小船过河问题高考讲解
小船过河问题-高考物理知识点
小船过河问题-高考物理知识点
小船过河问题1.一般情况的过河小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
2.以最短时间过河
过河时间最短,就是所有的船速都用来过河,这时候船头应该垂直河岸。
因为这时候船参与两个运动,一个是沿水流方向,一个是垂直河岸方向,而且这两个运动具有独立性,互不干扰。
3.以最短航程过河
“沿最短行程过河”就是和速度方向垂直河岸,那么要求在水流方向上没有速度,就是说在船速沿水流方向分解一个速度来抵消水速,而且船头应该偏向上游。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高三物理小船渡河问题分析试题答案及解析
高三物理小船渡河问题分析试题答案及解析1.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船()A.沿AD轨迹运动时,船相对于水做匀减速直线运动B.沿三条不同路径渡河的时间相同C.沿AB轨迹渡河所用的时间最短D.沿AC轨迹船到达对岸的速度最小【答案】 A【解析】做曲线运动的物体所受合外力的方向指向轨迹曲线的凹侧,即加速度指向曲线凹侧,由图可知,船沿AB、AC、AD轨迹运动时,小船相对于水分别做匀速、匀加速、匀减速直线运动,故选项A正确;船渡河时的时间取决于垂直河岸方向的速度,即小船相对于水的速度,因此小船相对于水做匀加速直线运动时的时间最短,做匀减速直线运动时的时间最长,故选项B、C错误;船到达对岸的速度为沿河岸方向与垂直河岸方向速度的矢量和,在沿河岸方向船的速度始终等于水流速度,不变,因此垂直河岸方向的速度越小,合速度越小,因此当船沿AD轨迹运动时到达对岸的速度最小,故选项D错误。
【考点】本题主要考查了运动的合成与分解的应用问题。
2.一只小船在静水中的速度为3m/s,它要渡过一条宽为30m的河,河水流速为4m/s,则这只船:()A.过河时间不可能小于10sB.不能沿垂直于河岸方向过河C.可以渡过这条河,而且所需时间可以为6sD.不可能渡过这条河【答案】AB【解析】船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动。
垂直河岸方向位移即河的宽度,而垂直河岸方向的最大分速度即船自身的速度3m/s,所以渡河最短时间答案A对C错。
只要有垂直河岸的分速度,就可以渡过这条河答案D错。
船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向,一个分速度沿河岸向下,与合速度垂直,那么在速度合成的平行四边形中船的速度即斜边,要求船的速度大于水的速度,而本题目中船的速度小于河水的速度不可能垂直河岸方向过河答案B对。
小船过河问题分析与题解
小船过河问题分析与题解令狐采学【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v船(即船在静水中的速度),水的流速为v水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v船>v水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v船<v水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v1表船速,v2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少? [思路分析](1)当船头垂直于河岸时,渡河时间最短: tmin=d/v2=100/4=25s合速度v=船的位移大小s=v tmin=125m (2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v2与岸成θ角,则cosθ=,所以θ=600,合速度v=v2sin600=3t=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示:cosβ=所以β=600v 1dv v 2 v 1 θ v v 2 β v 2 v v 1最小位移smin=[答案](1) 船头垂直于河岸时,渡河时间最短:tmin=25s ,s =125m;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=;(3) 船头垂直于合速度,船头与河岸夹角600时航程最短,smin=。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
高考物理最新模拟题精选训练运动合成与分解专题01小船过河问题含解析
高考物理最新模拟题精选训练运动合成与分解专题01小船过河问题含解析小船过河问题是高考物理中常见的一类题型,涉及到运动合成与分解的知识点。
本文将以一道典型的小船过河问题为例,进行详细解析,帮助大家更好地理解和掌握这一知识点。
问题描述:小明要从河岸A驶向对岸B,河流水速为v1,小明的船速为v2。
小明的船向河流方向偏离一定角度θ,试求小明船在对岸上的位置。
解析:首先,我们需要明确问题的条件和所求的物理量。
已知条件:1.河流水速v12.小明的船速v23.小明的船向河流方向偏离角度θ所求物理量:小明船在对岸上的位置接下来,我们可以根据已知条件和所求物理量,利用运动合成与分解的知识来解答这道题。
