数学必修4典型例题
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

§2 从位移的合成到向量的加法2.1 向量的加法,)1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,熟悉向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O 作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB 结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律 a +b =b +a结合律 (a +b )+c =a +(b +c )1.判断正误.(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( )(2)|a +b |≤|a |+|b |等号成立的条件是a ∥b .( )(3)任意两个向量的和向量不可能与这两个向量共线.( ) 解析:(1)正确.根据向量和的定义知该说法正确. (2)错误.条件应为a ∥b ,且a ,b 的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线. 答案:(1)√ (2)× (3)×2.若a ,b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同解析:选B.因为a 与b 方向相反,|a |<|b |,所以a +b 与a 的方向相反,故B 不正确. 3.化简下列各向量: (1)AB →+BC →=________. (2)PQ →+OM →+QO →=________.解析:根据向量加法的三角形法则及运算律得: (1)AB →+BC →=AC →.(2)PQ →+OM →+QO →=PQ →+QO →+OM →=PO →+OM →=PM →.答案:(1)AC → (2)PM →4.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.解析:由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 答案:01.对向量加法的三角形法则的四点说明 (1)适用X 围:任意向量.(2)注意事项:①两个向量一定首尾相连;②和向量的起点是第一个向量的起点,终点是第二个向量的终点. (3)方法与步骤:第一步,将b (或a )平移,使一个向量的起点与另一个向量的终点相连; 第二步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明 (1)适用X 围:任意两个非零向量,且不共线.(2)注意事项:①两个非零向量一定要有相同的起点; ②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a 与b 的起点平移到同一点; 第二步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a 与b 的和.(4)图示:如图所示已知向量作和向量如图,已知向量a ,b ,c 不共线,求作向量a +b +c .(教材P 81习题2-2 A 组T 3)[解] 法一:如图(1),在平面内作OA →=a ,AB →=b ,则OB →=a +b ;再作BC →=c ,则OC →=a +b +c .法二:如图(2),在平面内作OA →=a ,OB →=b ,以OA 与OB 为邻边作平行四边形OADB ,则OD →=a +b ;再作OC →=c ,以OD 与OC 为邻边作平行四边形ODEC ,则OE →=a +b +c .方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从此点出发分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a 和b ,求作a +b .(2)如图,已知a ,b ,c 三个向量,试求作和向量a +b +c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O ,作OA →=a ,AB →=b ;②连接OB ,则OB →=a +b .法二:(平行四边形法则)如图所示.①在平面上任取一点O ,作OA →=a ,OB →=b ;②以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b .(2)作出来的和向量如图,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →即为所求.向量的加法运算(1)下列等式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →. A .②③ B .② C .① D .③(2)设A ,B ,C ,D 是平面上任意四点,试化简: ①AB →+CD →+BC →; ②DB →+AC →+BD →+CA →.(教材P 81习题2-2A 组T 5(1)(2))[解] (1)选B.由向量的加法满足结合律知①正确;因为AB →+BA →=0,故②不正确;DC →+AB →+BD →=AB →+BD →+DC →=AC →成立,故③正确.(2)①AB →+CD →+BC →=(AB →+BC →)+CD →=AC →+CD →=AD →. ②DB →+AC →+BD →+CA →=(DB →+BD →)+(AC →+CA →)=0+0=0.方法归纳向量加法运算律的意义和应用原则 (1)意义向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式: ①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+FA →=________.解析:(1)因为AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+FA →=(AB →+BC →)+(DF →+FA →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,如果不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(教材P 77例1,例2,P 78例3) [解](1)如图,根据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123, 所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,如果不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步.方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又因为|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2. 又因为∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB →+BC →=AC →.依题意有|AB →|+|BC →|=800+800=1 600(km),又α=35°,β=55°,∠ABC =35°+55°=90°,所以|AC →|=|AB →|2+|BC →|2 =8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h 的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为________km/h.[解析] 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船实际航行速度的大小为20 km/h.[答案] 20[错因与防X] (1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要注意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接某某际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,若船的实际航行方向与水流方向垂直,则经过3 h ,该船的实际航程为________km.(2)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度.因为|OA →|=2,|OB →|=4,∠AOB =120°,则∠CBO =60°, 又因为∠AOC =∠BCO =90°,所以|OC →|=23,所以船的实际航行速度为2 3 km/h ,则实际航程为23×3=63(km).故填6 3. (2)作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中, |CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min ,所以cos α=|CD →||AD →|=1020=12,所以α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向与a 或b 的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确的个数为( ) A .0 B .1 C .2 D .3解析:选B.①当a +b =0时,不成立;②说法正确;③当A ,B ,C 三点共线时,也可以有AB →+BC →+CA →=0,故此说法不正确;④当a ,b 共线时,若a ,b 同向,则|a +b |=|a |+|b |;若a ,b 反向,则|a +b |=||a |-|b ||;当a ,b 不共线时,|a +b |<|a |+|b |,故此说法不正确.2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )A.FD →+DA →=FA →B.FD →+DE →+FE →=0C.DE →+DA →=EB →D.DA →+DE →=FD →解析:选A.如题图,可知FD →+DA →=FA →, FD →+DE →+FE →=FE →+FE →≠0, DE →+DA →=DF →,故A 正确.3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →, [学生用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD →B .DB → C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |. A .①② B .①③ C .①③⑤ D .③④⑤解析:选C.因为(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=a =0. 所以a∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确. 6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何知识知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:因为ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →|=2|AC →|=2|AB →|2+|BC →|2=4. 答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.因为PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →. 10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO=∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N ,|OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.[B.能力提升] 1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.根据所给的四个向量的和是一个零向量,即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( )A.3B .3C .23D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________.解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC→=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0.答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值X 围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.如果此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移,用CD →表示船的第二次位移,根据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移.由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3. 在等腰△ACD 中,AC =CD =2, 所以∠D =∠DAC =12∠ACB =30°, 所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:因为OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形,又|AB →|=|AD →|=1,知四边形ABCD 为菱形.因为cos ∠DAB =12,∠DAB ∈(0,π), 所以∠DAB =π3,所以△ABD 为正三角形, 所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.|CD →+BC →|=|BD →|=|AB →|=1.。
(完整版)高一数学必修4三角函数知识点及典型练习

