专题06一元二次方程的根的判别式(知识点串讲)(解析版)

专题06一元二次方程的根的判别式(知识点串讲)(解析版)
专题06一元二次方程的根的判别式(知识点串讲)(解析版)

专题06 一元二次方程的根的判别式

知识框架

重难突破

一、一元二次方程根的判别式

1.一元二次方程根的判别式

一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即 (1)当△>0时,一元二次方程有2个不相等的实数根;

(2)当△=0时,一元二次方程有2个相等的实数根;

(3)当△<0时,一元二次方程没有实数根.

备注:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定的值;③计算的值;④根据的符号判定方程根的情况.

2. 一元二次方程根的判别式的逆用

在方程中, (1)方程有两个不相等的实数根﹥0; (2)方程有两个相等的实数根=0; (3)方程没有实数根﹤

0. )0(02≠=++a c bx ax ac b 42

-)0(02≠=++a c bx ax ?ac b 42

-=?c b a .,ac b 42-ac b 42

-()002≠=++a c bx ax ?ac b 42

-?ac b 42

-?ac b 42

-

备注:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;

(2)若一元二次方程有两个实数根则 ≥0.

例1.(2020·重庆巴蜀中学初二月考)关于x 的一元二次方程220x kx --=(k 为实数)根的情况是( ) A .有两个不相等的实数根

B .有两个相等的实数根

C .没有实数根

D .不能确定 【答案】A

【解析】一元二次方程20(a 0)++=≠ax bx c 中,24b ac -叫做一元二次方程()2

00++=≠ax bx c a 的根的判别式,通常用“?”来表示,即2=4?-b ac ,当>0? 时,方程有2个实数根,当=0?时,方程有1个实数根(2个相等的实数根),当?<0 时,方程没有实数根.方程220x kx -+=根的判别式()2

2=-41(2)80k k ?-??-=+>,所以有两个不相等的实数根.

练习1.(2020·吉林大学附属中学初三一模)若关于x 的一元二次方程240x x c -+=有实数根,则常数c 的值不可能为( )

A .1-

B .0

C .4

D .5 【答案】D

【解析】根据题意得△=(-4)2-4c≥0,

解得c≤4.

故选:D .

练习2.(2019·

2210x -+=的根的情况是( )

A .有两个不相等的实数根

B .有两个相等的实数根

C .没有实数根

D .无法确定 【答案】C

【解析】∵24b ac =-△ (

)2

241=--

40=-<,

∴方程没有实数根.

故选:C .

ac b 42-

例2.(2020·山东省初二期中)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1

B .0

C .1或﹣1

D .2或0 【答案】A

【解析】解:把x =﹣1代入方程得:1+2k +k 2=0,

解得:k =﹣1,

故选:A .

练习1.(2020·遵义市播州区泮水中学初三二模)已知关于x 的一元二次方程x 2-2x -k -2=0有两个不相等的实数根,则实数k 的取值范围是( )

A .k ≥-3

B .k ≤3

C .k >-3

D .k <3

【答案】C

【解析】

【分析】根据题意得△=(-2)2-4(-k -2)>0,

解得k>-3.

故选C .

练习2.(2020·石家庄市第四十中学初三其他)已知关于x 的一元二次方程2(1)210a x x --+=有实数根,则a 的取值范围是( )

A .2a ≤

B .2a >

C .2a ≤且1a ≠

D .2a <- 【答案】C

【解析】解:∵关于x 的一元二次方程(a -1)x 2-2x +1=0有两个实数根,

∴1044(1)0

a a -≠??=--?, 解得a ≤2且a ≠1.

故选:C .

例3.(2019·广东省初三二模)已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )

A .4

B .﹣4

C .1

D .﹣1

【答案】D

【解析】解:根据一元二次方程根的判别式得,

△()2

24a 0=-?-=, 解得a=﹣1.

故选D .

练习1.(2019·上海市市西初级中学初二期中)对于二项方程0n ax b +=(0a ≠,0b ≠),当n 为偶数时,已知方程有两个实数根,那么ab 一定( )

A .0ab <

B .0ab >

C .0ab ≥

D .0ab ≤ 【答案】A

【解析】0n ax b +=,

可得:x n =?b a

, 因为当n 为偶数时,已知方程有两个实数根,

所以?b a

>0, 所以ab <0,

故选:A .