运动合成与分解的基本原理是,将一个运动分解为两个垂直方向上的两个独立运动,然后再将这两个独立运动合成为一个运动。
在这道题中,我们可以将小明的船速v2分解为两个独立运动:一个是船速在河流方向上的分量v2cosθ,另一个是船速垂直于河流方向的分量v2sinθ。
同时,我们可以将河流水速v1分解为两个独立运动:一个是水速在河流方向上的分量v1,另一个是水速垂直于河流方向的分量0(因为河流水平流动)。
根据运动合成与分解的原理,我们可以将小明的船速和河流水速合成为一个相对静止的参考系,再将小明的船速在对岸上的分量与河流水速在对岸上的分量相加,就得到了小明船在对岸上的位置。
小明船在对岸上的位置 = 小明的船速在对岸上的分量 + 河流水速在对岸上的分量小明的船速在对岸上的分量= v2cosθ 河流水速在对岸上的分量 = v1所以,小明船在对岸上的位置= v2cosθ + v1至此,我们求解出了小明船在对岸上的位置。
需要注意的是,在实际解题中,我们需要根据具体的题目条件来确定所用的公式和计算方法。
本文只是以一道典型的小船过河问题为例,进行了解析。
总结:小船过河问题是高考物理中常见的一类题型,涉及到运动合成与分解的知识点。
在解答这类问题时,我们可以将小明的船速和河流水速分解为河流方向上的分量和垂直于河流方向的分量,然后利用运动合成与分解的原理,求解小明船在对岸上的位置。
高中物理-小船过河问题解答
高中物理小船渡河的问题1. 垂直渡河要使小船垂直渡河,小船在静水中的航行速度必须大于水流速度,且船头应指向河流的上游,使船的合速度v与河岸垂直,如图1所示。
设船头指向与河岸上游之间的夹角为,河宽为d,则有,即垂直渡河时间2. 以最短时间渡河当小船在静水中的航速大小确定时,由知,当时,t最小,即当船头指向与河岸垂直时,小船有最短渡河时间。
可见最短渡河时间与水流速度无关。
例1.如图2,一只小船从河岸A点出发,船头垂直于河岸行驶,经10min到达正对岸下游120m的C点。
若小船速度不变,保持船身轴线与河岸成角行驶,经过12.5min到达正对岸B点,则此河的宽度d为多少?分析:设小船在静水中的速度为,水流速度为,船以最短时间到达C点,有船垂直到达B点,有由以上各式得3. 以最小位移渡河(1)当船在静水中的速度大于水流速度时,小船可以垂直渡河,显然渡河的最小位移s等于河宽d。
(2)当船在静水中的速度小于水流速度时,不论船头指向如何,船总要被水冲向下游。
设小船指向与河岸上游之间的夹角为时,渡河位移最小。
此时,船头指向与合速度方向成角,合速度方向与水流方向成角,如图3。
由正弦定理得所以由图3可知,角越大渡河位移越小,以的顶点为圆心,以的大小为半径作圆,很明显,只有当时,最大,渡河位移最小。
即当船头指向和实际运动方向垂直时,渡河位移最小,为。
4. 以最小速度渡河例2. 如图4,一小船从河岸A处出发渡河,河宽,河水流速,在出发点下游的B处有瀑布,A、B两处距离为,为使小船靠岸时不至被冲进瀑布,船对水的最小速度是多少?解法1:以的顶点为圆心,以的大小为半径作圆,由图可知,小船以最小速度安全到达对岸时,小船航线恰在AC连线上,且船的最小速度与AC垂直,如图5所示。
设AC与AB间的夹角为由几何关系可得将已知数值代入解得解法2:设小船的最小速度为,船头指向与河岸上游间的夹角为,经t时间小船恰好安全渡河。
由题意得得其中,的最大值为所以小船的最小速度。
高考物理计算题复习《小船渡河问题》(解析版)
《小船渡河问题》一、计算题1.河宽d=60m,水流速度v1=3m/s,小船在静水中的速度v2=6m/s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?(3)若水流速度变为v3=10m/s,要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2.如图所示,一条小船位于d=200m宽的河正中A点处,从这里向下游100√3m处有一危险区,当时水流速度为V1=4m/s,(1)若小船在静水中速度为V2=5m/s,小船到岸的最短时间是多少?(2)若小船在静水中速度为V2=5m/s,小船以最短的位移到岸,小船船头与河岸夹角及所用时间?(3)为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是?3.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s.(1)若要小船过河的时间最短,则船头应该指向哪里?过河的最短时间是多少⋅来表示),小船需用多长时间到达对岸?(sin300=0.5,sin370=0.6,sin450=0.707)4.河宽d=100m,水流速度v1=3m/s,船在静水中的速度是v2=4m/s,求:(1)欲使船渡河时间最短,最短时间是多少?(2)欲使船航行距离最短,渡河时间多长?5.一小船从河岸的A点出发渡河,小船船头保持与河岸垂直方向航行,经过10min到达河对岸B点下游120m的C处,如图所示。
如果小船保持原来的速率逆水斜向上游与河岸成α角方向航行,则经过12.5min恰好到达正对岸的B处。
求:(1)水流速度;(2)河的宽度。
6.如图所示,河宽d=120m,设船在静水中的速度为v1,河水的流速为v2,小船从A点出发,在渡河时,若出发时船头指向河正对岸的B点,经过8min小船到达B点下游的C点处;若出发时小船保持原来的速度逆水向上与河岸成α角方向行驶,则小船经过10min恰好到达河正对岸的B点。