第一、任意角的三角函数一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,弧长lr α=、扇形面积21122s lr r α==,二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切xya =tan ,它们都是以角为自变量,以比值为函数值的函数。
三角函数值在各象限的符号:三:同角三角函数的关系式与诱导公式: 1. 平方关系:22sincos 1αα+= 2. 商数关系:sin tan cos ααα=3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦余弦正切4. 两角和与差公式 :()()()sin sin cos cos sin cos cos cos sin sin tan tan tan 1tan tan αβαβαβαβαβαβαβαβαβ⎧⎪±=±⎪⎪±=⎨⎪±⎪±=⎪⎩m m5.二倍角公式:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα⎧⎪=⎪=-=-=-⎨⎪⎪=-⎩余弦二倍角公式变形: 222cos1cos2,2sin 1cos2αααα=+=-第二、三角函数图象和性质基础知识:1、三角函数图像和性质2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+ 周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高中数学必修4平面向量典型例题及提高题

平面向量之答禄夫天创作【基本概念与公式】 【任何时候写向量时都要带箭头】 :既有大小又有方向的量。
记作:AB 或a 。
:向量的大小(或长度),记作:||AB 或||a 。
:长度为1的向量。
若e 是单位向量,则||1e =。
:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
:长度和方向都相同的向量。
:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数):以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+22||a a =,2||()a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅;cos ||||a b a b θ⋅=⋅14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+=:(1)若a 与b 共线,b 与c 共线,则a 与c 共线。
(2)若ma mb =,则a b =。
(3)若ma na =,则m n =。
(4)若a 与b 不共线,则a 与b 都不是零向量。
(5)若||||a b a b ⋅=⋅,则//a b 。
(6)若||||a b a b +=-,则a b ⊥。
AC AB AD 为与的和向量,且,AC a BD b ==,则AB =,AD =。
5.已知点C 在线段AB 上,且35AC AB =,则AC =BC ,AB =BC 。
(1,4),(3,8)a b =-=-,则132a b -=。
北师大版必修4高中数学第一章概念辨析正弦、余弦图象和性质例题讲解素材