练习2.(2019·山东省初三其他)若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

【答案】A

【解析】解:∵关于x 的一元二次方程mx 2-2x -1=0无实数根,

∴m ≠0且△=(-2)2-4m (-1)<0,

m <-1且m ≠0,

∴一次函数y=mx+m 的图象经过第二、三、四象限,不经过第一象限.

故选:A .

例4.(2019·吉林省东北师大附中初三月考)—元二次方程22310x x --=根的判别式的值是_____________;

【答案】17

【解析】解:2x 2-3x -1=0,

△=(-3)2-4×2×(-1)=17,

即一元二次方程2x 2-3x -1=0根的判别式的值是17,

故答案为:17.

练习1.(2020·扬州市梅岭中学初二期中)已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a

+的值等于_______. 【答案】2.

【解析】解:根据题意得:

△=4﹣4a (2﹣c )=0,

整理得:4ac ﹣8a =﹣4,

4a (c ﹣2)=﹣4,

∵方程ax 2+2x+2﹣c =0是一元二次方程,

∴a≠0,

等式两边同时除以4a 得:12c a -=-

, 则12c a

+=, 故答案为:2.

练习2.(2020·北京初三一模)关于x 的方程x 2+4x+m+2=0有两个不相等的实数根,且m 为正整数,求m 的值及此时方程的根.

【答案】1m =,123,1x x =-=-.

【解析】由题意得2

441(2)0m ?=??+>-

解得2m <

∵m 为正整数

∴1m =

此时,方程为2430x x ++=

因式分解得(3)(1)0x x ++=

于是得30x +=或10x +=

解得123,1x x =-=-.

例5.(2019·清华附中上庄学校初三月考)关于x 的一元二次方程x 2+(m +4)x ﹣2m ﹣12=0,求证: (1)方程总有两个实数根;

(2)如果方程的两根相等,求此时方程的根.

【答案】(1)见解析;(2)x 1=x 2=2.

【解析】1)∵△=(m+4)2﹣4(﹣2m ﹣12)=m 2+16m+64=(m+8)2≥0,

∴方程总有两个实数根;

(2)如果方程的两根相等,则△=(m+8)2=0,

解得m =﹣8,

此时方程为x 2﹣4x+4=0,

即(x ﹣2)2=0,

解得x 1=x 2=2.

练习1.(2020·北京四中初三月考)关于x 的一元二次方程x 2+2x ﹣(n ﹣1)=0有两个不相等的实数根. (1)求n 的取值范围;

(2)若n 为取值范围内的最小整数,求此方程的根.

【答案】(1)n >0;(2)x 1=0,x 2=﹣2.

【解析】解:(1)根据题意得△=22﹣4[﹣(n ﹣1)]>0,

解得n >0;

(2)因为n 为取值范围内的最小整数,

所以n =1,

方程化为x 2+2x =0,

x (x +2)=0,

x =0或x +2=0,

所以x 1=0,x 2=﹣2.

练习2.(2020·北京八中初三月考)已知关于x 的一元二次方程()2

2310m x x -+-=有两个不相等的实数根.

(1)求m 的取值范围;

(2)若方程的两个根都是有理数,请选择一个合适的m ,并求出此方程的根.

【答案】(1)14

m >-且2m ≠;(2)当0m =时,11x =,22x =. 【解析】(1)由题意可得()()22434210b ac m -=--?->,

9480m +->, 解得14

m >-

又20m -≠,

∴2m ≠,

∴m 的取值范围:14

m >-且2m ≠; (2)∵方程的两个根都是有理数,

0,

0,

1=,0m =,

∴当0m =时,原方程化为22310x x --+=, 解得11x =,22x =.