高中物理小船渡河问题与关联速度问题(解析版)
小船渡河问题与关联速度问题一、小船过河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。
3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =dv 1(d 为河宽)。
(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。
(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。
确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。
4. 解题思路5. 解题技巧(1)解决小船渡河问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头所指方向的运动,是分运动,船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线。
(2)应用运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解。
(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关。
(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况,用三角形定则求极限的方法处理。
【典例1】一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s 。
若船在静水中的速度为v 2=5 m/s ,则: (1) 欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2) 欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【典例2】如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s【答案】B【跟踪短训】1. (多选)下列图中实线为河岸,河水的流动方向如图v的箭头所示,虚线为小船从河岸M驶向对岸N 的实际航线.则其中可能正确的是().【答案】AB【解析】船头垂直于河岸时,船的实际航向应斜向右上方,A正确,C错误;船头斜向上游时,船的实际航向可能垂直于河岸,B正确;船头斜向下游时,船的实际航向一定斜向下游,D错误.2. 如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O 点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为().A.t甲<t乙B.t甲=t乙C.t甲>t乙D.无法确定【答案】 C【解析】设两人在静水中游速为v0,水速为v,则t甲=x OAv0+v+x OAv0-v=2v0x OAv20-v2t乙=2x OBv20-v2=2x OAv20-v2<2v0x OAv20-v2故A、B、D错,C对.3. 一小船在静水中的速度为3 m/s,它在一条河宽为150 m,水流速度为4 m/s的河流中渡河,则该小船().A.能到达正对岸B.渡河的时间可能少于50 sC.以最短时间渡河时,它沿水流方向的位移大小为200 mD.以最短位移渡河时,位移大小为150 m【答案】 C4.船在静水中的速度与时间的关系如图甲所示,河水的流速随离一侧河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下列对该船渡河的说法错误的是()A.船在河水中的最大速度是5 m/sB.船渡河的时间是150 sC.船在行驶过程中,船头必须始终与河岸垂直D .船渡河的位移是13×102 m 学-科/网 【答案】B【解析】 由题图乙可知,水流的最大速度为4 m/s ,根据速度的合成可知,船在河水中的最大速度是5 m/s ,选项A 正确;当船头始终与河岸垂直时,渡河时间最短,有t =d v =3003 s =100 s ,因此船渡河的时间不是150 s ,选项B 错误,C 正确;在渡河时间内,船沿水流方向的位移x 在数值上等于水流速度与时间图像所围成的面积大小,根据速度变化的对称性可得x =4×1002 m =200 m ,再根据运动的合成与分解可得,船渡河的位移为13×102 m ,选项D 正确。
高考专题02 小船过河高考物理一轮复习专题详解 Word版含解析
高考重点难点热点快速突破把握小船渡河的两类问题(1)要求最短时间过河,则船头必须垂直指向对岸,不论船速与水流速度的关系如何. (2)要求过河的位移最短,则要区分两种情况:①当船在静水中的速度v 1大于水流速度v 2时,最短过河位移为河宽d ,如图甲所示,船头指向上游与河岸的夹角α=arccos v 2v 1.②当船在静水中的速度v 1小于水流速度v 2时,过河的最短位移为x ,如图3-1-1乙所示,船头指向上游与河岸的夹角为θ=arccos v 1v 2,最短位移x =v 2v 1d .