1
正余弦图象和性质概念辨析
1.函数的增减性质与图像的升降形态是一个事物的两种不同的表现形式,当函数单调递增时,反映到图像是上升的趋势,当函数单调递减时,反映到图像是下降趋势,“增”“减”用到函数上,“升”“降”用到图像上.
2.函数的单调性可以看作函数的“局部”性质,它在定义域的某一个子区间上单调递增(减),因此正弦函数x y sin =的单调增区间有无数多个,可以简写为:
⎥⎦
⎤⎢⎣⎡+-22,22ππππk k )(Z k ∈, 就是说,k 每取一个整数值,就得到一个单调递增区间,而不能写成:
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-ππππ2,232,2 …, 这里并集符号“ ”用错了.
3.周期通常指最小正周期.
4.并不是所有周期函数都有最小正周期(如()x f =1).
5.不只三角函数才是周期函数,如2)2()(k x x f y -==,[)12,12+-∈k k x
(Z k ∈)也是周期函数,它的周期2=T ,它的图像如下所示.
6.要分析周期函数的性质,只需在它的一个周期内分析即可,这就是“解剖麻雀”的方法,麻雀虽小,五脏俱全.
(4-8-3)。
考点27 复合三角函数的单调性-庖丁解题2018-2019学年高一数学人教版(必修4)(解析版)

考点27 复合三角函数的单调性y =f (u ),μ=φ(x )的单调性来决定.即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”.复合三角函数的单调性也不例外.复合三角函数的单调性,根据y =sin t 和t =x ωϕ+的单调性来研究, 当0A >时,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间.)ϕ+的部分图象如图所示,则()f x 的单调递减区间为A .13(π,π),44k k k -+∈Z B .13(2π,2π),44k k k -+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z 【答案】D 【解析】由图象可知,1π++2π42()53π++2π42m m m ωϕωϕ⎧=⎪⎪∈⎨⎪=⎪⎩Z ,解得=πω,π=+2π()4m m ϕ∈Z ,所以 ππ()cos(π+2π)=cos(π)()44f x x m x m =++∈Z ,令π2ππ2ππ,4k x k k <+<+∈Z ,解得 124k -<x <324k +,k ∈Z ,故函数()f x 的单调减区间为(124k -,324k +),k ∈Z ,故选D .1在下列区间上是增函数的是 A .[π2-,π2] B .[34-π,π4] C .[–π,0] D .[π4-,34π]【答案】B【解析】由2k ππ2-≤x π4+≤2k ππ2+,k ∈Z 得2k π3π4-≤x ≤2k ππ4+,k ∈Z .当k =0时,3π4-≤x π4≤,∴函数y =3sin (x π4+)–1的一个单调增区间为[3π4-,π4].故选B . 2.函数y =cos (π6-x )的单调递增区间为__________. 【答案】[2k π56-π,2k ππ6+](k ∈Z ) 【解析】∵y =cos (π6-x )=cos (x π6-),由2k π–π≤x π6-≤2k π,k ∈Z 得2k π56-π≤x ≤2k ππ6+,k ∈Z .∴原函数的单调递增区间为[2k π56-π,2k ππ6+](k ∈Z ).故答案为:[2k π56-π,2k ππ6+](k ∈Z ). 3.函数π3sin 23y x ⎛⎫=-⎪⎝⎭的单调递增区间是__________. 【答案】[5π11πππ1212k k ++,],k ∈Z 【解析】因为函数ππ3sin 23sin 233y x x ⎛⎫⎛⎫=-=--⎪ ⎪⎝⎭⎝⎭的单调递增区间,即函数π3sin 23y x ⎛⎫=- ⎪⎝⎭的单调递减区间,由ππ3π2π22π232k x k +≤-≤+,k ∈Z ,解得5π11πππ1212k x k +≤≤+,k ∈Z ,故函数π3sin 23y x ⎛⎫=- ⎪⎝⎭的单调递增区间是[5π11πππ1212k k ++,],k ∈Z ,故答案为:[5π11πππ1212k k ++,],k ∈Z .4.已知函数1πsin 23y x ⎛⎫=+ ⎪⎝⎭. (1)求函数的最小正周期;(2)求函数在x ∈[–2π,2π]上的单调增区间.【解析】(1)由周期公式可得T 2π12==4π; (2)由2k ππ122-≤x π3+≤2k ππ2+可得4k π5π3-≤x ≤4k ππ3+, ∴原函数的单调递增区间为[4k π5π3-,4k ππ3+](k ∈Z ) 又∵x ∈[–2π,2π],∴当k =0时,函数的单调递增区间为5ππ33⎡⎤-⎢⎥⎣⎦,.。
高中数学必修4《弧度制》

