/3/6
LOU YONG
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 Y 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530
2020/3/6
LOU YONG
20
• 该样本的散点图(scatter diagram):
分i。
2020/3/6
LOU YONG
17
上式称为总体回归函数(PRF)的随机 设定形式。表明被解释变量除了受解释 变量的系统性影响外,还受其他因素的 随机性影响。
由于方程中引入了随机项,成为计量经 济学模型,因此也称为总体回归模型。
2020/3/6
LOU YONG
18
随机误差项主要包括下列因素 在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 模型关系的设定误差的影响; 其他随机因素的影响。
回归系数(regression coefficients)。
2020/3/6
LOU YONG
15
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。
但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。
称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。

计量经济学一元线性回归模型总结

计量经济学一元线性回归模型总结

计量经济学⼀元线性回归模型总结第⼀节两变量线性回归模型⼀.模型的建⽴1.数理模型的基本形式y x αβ=+ (2.1)这⾥y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的⽅法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进⾏合理选择。

(2)变量之间是否是线性关系可先通过散点图来观察。

2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的⼈均可⽀配收⼊和⼈均消费性⽀出数据(见表1),能否⽤两变量线性函数进⾏分析?表1.上海居民收⼊消费情况年份可⽀配收⼊消费性⽀出年份可⽀配收⼊消费性⽀出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.⼀些⾮线性模型向线性模型的转化⼀些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。

例3-2 如果认为⼀个国家或地区总产出具有规模报酬不变的特征,那么采⽤⼈均产出y与⼈均资本k的形式,该国家或者说地区的总产出规律可以表⽰为下列C-D⽣产函数形式y Akα=(2.2)也就是⼈均产出是⼈均资本的函数。

能不能⽤两变量线性回归模型分析这种总量⽣产规律?3.计量模型的设定(1)基本形式:y x αβε=++ (2.3)这⾥ε是⼀个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。

计量经济学习题第2章-一元线性回归模型

计量经济学习题第2章-一元线性回归模型

第2章 一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。

A 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系2、相关关系是指__________。

A 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系3、进行相关分析时的两个变量__________。

A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以4、表示x 和y 之间真实线性关系的是__________。

A 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。

A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。

A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2i i ˆˆ0Y Y σ∑=时,(-)=0C i i ˆˆ0Y Y σ∑=时,(-)为最小D 2i i ˆˆ0Y Y σ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。

A ()()()i i 12i X X Y -Y ˆX X β--∑∑= B ()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C i i 122i X Y -nXY ˆX -nXβ∑∑= D i i i i12x n X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。

计量经济学第3章一元回归模型

计量经济学第3章一元回归模型

Yi )与假设最 假定样本容量为n,每个点( X i , 佳的理论的样本回归直线都会有一个误差,所以 就会有n个误差,这些误差就是残差,计算公式 为:
ˆ ˆX ˆ Y ei Yi Y i i 0 1 i
(3-4)
其几何意义如图所示:

能够使残差平方和为最小的回归直线,就是与散 点误差最小的直线。由式(3-2)、(3-3)和 (3-4)得: 2 2 ˆ ˆ X ) 2 (3-5) ˆ e ( Y Y ) ( Y i i i i 0 1 i
(3)无自相关假定。即对于不同的 u i 之间不存 在线性相关性。
Cov(ui , u j ) E(ui E(ui ))(u j E(u j )) E(ui u j ) 0
(4) 与X之间不存在线性相关。即与X的 协方差为0。
Cov(ui , X i ) E(ui E(ui ))(X i E( X i )) E(ui X i ) 0
于是有
2 2 ˆ ˆ ( Y Y ) [( Y Y ) ( Y Y )] i i i i
2 2 2 ˆ ˆ ( Y Y ) ( Y Y ) ( Y Y ) i i i i
2 2 ˆ y yi ei 2 i
2 2 y ( Y Y ) 各项平方和表示的意义是: i i 是实际的样本观测值围绕其均值的总变异,称 为总平方和(Total sum of squares), 记为TSS,它描述了所有的观测值相对与的总 的偏离程度;
是回归估计值围绕其均 值的总变异,称为回归平方和(Explained sum of squares),记为ESS,它描述 了所有的来自回归的估计值相对与的偏离程 度;