例题讲解:例1:如图所示,河水由西向东流,河宽为800 m ,河中各点的水流速度大小为v 水,各点到较近河岸的距离为x ,v 水与x 的关系为v 水=3400x (m/s)(x 的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v 船=4 m/s ,则下列说法中正确的是( )A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是160 s 【答案】 B【解析】 小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,小船的合运动是曲线运动,A 错.当小船运动到河中间时,东西方向上的分速度最大,此时小船的合速度最大,最大值v m =5 m/s ,B 对.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错.小船的渡河时间t =200 s ,D 错.例2:(多选)(2017年湖南郴州高三上学期第一次教学质检)甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点.则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 【答案】:BD专题练习1.(2017·衡阳联考)一只小船渡过两岸平行的河流,河中水流速度各处相同且恒定不变,方向平行于河岸.小船的初速度均相同,且船头方向始终垂直于河岸,小船相对于水分别做匀加速、匀减速和匀速直线运动,其运动轨迹如图所示.下列说法错误的是( )A .沿AC 和AD 轨迹小船都是做匀变速运动B .AD 是匀减速运动的轨迹C .沿AC 轨迹渡河所用时间最短D .小船沿AD 轨迹渡河,船靠岸时速度最大 【答案】 D2.(多选)如图甲、乙所示,民族运动会上有一个骑射项目,运动员骑在奔驰的马背上沿跑道AB 运动,且向他左侧的固定目标拉弓放箭.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的箭的速度为v 2,跑道离固定目标的最近距离OC =d.若不计空气阻力的影响,要想命中目标且射出的箭在空中飞行时间最短,则( )A .运动员放箭处离目标的距离为v 1v 2dB .运动员放箭处离目标的距离为v 12+v 22v 2 dC .箭射到固定目标的最短时间为dv 2D .箭射到固定目标的最短时间为d v 22-v 12【答案】 BC【解析】联系“小船渡河模型”可知,射出的箭同时参与了v 1、v 2两个运动,要想命中目标且射出的箭在空中飞行时间最短,箭射出的方向应与马运动的方向垂直,故箭射到固定目标的最短时间为t =d v 2,箭的速度v =v 12+v 22,所以运动员放箭处离固定目标的距离为x=vt =v 12+v 22v2d ,B 、C 两项正确. 3.(2017·深圳模拟)如图甲所示,一条宽度为d 的小河,水流(从西向东)的速度恒定为v 0,一小船从小河的南岸向北岸驶去,已知船头始终正对北岸,经时间T 小船到达小河的北岸,0~T 时间内,小船在静水中的速度v 随时间t 变化的关系如图乙所示,则下列说法正确的是( )A .小船可能到达Q 点B .小船可能沿直线达到R 点C .小船相对于岸的最大速度为2v 0D .小船的渡河时间T 小于2dv 0【答案】 D4.(多选)一条河宽100 m ,船在静水中的速度为4 m/s ,水流速度是5 m/s ,则( ) A .该船能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100 mD .该船渡到对岸时,船沿岸方向的位移可能小于100 m 【答案】 BD【解析】据题意,由于船速为v 1=4 m/s ,而水速为v 2=5 m/s ,即船速小于水速,则无论船头指向哪个方向,都不可能使船垂直驶向对岸,A 项错误;据t =L v 1sin θ(θ为船头指向与水流方向的夹角),知道使t 最小需要使sin θ最大,即使船头与河岸垂直,B 项正确;要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则有合速度为v =3 m/s ,渡河时间为t =L 35v 1=1253 s ,则船的合位移为vt =125 m ,所以C 项错误;船的渡河位移最小时,船沿岸方向的位移为:(v 2-45v 1)t =75 m ,所以D 项正确.5.(2017·南通模拟)如图所示,河两岸相互平行,水流速度恒定不变.船行驶时相对水的速度大小始终不变.一开始船从岸边A 点出发,船身始终垂直河岸,船恰好沿AB 航线到达对岸B 点耗时t 1,AB 与河岸的夹角为60°.调整船速方向,从B 点出发沿直线BA 返航回到A 点耗时t 2.则t 1∶t 2为( )A .1∶1B .1∶2C .1∶3D .1∶4 【答案】 B6.(2017年海南七校联考)帆船船头指向正东以速度v (静水中速度)航行,海面正刮着南风,风速为3v ,以海岸为参考系,不计阻力.关于帆船的实际航行方向和速度大小,下列说法中正确的是( )A.帆船沿北偏东30°方向航行,速度大小为2vB.帆船沿东偏北60°方向航行,速度大小为2vC.帆船沿东偏北30°方向航行,速度大小为2vD.帆船沿东偏南60°方向航行,速度大小为2v【答案】:A【解析】由于帆船的船头指向正东,并以相对静水中的速度v航行,南风以3v的风速吹来,当以海岸为参考系时,实际速度v实=v2+3v2=2v,sinα=v2v =12,α=30°,即帆船沿北偏东30°方向航行,选项A正确.7.如图所示,河宽d=120 m,设船在静水中的速度为v1,河水的流速为v2,小船从A 点出发,在渡河时,船身保持平行移动,若出发时船头指向河对岸的上游B点处,经过10 min,小船恰好到达河正对岸的C点,若出发时船头指向河正对岸的C点,经过8 min小船到达C 点下游的D点处,求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离s CD.【答案】(1)0.25 m/s (2)0.15 m/s (3)72 m。