一元二次方程根的判别式专题 - 教师版

一元二次方程根的判别式专题 知识点一:已知系数直接判断方程根的情况 1.不解方程,直接判断下列方程根的情况. (1)2104 x - = (2)23630x x -+= (3)()2458x x x -=-- 【答案】(1)有两个不等实数根;(2)有两个相等实数根;(3)没有实数根 二、结合字母系数判断方程根的情况 2.判别下列关于x 的一元二次方程根的情况. (1)22125104 x mx m -++= (2)22440x mx m -+= 【答案】无实数根 【答案】有两个相等的实数根 (3)211022x mx m -+-= (4)21402 x mx m -+-= 【答案】有两个实数根 【答案】有两个不相等的实数根 三、结合“0a ≠”确定字母的取值范围 3.若关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ) A .1a ≥ B .1a >且5a ≠ C .1a ≥且5a ≠ D .5a ≠ 【答案】C 4.当m 为何值时,关于x 的一元二次方程()()2212110m x m x -+-+=有两个不相等的实数根? 【答案】依题意得( )()2221041410m m m ?-≠??---??>,解得1m <且1m ≠-

四、判别式与隐含条件相结合 5.已知关于x 的一元二次方程()21210k x x ---=有两个不相等的实数根,求k 的最大整数值. 【答案】依题意得:()4410k +->且10k -≠,解得2k <且1k ≠,所以k 的最大整数值为0. 6.已知关于x 的一元二次方程2450kx kx k -+-=有两个相等的实数根,求k 的值. 【答案】依题意得()2016450k k k k ≠???--=??,解得53k =-

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

九年级数学上册专题一根的判别式的应用同步测试新人教版

九年级数学上册专题一根的判别式的应用同步测试新人教 版 (教材P17习题21.2第13题) 无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出答案并说明理由.解:x2-5x+6-p2=0, Δ=(-5)2-4×1×(6-p2)=25-24+4p2=4p2+1>0, 所以方程(x-3)(x-2)-p2=0总有两个不等的实数根. 【思想方法】一元二次方程根的判别式Δ=b2-4ac可以用来判断根的情况,也可以根据一元二次方程根的情况,确定方程中的未知系数. 一判断一元二次方程根的情况 方程x2+7=8x的根的情况为(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.只有一个实数根 D.方程没有实数根 对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为(C) A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法确定 下列对关于x的一元二次方程x2+2kx+k-1=0的根的情况描述正确的是(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.方程没有实数根 D.无法确定 已知关于x的一元二次方程x2+(m+3)x+m+1=0.求证:无论m取何值,原方程总有两个不相等的实数根. 证明:Δ=(m+3)2-4(m+1)=(m+1)2+4. ∵无论m取何值时,(m+1)2+4的值恒大于0, ∴原方程总有两个不相等的实数根. 已知关于x的方程x2-(m+2)x+(2m-1)=0. (1)求证:方程恒有两个不相等的实数根; (2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长. 【解析】(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论; (2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是1,3时,由勾股定理得斜边的长度为10;②当该直角三角形的直角边和斜边分别是1,3时,由勾股定理得该直角三角形的另一直角边为22;再根据三角形的周长公式进行计算. 解:(1)∵b2-4ac=[-(m+2)]2-4×1×(2m-1)=m2-4m+8=(m-2)2+4>0, ∴方程恒有两个不相等的实数根; (2)把x=1代入方程x2-(m+2)x+(2m-1)=0中,解得m=2,