第二章 一元线性回归模型

第二章  一元线性回归模型
0 1
∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。

计量经济学的2.2 一元线性回归模型的参数估计

计量经济学的2.2 一元线性回归模型的参数估计

ˆ ˆ ˆ ˆ ˆ yi ( 0 1 X i ) ( 0 1 X e ) ˆ 1 ( X i X ) 1 ei n
可得 或
ˆ ˆ y i 1 xi ˆ y x e
i 1 i
(**)
i
why?
(**)式也称为样本回归函数的离差形式。 注意:在计量经济学中,往往以小写字母表示对 均值的离差。
2、如果假设4满足,则假设2也满足。 以上假设也称为线性回归模型的经典假设 或高斯(Gauss)假设,满足该假设的线性回归 模型,也称为经典线性回归模型(Classical Linear Regression Model, CLRM)。
27
线性回归模型的基本假设(5)
假设5、var(X)必须是一个有限的正数。(教材的假 设5) 2
33
这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计 量(best liner unbiased estimator, BLUE)。 当不满足小样本性质时,需进一步考察估计量的 大样本或渐近性质: (4)渐近无偏性,即样本容量趋于无穷大时,是 否它的均值序列趋于总体真值; (5)一致性,即样本容量趋于无穷大时,它是否 依概率收敛于总体的真值; (6)渐近有效性,即样本容量趋于无穷大时,是 否它在所有的一致估计量中具有最小的渐近方差。 34
(X
i
X ) / n Q,
n
意为:在一个给定的样本中,X值不可以全是相同的
如果全部X值都相同,则 X i X ,方程 的分母就变
ˆ ˆ 为零,从而无法估计 1 ,也就无法估计 0 。
又如: 家庭消费支出例子,如果家庭收入很少变动,我们就不能解释 消费支出的变化。读者应该记住,要把回归分析作为一种研究 工具来使用,Y和X两者均有变化是最为重要的。简言之,变量 28 必须在变!

计量经济学第二章经典单方程计量经济学模型:一元线性回归模型

计量经济学第二章经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极人似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”, 第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包扌舌两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成:第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则oGoss-niarkov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包扌舌被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为kids= 00 + P i educ+ “(1)随机扰动项〃包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变卞的影响吗?请解释。

第二章 一元线性回归模型

第二章   一元线性回归模型

__
__
2
/n
★样本相关系数r是总体相关系数 的一致估计
相关系数有以下特点:
• • • • 相关系数的取值在-1与1之间。 (2)当r=0时,线性无关。 (3)若r>0 ,正相关,若r<0 ,负相关。 (4)当0<|r|<1时,存在一定的线性相关 关系, 越接近于1,相关程度越高。 • (5)当|r|=1时,表明x与y完全线性相关 (线性函数),若r=1,称x与y完全正相关; 若r=-1,称x与y完全负相关。 • 多个变量之间的线性相关程度,可用复相 关系数和偏相关系数去度量。
●假定解释变量X在重复抽样中取固定值。 但与扰动项u是不相关的。(从变量X角度看是外生的)
注意: 解释变量非随机在自然科学的实验研究中相对
Yi 1 2 X i ui
●假定解释变量X是非随机的,或者虽然X是随机的,
容易满足,经济领域中变量的观测是被动不可控的, X非随机的假定并不一定都满足。
E( y xi ) 0 1xi
11
• 可以看出,虽然每个家庭的消费支出存在差 异,但平均来说,家庭消费支出是随家庭可 支配收入的递增而递增的。当x取各种值时, y的条件均值的轨迹接近一条直线,该直线称 为y对x的回归直线。(回归曲线)。 • 把y的条件均值表示为x的某种函数,可写 为:
E( y xi ) 0 1xi
Var ( y xi ) 2
Cov( yi , y j ) 0
y | xi ~ N (0 1xi , )
2
22
第三节 参数估计
• 一、样本回归方程
• 对于
yi 0 1 xi ui
• 在满足古典假定下,两边求条件均值,得到总体 回归函数:

计量经济学 第二章 一元线性回归模型

计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。

其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。

其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。

一般说来,随机项来自以下几个方面:1、变量的省略。

由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。

2、统计误差。

数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。

3、模型的设定误差。

如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。

4、随机误差。

被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。

若相互依赖的变量间没有因果关系,则称其有相关关系。

对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。

他们各有特点、职责和分析范围。

相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。

回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学(Ⅰ)南开大学经济学院教授、数量经济学专业博士生导师张晓峒一元线性回归模型1.一元线性回归模型有一元线性回归模型(统计模型)如下,y t = β0 + β1 x t + u t上式表示变量y t 和x t之间的真实关系。

其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变1成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。

回归模型存在两个特点。

(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。

(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。

通常线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。

在对回归函数进行估计之前应该对随机误差项u t做出如下假定。

(1) u t 是一个随机变量,u t 的取值服从概率分布。

(2) E(u t) = 0。

(3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = σ2。

称u i 具有同方差性。

(4) u t 为正态分布(根据中心极限定理)。

以上四个假定可作如下表达。

u t~ N (0,σ2)。

(5) Cov(u i, u j) = E[(u i - E(u i) ) ( u j - E(u j) )] = E(u i, u j) = 0, (i≠j )。

含义是不同观测值所对应的随机项相互独立。

称为u i 的非自相关性。

(6) x i是非随机的。

(7) Cov(u i, x i) = E[(u i - E(u i) ) (x i - E(x i) )] = E[u i (x i - E(x i) ] = E[u i x i - u i E(x i) ] =E(u i x i) = 0.u i与x i相互独立。