2023年高考物理---《小船渡河模型》基础知识梳理与例题讲解
2023年高考物理---《小船渡河模型》基础知识梳理与例题讲解基础知识梳理1.合运动与分运动合运动→船的实际运动v 合→平行四边形对角线2.两类问题、三种情景渡河时间最短当船头方向垂直河岸时,渡河时间最短,最短时间t min =d v 船渡河位移最短如果v 船>v 水,当船头方向与上游河岸夹角θ满足v 船cos θ=v 水时,合速度垂直河岸,渡河位移最短,等于河宽d如果v 船<v 水,当船头方向(即v 船方向)与合速度方向垂直时,渡河位移最短,等于d v 水v 船例2 一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.若船在静水中的速度为v 2=5 m/s ,求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少? (2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头朝上游与垂直河岸方向成30°角 24 3 s 180 m解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图甲所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s ,t =d v 2=36 s ,v =v 12+v 22=525 m/s ,x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图乙所示,有v2sin α=v1,得α=30°,所以当船头向上游与垂直河岸方向成30°角时航程最短,x′=d=180 m,t′=dv2cos 30°=24 3 s.例题讲解1、(水速不变)(2020·广东惠州一中模拟)河水速度与河岸平行,v的大小保持不变,小船相对静水的速度为v0.一小船从A点出发,船头与河岸的夹角始终保持不变,如图5所示,B为A的正对岸,河宽为d,则()图5A.小船不可能到达B点B.小船渡河时间一定等于dv0C.小船一定做匀速直线运动D.小船到达对岸的速度一定大于v0答案 C解析当船的合速度垂直河岸时,即沿着AB方向,则小船能到达B点,A错误;船过河时,船头斜指向上游,垂直于河岸的分速度小于v0,那么渡河时间一定大于d v,B错误;由于两方向均是匀速直线运动,因此合运动也必定是匀速直线运动,C正确;根据速度的合成法则,小船到达对岸的速度不一定大于v0,D错误.2、(水速变化)如图6所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x (m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法中正确的是()图6A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s答案 B解析小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度方向与加速度方向不共线,小船的合运动是曲线运动,A错.当小船运动到河中间时,东西方向上的分速度最大,为3 m/s,此时小船的合速度最大,最大值v m=5 m/s,B对.小船在距南岸200 m处的速度与在距北岸200 m处的速度大小相等,C错.小船的渡河时间t=800 m=200 s,D错.4 m/s本课结束。
小船过河问题分析与题解(最新整理)
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=,216321==v v 所以θ=600,合速度v=v 2sin600=3sm /3t=s v d 93100=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示:cosβ= 所以β=6002135.112==v v 最小位移s min =m d 20060cos 100cos 0==β[答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=;s 93100(3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =。
小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关.②过河路径最短:在v 船〉v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速.【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3t=s v d 93100= v 1 dv v 2 v 1 θ v v 2(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