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

专题:一元二次方程根的判别式(含答案)-

一元二次方程根的判别式 姓名 ◆课前预习 1.一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可用b 2-4ac?来判定,?b 2-4ac?叫做________,通常用符号“△”为表示.(1)b 2-4ac>0?方程_________;(2)b 2-4ac=0?方程_________; (3)b 2-4ac<0?方程_________. 2.使用根的判别式之前应先把方程化为一元二次方程的________形式. ◆互动课堂 【例1】不解方程,判别下列方程根的情况: (1)x 2-5x+3=0; (2)x 2;(3)3x 2+2=4x ; (4)mx 2+(m+n )x+n=0(m ≠0,m ≠n ). 【例2】若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围. 【例3】已知关于x 的一元二次方程x 2-(2k+1)x+4(k -12 )=0.(1)求证:无论k 取什么实数 值,这个方程总有实数根;(2)如果等腰△ABC 有一边长a=4,另两条边长b ,c 恰好是这个方程的两个实数根,求△ABC 的周长. 【例4】已知关于x 的方程x -2(m+1)x+m 2=0.(1)当m 取何值时,方程有两个实数根? (2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ◆跟进课堂 1.方程2x 2+3x -4=0的根的判别式△=________. 2.已知关于x 的一元二次方程mx 2-10x+5=0有实数根,则m 的取值范围是______. 3.如果方程x 2-2x -m+3=0有两个相等的实数根,则m 的值为_______,此时方程的根为________. 4.若关于x 的一元二次方程kx 2+2x -1=0没有实数根,则k 的取值范围是______. 5.若关于x 的一元二次方程mx 2-2(3m -1)x+9m -1=0有两个实数根,则实数m?的取值范围是_______. 6.下列一元二次方程中,没有实数根的是( ). A .x 2+2x -1=0 B .x 2 C .x 2 D .-x 2+x+2=0 7.如果方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数是( ).A .-1 B .0 C .1 D .2 8.下列一元二次方程中,有实数根的方程是( ). A .x 2-x+1=0 B .x 2-2x+3=0 C .x 2+x -1=0 D .x 2+4=0 9.如果关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是( ). A .k<1 B .k ≠0 C .k<1且k ≠0 D .k>1 10.关于x 的方程x 2+(3m -1)x+2m 2-m=0的根的情况是( ). A .有两个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆课外作业 1.在下列方程中,有实数根的是( ) (A )x 2+3x+1=0 (B (C )x 2+2x+3=0 (D )1x x -=11 x - 2.关于x 的一元二次方程x 2+kx -1=0的根的情况是 A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数根 C 、有两个相等的实数根 D 、没有实数根 3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a -4=0有一个实数根是x =0.则a 的值为( ). A 、1或-4 B 、1 C 、-4 D 、-1或4 4.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 . 5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.

一元二次方程知识点集 (整理)

一元二次方程 知识点题集 (须用心按质完成) 1.方程12 x (x -3)=5(x -3)的根是_______. 2.下列方程中,是关于x 的一元二次方程的有________. (1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12 x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________. 4.如果21x -2x -8=0,则1x 的值是________. 5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0?有两个不相等的实数根,则m?的取值范围是定______________. 7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形为___________________,原方程的根为________. 9.以-1为一根的一元二次方程可为_____________________(写一个即可). 10.代数式12 x 2+8x+5的最小值是_________. 11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ). A .a=b=c B .一根为1 C .一根为-1 D .以上都不对 12.一元二次方程x 2-4=0的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D . x 1=2,x 2=0 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3) 15.已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ). A .1 B .2 C .3 D .4 16.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,?则这个三角形的周长是( ). A .8 B .8或10 C .10 D .8和10 17.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 232057 x + -= 18下列方程中,常数项为零的是( ) A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2 19.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )

“根的判别式”的种种应用

“根的判别式”的种种应用 学习了一元二次方程的求根公式以后,为了研究问题的方便,我们把一元二 次方程ax2+bx+c=0(a≠0)的求根公式x= a ac b b 2 4 2- ± - 中的b2-4ac称做为根的判别式,用符号“Δ”来表示,即Δ=b2-4ac.至此,我们一般只知道:当Δ>0时,方程有两个不相等的实数根,当Δ=0时,方程有两个相等的实数根,当Δ<0时,方程没有实数根.反之也成立.至此,我们可以不解方程,利用根的判别式来判别根的情况.而事实上,一元二次方程根的判别式还许多其它的应用,为方便同学们的学习,现举例说明. 一、不解方程,判断根的情况 例1已知关于x的一元二次方程x2-mx-2=0.…① (1)若x=-1是方程①的一个根,求m的值和方程①的另一根; (2)对于任意实数m,判断方程①的根的情况,并说明理由. 解(1)因为x=-1是方程①的一个根,所以1+m-2=0,解得m=1. 所以原方程为x2-x-2=0,解得x1=-1,x2=2.所以方程的另一根为x=2. (2)Δ=b2-4ac=m2+8,因为对于任意实数m,m2≥0,所以m2+8>0, 所以对于任意的实数m,方程①有两个不相等的实数根. 说明运用根的判别式时,必须注意化方程为一元二次方程的一般形式,明确a,b,c的值. 二、确定字母系数的范围 例2已知关于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,则k的取值范围是___. 解因为于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,所以满足Δ=22-4×(k+1)×(-1)>0,且k+1≠0,解得k>-2,且k≠-1. 说明利用根的判别式解题时,若原一元二次方程的二次项含有字母系数,则必须保证二次项系数不等于0这一隐含条件的限制. 三、字母系数的值 例3当m为何值时,关于x的一元二次方程x2-4x+m-1 2 =0有两个相等的 实数根?此时这两个实数根是多少?