R2
10 R
(R
5)2
25.
10
1
R
10 当R
5时,即L
10
R
5
2时,Smax 25
练习1.化下列各角为度数或弧度:
1)-225°
2)
12
2.已知扇形OAB的圆心角为120°,
半径为6,求扇形弧长及所含弓形的面积。
思考:钟表分针和时针在3点到5点40分 这段时间里 分针转过_______弧度的角, 时针转过___弧度的角。
4
4
S 1 LR 1 R2 1 15 25 75
2
2
24
8
2) 已知扇形的周长为20cm,当扇形的
中心角为多大时,它有最大面积?这是?
解:2) 设圆半径为R, 则
(弧长,扇
L
20
2R
R, S
1
LR
1
(20
2R)R
形面积)
(10R R)R
22
若时针转过3cm,则时针转过的弧长是
_________
作业: P习题1. (1) 2.(1),(3) 4. 6. 7 (3) (4). 8.
小结:
角的度量形式(角度制,弧度制),弧度的单 位.弧度的意义,角度制与弧度制间的互 换.会用弧度研究有关问题(弧长,扇形面 积等)
小宝结:剑锋从磨砺出 本节课重点学习了圆的标准方程和一
3°在半径为R的圆中,任一角α的弧度数的
绝对值都满足|α|= L R
其中L是圆心角α所对圆弧的长,R是圆的半径.
(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
高中数学 必修4 (王后雄电子版)

第1章节 三角函数1.1 任意角和弧度制【例题1】下列命题正确的是( )A. 终边相同的角一定相等B. 第一象限角都是锐角C. 锐角都是第一象限角D.小于90°的角都是锐角【例题2】给出下列四个命题:①﹣75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④﹣315°是第一象限角。
其中正确的命题有( )。
A.1个B.2个C. 3个D.4个【例题3】如图,点A 在半径为1且圆心在原点的圆商,且∠=45°。
点P 从点A 处出发,依逆时针方向匀速地沿单位圆旋转。
已知点P 在1秒钟内转过的角度为θ(0°<θ<180°),经过2秒钟到达第三象限,经过14秒钟后又回到出发点A ,求θ,并判断其所在的象限【例题4】设E ={小于90°的角},F ={锐角}。
G ={第一象限的角},M ={小于90°但不小于0°的角},则有( )。
A .B .C .( )D . 【例题5】在与角10030°终边相同的角中,求满足下列条件的角。
(1)最大的负角;(2)最小的正角;(3)360°~720°的角。
【例题6】与﹣457°角终边相同的角的集合是( )A .{}00360457,k k Z αα=⋅+∈B .{}0036097,k k Z αα=⋅+∈C .{}00360263,k k Z αα=⋅+∈D .{}00360263,k k Z αα=⋅-∈ 【例题7】下列各命题中,假命题是( )A. “度”与“弧度”是度量角的两种不同的度量单位B. 一度的角是周角的,一弧度的角是周角的C. 根据弧度的定义,180°一定等于π的弧度D. 不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关。
【例题8】若两角的和是1弧度,此两角的差是1°,试求这两个角的大小。
高中数学必修四第三章三角恒等变换

必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
人教A版高考数学必修4同步练习题 单元评估验收(3)