(完整版)小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短: t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示:v 1 dvv 2v 1θvv 2cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
高中物理小船过河问题
一、小船过河问题(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何都无法使船垂直河岸渡河,即最短位移不可能等于河宽d ,那么如何寻找到最短位移呢?如图所示,按水流速度和船的静水速度大小比例,先从出发点A 开始作矢量水v ,再以水v 末端为圆心,以船v 大小为半径画圆弧,自出发点A 向圆弧做切线,其方向为船位移最小时的合运动方向,这时船头与上游河岸的夹角cos 水船v v =θ,船沿河漂下的最短距离为: vθθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v v d ds .cos ==θ 渡河时间θsin 船v dt =1.一条河宽400m ,水流的速度为0.25m /s ,船相对静水的速度0.5m /s 。
(1)要想渡河的时间最短,船应向什么方向开出?渡河的最短时间是多少?此时船沿河岸方向漂移多远?(2)要使渡河的距离最短,船应向什么方向开出? (3)船渡河的时间与水流速度有关吗?2.河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?3.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A .21222υυυ-d B .0 C .21υυd D .12υυd4.某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A)21222T T T - (B)12T T (C) 22211T T T - (D)21T T 二、运动的合成与分解1.关于运动的合成与分解的说法中,正确的是( ) A.合运动的位移为分运动的位移的矢量和 B.合运动的速度一定比其中一个分速度大 C.合运动的时间为分运动时间之和 D.合运动的时间与各分运动时间相等2.一质点在几个共点力的作用下做匀速直线运动,现撤去其中一恒力,且作用在质点上的其他的力不发生改变,则下列说法正确的是( ) A.质点速度的方向可能与该恒力的方向相同 B.质点速度的方向可能总是与该恒力的方向垂直C.质点的速率不可能先减小至某一个非零的最小值后又不断增大D.质点单位时间内速度的变化量总是不变3.如图所示,在不计滑轮摩擦和绳子质量的前提下,当小车以速度v 匀速向右运动时,图中物块A 的速度大小为 ______ ,绳中拉力 ______ A 所受的重力(填大于、小于、等于)4.、如图,湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉绳靠岸,当绳子以速度v 通过滑轮时,(1)船运动的速度和v 比较哪个大?(2)保持绳子速度5...雨点以8m/s 的速度竖直下落,雨中步行的人感到雨点与竖直成300角迎面打来,那么人行走的速度大小是多少?6所示, A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A物体以速度v1向右运动时,系A,B的绳分别与水平方向成a、β角,此时B物体的速度大小为多少。
高一物理小船过河的知识点总结
高一物理小船过河的知识点总结小船过河是高中物理中重要的应用题之一,通过学习小船过河问题,我们可以深入理解力学平衡和矢量相加的原理。
下面将总结高一物理小船过河的知识点。
第一,力学平衡的原理。
小船过河的问题中,我们需要考虑船在水平和垂直两个方向上的平衡条件。
在水平方向上,船必须受到向上的浮力和向下的重力的平衡;在垂直方向上,船必须受到向右的推力和向左的阻力的平衡。
只有满足力学平衡的条件,小船才能顺利地过河。
第二,矢量的概念和相加。
在小船过河的问题中,我们需要将推力、阻力以及水流力等矢量相加,得到合力。
合力决定了小船的运动状态。
矢量相加的基本方法有图解法和分解法。
图解法通过绘制矢量图形,将矢量按照大小和方向相加;分解法则是将矢量按照坐标轴分解,然后将各个分量相加。
第三,应用题的解题步骤。
解决小船过河的应用题,需要遵循以下步骤:首先确定物理量和坐标系,绘制矢量图形;其次,利用力学平衡条件确定各个力的关系式;然后,将问题转化为方程组,通过解方程组求解未知量;最后,将所得结果带入问题,验证是否满足题意。
通过这些步骤,我们能够较为系统地解决小船过河的应用题。
第四,角度和三角函数的应用。
在小船过河的问题中,推力、阻力和水流力的方向通常不平行于坐标轴,因此需要运用三角函数来计算各个力在坐标轴上的分量。
我们需要通过角度计算正弦、余弦和正切等三角函数值,从而获得力的分量,进而进行力的合成和分解。
第五,实际问题的探究。
小船过河的问题往往涉及实际生活场景,比如船的推力、水流速度、过河时间等。
我们需要通过具体的数值计算,探究小船过河的实际情况,分析不同因素对于小船过河速度的影响。
这样能够使我们的学习更有针对性和实用性。
综上所述,小船过河问题是高一物理中涉及力学平衡和矢量相加的重要知识点。
通过掌握小船过河的相关原理和解题步骤,我们能够深入理解物理学中的力学平衡和矢量相加原理,并将其应用于实际生活中。