根的判别式练习(答案版)

一元二次方程根的判别式练习题 (一)填空 1.方程x2+2x-1+m=0有两个相等实数根,则m=____. 2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数. 3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根. 5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____. 6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____. 7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是2 8.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有__.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____. 10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____. 11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____. 12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____. 13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___. 14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____. 15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解. 16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p(1+q)x+q3+2q2+q=0____实根. (二)选择 那么α= [ ]. 18.关于x的方程:m(x2+x+1)=x2+x+2有两相等的实数根,则m值为 [ ]. 19.当m>4时,关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数为 [ ]. A.2个; B.1个; C.0个; D.不确定. 20.如果m为有理数,为使方程x2-4(m-1)x+3m2-2m+2k=0的根为有理数,则k的值为 [ ]. 则该方程 [ ]. A.无实数根; B.有相等的两实数根; C.有不等的两实数根; D.不能确定有无实数根. 22.若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ]. A.2; B.0; C.1; D.3. 23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是 [ ]. A.1; B.2; C.-1; D.0. 24.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是 [ ]. A.4; B.-7; C.4或-7; D.所有实数. [ ]. A.两个相等的有理根; B.两个相等的实数根; C.两个不等的有理根; D.两个不等的无理根. 26.方程2x(kx-5)-3x2+9=0有实数根,k的最大整数值是 [ ]. A.-1; B.0; C.1; D.2. 29.若m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为 [ ]. A.4; B.1; C.-2; D.-6. 30.方程x|x|-3|x|+2=0的实数根的个数是 [ ]. A.1; B.2; C.3; D. 4.

一元二次方程的知识点梳理

一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) =n=2 =2,n=1 =2,m=1 =n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: 1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 4、已知a 是0132=+-x x 的根,则=-a a 622 。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 6、若=?=-+y x 则y x 324,0352 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=?≥=,02

一元二次方程根的判别式的综合应用

一元二次方程根的判别式的综合应 用 一、知识要点: 1.一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac。 定理1 ax2+bx+c=0(a0)中,>0方程有两个不等实数根. 定理2 ax2+bx+c=0(a0)中,=0方程有两个相等实数根. 定理3 ax2+bx+c=0(a0)中,<0方程没有实数根. 2、根的判别式逆用(注意:根据课本反过来也成立)得到三个定理。 定理4 ax2+bx+c=0(a0)中,方程有两个不等实数根>0. 定理5 ax2+bx+c=0(a0)中,方程有两个相等实数根=0.

定理6 ax2+bx+c=0(a0)中,方程没有实数根<0. 注意:(1)再次强调:根的判别式是指=b2-4ac。(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。 (3)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac0切勿丢掉等号。(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a0. 二.根的判别式有以下应用: ①不解一元二次方程,判断根的情况。 例1.不解方程,判断下列方程的根的情况: (1)2x2+3x-4=0(2)ax2+bx=0(a0) 解:(1) 2x2+3x-4=0 a=2, b=3, c=-4,

∵=b2-4ac=32-42(-4)=41 方程有两个不相等的实数根。 (2)∵a0,方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零, ∵=(-b)2-4a0=b2, ∵无论b取任何关数,b2均为非负数, 0,故方程有两个实数根。 ②根据方程根的情况,确定待定系数的取值范围。 例2.k的何值时?关于x的一元二次方程x2-4x+k-5=0(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根; 分析:由判别式定理的逆定理可知(1)>0;(2)=0;(3)<0;