否则,分不清是谁对y t的贡献。

(8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。

在假定(1),(2)成立条件下有E(y t) = E(β0 + β1 x t + u t) = β0 + β1 x t。

232.最小二乘估计(OLS )对于所研究的经济问题,通常真实的回归直线是观测不到的。

收集样本的目的就是要对这条真实的回归直线做出估计。

怎样估计这条直线呢?显然综合起来看,这条直线处于样本数据的中心位置最合理。

怎样用数学语言描述“处于样本数据的中心位置”?设估计的直线用t y ˆ=0ˆβ+1ˆβ x t 表示。

其中t y ˆ称y t 的拟合值(fitted value ),0ˆβ和1ˆβ分别是 β0 和β1的估计量。

观测值到这条直线的纵向距离用t uˆ表示,称为残差。

y t =t y ˆ+t u ˆ=0ˆβ+1ˆβ x t +t u ˆ 称为估计的模型。

假定样本容量为T 。

(1)用“残差和最小”确定直线位置是一个途径。

但很快发现计算“残差和”存在相互抵消的问题。

(2)用“残差绝对值和最小”确定直线位置也是一个途径。

但绝对值的计算比较麻烦。

(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。

(这种方法对异常值非常敏感)设残差平方和用Q 表示, Q =∑=Ti tu12ˆ=∑=-Ti t t yy 12)ˆ(=∑=--Ti t t x y 1210)ˆˆ(ββ,则通过Q 最小确定这条直线,即确定0ˆβ和1ˆβ的估计值。

以0ˆβ和1ˆβ为变量,把Q 看作是0ˆβ和1ˆβ的函数,这是一个求极值的问题。

求Q 对0ˆβ和1ˆβ的偏导数并令其为零,得正规方程,4ˆβ∂∂Q = 2∑=--Ti t t x y 110)ˆˆ(ββ(-1) = 0 (1) 1ˆβ∂∂Q = 2∑=--T i t t x y 110)ˆˆ(ββ(- x t ) = 0 (2) 下面用代数和矩阵两种形式推导计算结果。

首先用代数形式推导。

由(1)、(2)式得,∑=--Ti t t x y 110)ˆˆ(ββ= 0 (3)∑=--Ti t t x y 110)ˆˆ(ββx t = 0 (4)(3)式两侧用T 除,并整理得,0ˆβ= x y 1ˆβ- (5) 把上式代入(4)式并整理,得,])(ˆ)[(11∑=---Ti ttx x y yβx t = 0 (6) ∑∑==---Ti t tTi t t x x xx y y 111)(ˆ)(β= 0 (7)1ˆβ= ∑∑--ttt txx x y y x )()( (8)因为∑=-Ti ty yx 1)(= 0,∑=-Ti tx xx 1)(= 0,分别在(8)式的分子和分母上减∑=-Ti ty yx 1)(和∑=-Ti tx xx 1)(得,1ˆβ= ∑∑∑∑------)()()()(x xx x x x y yx y y x ttttt t(9)= ∑∑---2)())((x x y y x x tt t(10) 下面用矩阵形式推导0ˆβT +1ˆβ (∑=T i t x 1) = ∑=Ti t y 15ˆβ∑=Ti t x 1+1ˆβ(∑=Ti tx 12) =∑=Ti t t y x 1⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑2t tt x x x T⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y ⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t t t x x x T ⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y =22)(1∑∑-t t x x T ⎥⎥⎦⎤⎢⎢⎣⎡--∑∑∑T x x x t t t 2⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y 这种形式在单位根检验的理论分析中非常有用。

3.最小二乘估计量0ˆβ和1ˆβ的特性 (1) 线性特性这里指0ˆβ和1ˆβ分别是y t 的线性函数。

1ˆβ= ∑∑---2)())((x x y y x x ttt=∑∑∑----2)()()(x x x xy y x x tttt=∑∑--2)()(x x y x x ttt令 k t =∑--2)()(x x x x t t ,代入上式得1ˆβ= ∑ k t y t 可见1ˆβ是y t 的线性函数,是β1的线性估计量。

同理β0也具有线性特性。

(2) 无偏性 利用上式E(1ˆβ) = E(∑ k t y t ) = E[ ∑ k t (β0 + β1 x t + u t ) ] = E ( β0 ∑ k t + β1 ∑ k t x t + ∑ k t u t ) = E[β1 ∑ k t (x t -x ) + ∑ k t u t ] = β1 + E(∑ k t u t ) = β1 (3) 有效性β0, β1的OLS 估计量的方差比其他估计量的方差小。

Gauss-Marcov 定理:若u t 满足E(u t ) = 0,D(u t ) = σ 2,那么用OLS 法得到的估计量就具有最佳线性无偏性。

估计量称最佳线性无偏估计量。

最佳线性无偏估计特性保证估计值最大限度的集中在真值周围,估计值的置信区间最小。

相关文档
最新文档