希望通过本文的总结,能够帮助同学们更好地学习和掌握小船过河的知识点。
高考小船渡河问题专题解析
小船渡河问题小船渡河是典型的运动的合成问题。
需要理解运动的独立性原理,掌握合速度与分速度之间的关系。
小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动v 水(水冲船的运动),和船相对水的运动v 船(即在静水中的船的运动),船的实际运动v 是合运动。
小船渡河两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
1、v 水<v 船时间最少在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt == ,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为船v d,合运动沿v 的方向进行。
位移最小结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos2、v 水>v 船 时间最少 同前 位移最小不论船的航向如何,总是被水冲向下游,即无论向哪个方向划船都不能使船头垂直于河,只能尽量使船头不那么斜。
那么怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 典型例题★某人以不变的速度垂直对岸游去,游到中间,水流速度加大,则此人渡河时间比预定时间A .增加B .减少C .不变D .无法确定 答案:C★某人以一定速度始终垂直河岸向对岸游去,当河水匀速流动时,他所游过的路程,过河所用的时间与水速的关系是( )A .水速大时,路程长,时间长B .水速大时,路程长,时间短C .水速大时,路程长,时间不变D .路程、时间与水速无关 答案: C★如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B. B 沿虚线向A 游且A 沿虚线偏向上游方向游C. A 沿虚线向B 游且B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游 答案:A★★一条自西向东的河流,南北两岸分别有两个码头A 、B ,如图所示.已知河宽为80 m ,河水流速为5 m/s ,两个码头A 、B 沿水流的方向相距100 m .现有一只船,它在静水中的行驶速度为4 m/s ,若使用这只船渡河,且沿直线运动,则( )A .它可以正常来往于A 、B 两个码头 B .它只能从A 驶向B ,无法返回C .它只能从B 驶向A ,无法返回D .无法判断 答案:B★在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )A .21222υυυ-d B .0 C .21υυd D .12υυd答案:C★某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速1v 与水速2v 之比为( ) (A)21222T T T - (B)12T T (C) 22211T T T - (D)21T T 答案:A★小船在s=200 m 宽的河中横渡,水流速度是2 m/s,船在静水中的航行速度为4 m/s.求: (1)小船渡河的最短时间.(2)要使小船航程最短,应该如何航行? 答案 (1)50 s 2)船速与上游河岸成60°★★一条河宽100米,船在静水中的速度为4m/s ,水流速度是5m/s ,则( )A .该船可能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100米D .当船横渡时到对岸时,船对岸的最小位移是100米 答案: B★★河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?答案:(1)20s (2)小船的船头与上游河岸成600角时,最短航程为120m★★小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,dv k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( ) A 、小船渡河的轨迹为曲线 B 、小船到达离河岸2d处,船渡河的速度为02v C 、小船渡河时的轨迹为直线D 、小船到达离河岸4/3d 处,船的渡河速度为010v 答案:A★如图所示,小船从A 码头出发,沿垂直河岸的方向划船,若已知河宽为d ,划船的速度v 船恒定. 河水的流速与到河岸的最短距离x 成正比,即)其中k 为常量。
小船过河问题分析与题解(6页)
小船过河问题分析与题解(6页)Good is good, but better carries it.精益求精,善益求善。
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v船(即船在静水中的速度),水的流速为v水(即水对地的速度),船的合速度为v(即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v船>v水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v船<v水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v水矢量末端为圆心,以v船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v1表船速,v2表水速)("《)&@》>¥"@;~…\?>),{\%[!|"$-!、2与题点的应有问动杂理,求法量式换利考个动运一来不假运个动不以我,的于相,汽对车驶在。