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

九年级数学上册专题突破讲练根的判别式的深化应用试题新版青岛版

根的判别式的深化应用 一、一元二次方程根的判别式 对于一元二次方程ax 2+bx +c =0(a ≠0),它的解的情况由b 2-4ac 的取值决定,我们 通常用“?2-,即ac b 42 -=?。 方程ax 2+bx +c =0(a ≠0)的根的情况 =?b 2-4ac >0 两个不相等的实数根 =?b 2-4ac =0 两个相等的实数根 =?b 2-4ac <0 没有实数根 方法归纳:用b -4ac 可以判断方程根的情况,反过来,若已知方程根的情况,则可确定b 2-4ac 的取值。 二、根的判别式的应用 1. 判断一元二次方程根的情况。 2. 确定一元二次方程中字母系数的取值范围。 3. 确定一元二次方程根的某些特性,如是不是有理根。 方法归纳:(1)计算=?b 2-4ac 时注意a 、b 、c 表示各项系数,包括它们前面的符号; (2)关于根的判别式=?b 2-4ac 的正、负号的判定涉及代数式的恒等变形,一般地,将表 示=?b 2-4ac 的代数式进行配方,利用非负数、非正数的概念,确定=?b 2-4ac 的正、负号。 总结: 1. 会讨论方程的根的情况,包括一元一次方程和一元二次方程。 2. 能利用一元二次方程根的判别式判断方程的根的特性,如:有理根、整数根等。 例题1 关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定 解析:这是含字母系数的一元二次方程,将字母视为数字即可。这里a =1,b =-m ,c =m -2。因为b 2-4ac =(-m )2-4×1×(m -2)=m 2-4m +8=m 2-4m +4+4=(m -2)2+4>0,所以方程有两个不相等的实数根。 答案:A 点拨:判断b 2-4ac 的正、负情况时,通常有两种情形,(1)已知判别式中某些字母的 取值范围,依此确定判别式?的取值范围;(2)一般要将表示b 2-4ac 的代数式进行配方, 利用偶次幂的非负性确定b 2-4ac 的正、负号。 例题2 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们 称这个方程为“凤凰”方程,已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等 的实数根,则下列结论正确的是

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

中考专题_一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系 【重点、难点、考点】 重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。 ②掌握根与系数的关系及应用 难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。 考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。 【经典范例引路】 例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ) A.m<43 B.m ≤43 C.m>43 且m ≠2 D.m ≥43 且 m ≠2 (2001年山西省中考试题) 【解题技巧点拨】 解 C ①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形 解题原理:对方程ax 2+bx +c =0 (a ≠0) 方程有两实根Δ方程有两相等实根 Δ方程有两不等实根Δ?≥? ?? ?=?>000 Δ<0?方程没有实根 注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。 例2 先阅读下列第(1)题的解答过程

(1)已知αβ是方程x2+2x-7=0的两个实数根。求α2+3β2+4β的值。 解法1 ∵α、β是方程x2+2x-7=0的两实数根 ∴α2+2α-7=0 β2+2β-7=0 且α+β=-2 ∴α2=7-2αβ2=7-2β ∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2 ×(-2)=32 解法2 由求根公式得α=-1+22β=-1-22 ∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22) =9-42+3(9+42-4-82)=32 解法3 由已知得:α+β=-2 αβ=-7 ∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2 +4α=B ∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ① A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ② ①+②得:2A=64 ∴A=32 请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题 (2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。x13+7x22 +3x2-66的值。 解∵x1、x2是方程x2-x-9=0的两根 ∴x1+x2=1 且x12-x1-9=0 x22-x2-9=0 即 x12=x1+9 x22=x2+9 ∴x13+7x22+3x2-66=x1(x1+9)+7(x2+9)+3x2-66 =x12+9x1+10x2-3=x1+9+9x1+10x2-3=10(x1+x2)+ 6=16 【同步达纲练习】 一、填空题

一元二次方程知识点总结与易错题及答案

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于- a b ,二根之积等于a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