运外确止动中其,互运于运动运于相动运则物参的选果成运几参物有说也体一对成必:点个采成动定边四都分成是位、量矢的相间行动和时等运分代,效决运各合效等效产进动各分个同立独质性四动直方两果按线是用常曲杂。
际与物一动确则行利效合速定确际由速运体就度速分首解分行定边行必,成的以速位,分成。
分行交取,分的动根动寻据通解运叫求运成动合动际体定运性时动运合性独具相互之运论要。
的际这就个几运动几动发体这们,果生动两另的动的际体如等速向杆(一注运分动的垂(运分运沿(;为实物)路要绳物度的车图,图运向的绳一重绳二周向针轮端一使一个产个度动合的速的果运少为速小为速物,成方与侧轮问升沿小过,下沿重,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小船过河问题
轮船渡河问题:
(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情冴下,渡河时间θ
υυsin 1
船d
d
t =
=
,显然,当︒=90θ时,即船头
的指向与河岸垂直,渡河时最小为v
d ,合运动沿v 的方向进行。
2.位移最小 若水船υυ>
结论船头偏向上游,使得合速度垂直于河岸,位移为河
宽,偏离上游的角度为船
水
υυθ=
cos
若水船v v <,则不论船的如何,总是被水冲向下游,怎样才
v
能使漂下的距离最短呢?如图所示,
设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水
船v v =
θcos 船头与河岸的夹角应为
水
船v v arccos
=θ,船沿河漂下的最短距离为:
θ
θsin )cos (min 船船水v d
v v x ⋅
-=
此时渡河的最短位移:船
水v dv d
s =
=θcos
【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:
(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是
(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?
★解析: (1使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间
s s d
t 2030
60
2
==
=
υ (2)渡河航程最短有两种情冴:
①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;
②船速v 2小于度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
可由几何方法求得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
设航程最短时,船头上游河岸与河岸成θ角,则
2
1
63cos 12===
υυθ, 60=θ 最短行程,m m d s 1202
660
cos ===
θ 小船的船头与上游河岸成600
角时,渡河的最短航程为120m 。
技巧点拔:对第一小问比较容易理解,但对第二小问却不容易理解,这里涉及到运用数学知识解决物理问题,需要大家有较好的应用能也是教学大纲中要求培养的五种能力
之一。
【例题】在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点 C )
A .
21
2
22
υ
υυ-d B .0
C .2
1υυd D .1
2
υυd
★解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为v 2,到达江岸所用时间t=
2
v d
;沿江岸方向的运动速度是水速v 1
在相同的时间内,被水冲下的距离,即为登陆点距离0点距离2
11v dv t v s ==。
答案:C
【例题】某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( )
(A)
21
22
2T
T T - (B)
1
2T T
(C)
22
21
1T
T T - (D)
2
1T T
★解析:设船速为1v ,水速为2v ,河宽为d ,则由题意可知 :
1
1v d T =
①
当此人用最短位移过河时,即合速度v 方向应垂直于河岸,如图所示,则22
21
2v
v d T -=
②
联立①②式可得:1
2
22121
v v v T T -=
,进一步得
2
1222
21T T T v v -=
【例题】小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,d
v k kx v 0
4=
=,水,x 是各点到近岸
的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( A )
A 、小船渡河的轨迹为曲线
B 、小船到达离河岸2
d 处,船渡河的速度为
02v
C 、小船渡河时的轨迹为直线
D 、小船到达离河岸4/3d 处,船的渡河速度为010v。