一元二次方程根的判别式的多种应用

一元二次方程根的判别式的多种应用 一元二次方程根的判别式用来判断一元二次方程根的情况,能帮助我们解一元二次方程,也是以后学习一些知识的基础,在解题中应用很多,举例如下: 一、不解方程,判断一元二次方程根的情况。 例1、判断下列方程根的情况 2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根? 简解:当Δ=[-(2m-1)]2-4(m-4)m≥0时,原方程有两个实数根, ∴4m2-4m+1-4m2+16m≥0,解得m≥- 又∵m-4≠0 ∴m≠4 ∴当m≥- 且m≠4时,原方程有两个实数根。 例3、当m分别取何值时关于x的方程(m-1)x2+(2m-1)x+m-1=0 l 有两个不相等的实数根 l 有两个相等的实数根 l 有两个实数根 l 有一个实数根 l 有实数根 l 无实数根 评析:初中阶段的根的判别式Δ=b2-4ac是相对于一元二次方程而言的,而ax2+bx+c=0当a=0时是一元一次方程不能用判别式,所以例2中一定要考虑二次项系数m-4≠0;例3则一定要做分类讨论。 三、证明方程根的性质。 例4、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。简解:∵Δ=(m2+3)2-4╳0.5(m2+2)=m4+4m2+5=(m2+2)2+1>0 ∴无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 评析:这种应用有两个难点:(1)是容易与(二)中求字母取值混淆,即用Δ≥0求m的取值范围;(2)是用配方法证明二次三项式的特性。 四、判断二次三项式能否在实数范围内因式分解。 例5、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 简解:当Δ=[-2(m+2)]2-4m(m+5)≥0时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。 ∴m≥4且m≠0。 评析:对于系数是有理数的二次三项式ax2+bx+c(a≠0)的因式分解,其方法是先求ax2+bx+c=0(a≠0)的根然后再代入公式,所以,判别式决定了二次三项式能否在实数范围内因式分解,即: Δ<0时不能在实数范围内因式分解; Δ≥0时能在实数范围内因式分解;进而当Δ为完全平方数时能在有理数范围内因式分解; 再进而当Δ=0时ax2+bx+c=a(x-x1)(x-x2)=a(x-x1)2(a≠0),所以此时可以说它是完全平方式。五、判定二次三项式为完全平方式。 例6、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例7、当m为何值时,代数式(5m-1)x2-(5m+2)+3m—2是完全平方式。 六、利用判别式构造一元二次方程。 例8、已知:(z-x)2-4(x-y)(y-z)=0(x≠y) 求证:2y=x+z

2013年中考数学知识点:一元二次方程——解一元二次方程专题练习

解一元二次方程专题练习 直接开平方法 1.如果(x -2)2=9,则x = . 2.方程(2y -1)2-4=0的根是 . 3.方程(x+m)2=72有解的条件是 . 4.方程3(4x -1)2=48的解是 . 配方法 5.化下列各式为(x +m )2+n 的形式. (1)x 2-2x -3=0 . (2)210x = . 6.下列各式是完全平方式的是( ) A .x 2+7n =7 B .n 2-4n -4 C .21 1 216x x ++ D .y 2-2y +2 7.用配方法解方程时,下面配方错误的是( ) A .x 2+2x -99=0化为(x +1)2=0 B .t 2-7t -4=0化为2765 ()24t -= C .x 2+8x +9=0化为(x +4)2=25 D .3x 2-4x -2=0化为2210 ()39x -= 8.配方法解方程. (1)x 2+4x =-3 (2)2x 2+x=0

因式分解法 9.方程(x +1)2=x +1的正确解法是( ) A .化为x +1=0 B .x +1=1 C .化为(x +1)(x +l -1)=0 D .化为x 2+3x +2=0 10.方程9(x +1)2-4 (x -1)2=0正确解法是( ) A .直接开方得3(x +1)=2(x -1) B .化为一般形式13x 2+5=0 C .分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x —1)]=0 D .直接得x +1=0或x -l =0 11.(1)方程x (x +2)=2(z +2)的根是 . (2)方程x 2-2x -3=0的根是 . 12.如果a 2-5ab -14b 2=0,则235a b b += . 公式法 13.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是 ,其中b 2 —4ac . 14.方程(2x +1)(x +2)=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x = , 15.用公式法解下列方程. (1)(x +1)(x +3)=6x +4. (2)21)0x x ++=. (3) x 2 -(2m +1)x +m =0. 16.已知x 2-7xy +12y 2=0(y ≠0)求x :y 的值. 综合题

相关文档
最新文档