单元评估验收(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2sin 215°-1的值是( )A.12B .-12 C.32D .-32 解析:2sin 215°-1=-(1-2sin 215°)=-cos 30°=-32. 答案:D2.在△ABC 中,已知sin Asin B <cos Acos B ,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .等腰三角形解析:sin Asin B <cos Acos B ,即sin Asin B -cos Acos B <0,-cos(A +B)<0,所以cos C <0,从而C 为钝角,△ABC 为钝角三角形.答案:B3.已知cos ⎝⎛⎭⎪⎫5π2+α=35,-π2<α<0,则sin 2α的值是( ) A.2425 B.1225C .-1225D .-2425解析:由已知得sin α=-35,又-π2<α<0, 故cos α=45, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-35×45=-2425. 答案:D4.函数f(x)=sin xcos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,2解析:因为f(x)=sin xcos x +32cos 2x=12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3, 所以函数f(x)的最小正周期和振幅分别是π,1,故选A.答案:A5.在△ABC 中,C =120°,tan A +tan B =233,则tan Atan B 的值为( ) A.14 B.13 C.12 D.53解析:△ABC 中,C =120°,得A +B =60°,所以(tan A +tan B)=tan(A +B)(1-tan Atan B)=3(1-tan Atan B)=233. 所以tan Atan B =13. 答案:B6.已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3B .-17C .-43D .-7 解析:由α为锐角,cos α=55,得sin α=255,所以tan α=2,tan 2α=2tan α1-tan2α=41-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1+tan 2α1-tan 2α=1-431+43=-17,选B. 答案:B7.若cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝⎛⎭⎪⎫0,π2,则sin α的值为( ) A.4-26 B.4+26 C.718 D.23解析:由题意可得,α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫α+π4= 1-cos 2⎝⎛⎭⎪⎫α+π4=223,sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4 =sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝⎛⎭⎪⎫α+π4·sin π4 =223×22-13×22 =4-26. 答案:A8.已知sin α-cos α=-52,则tan α-1tan α的值为( ) A .-5B .-6C .-7D .-8 解析:将方程sin α-cos α=-52两边平方,可得1-sin 2α=54,即sin 2α=-14,则 tan α+1tan α=tan 2+1tan α=⎝ ⎛⎭⎪⎫sin αcos α2+1sin αcos α=2sin 2α=2-14=-8. 答案:D 9.已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( ) A.-43-310 B.43-310C.12D.32 解析:由cos ⎝ ⎛⎭⎪⎫x +π6=35,且0<x<π,得0<x +π6<π2, 所以sin ⎝ ⎛⎭⎪⎫x +π6=45, 所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝ ⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 答案:B10.已知sin ⎝ ⎛⎭⎪⎫π5-α=14,则cos ⎝⎛⎭⎪⎫2α+3π5=( ) A .-78 B.78 C.18 D .-18解析:由题意可得,cos ⎝ ⎛⎭⎪⎫2α+3π5=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+3π10 =cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π5-α =2cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π5-α-1 =2sin 2⎝ ⎛⎭⎪⎫π5-α-1 =-78. 答案:A11.函数y =sin ⎝ ⎛⎭⎪⎫x -π12·sin ⎝⎛⎭⎪⎫x +5π12的最大值为( ) A.12B.14 C .1 D.22解析:y =sin ⎝ ⎛⎭⎪⎫x -π12sin ⎝⎛⎭⎪⎫x +5π12 =sin ⎝ ⎛⎭⎪⎫x -π12sin ⎝ ⎛⎭⎪⎫x -π12+π2 =sin ⎝ ⎛⎭⎪⎫x -π12·cos ⎝ ⎛⎭⎪⎫x -π12 =12sin ⎝⎛⎭⎪⎫2x -π6, 所以当sin ⎝⎛⎭⎪⎫2x -π6=1时函数有最大值,最大值为12,故选A. 答案:A12.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f(-x)=f(x),则( )A .f(x)在⎝⎛⎭⎪⎫0,π2上单调递减 B .f(x)在⎝ ⎛⎭⎪⎫π4,3π4上单调递减 C .f(x)在⎝⎛⎭⎪⎫0,π2上单调递增 D .f(x)在⎝ ⎛⎭⎪⎫π4,3π4上单调递增解析:f(x)=sin(ωx+φ)+cos(ωx+φ) =2⎣⎢⎡⎦⎥⎤cos (ωx +φ)·cos π4+sin (ωx+φ)·sin π4 =2cos ⎣⎢⎡⎦⎥⎤(ωx+φ)-π4 =2cos ⎣⎢⎡⎦⎥⎤ωx +⎝⎛⎭⎪⎫φ-π4 因为f(x)的最小正周期为π,所以2πω=π,ω=2. 又f(-x)=f(x),即f(x)是偶函数,所以φ-π4=k π(k ∈Z). 因为|φ|<π2,所以φ=π4, 所以f(x)=2cos 2x ,由0<2x <π得0<x <π2,此时,f(x)单调递减,故选A. 答案:A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.已知2cos2x +sin 2x =Asin (ωx+φ)+b(A >0),则A =________,b =________.解析:因为2cos2x +sin 2x =1+cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1=Asin (ωx+φ)+b ,所以A =2,b =1. 答案: 2 114.若tan ⎝⎛⎭⎪⎫α-π4=16,则tan α=________. 解析:tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=16,解得tan α=75. 答案:7515.函数f(x)=sin ⎝⎛⎭⎪⎫2x -π4-22·sin 2x 的最小正周期是________. 解析:由f(x)=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x =22sin 2x -22cos 2x -22×1-cos 2x 2=22sin 2x +22cos 2x - 2 =sin ⎝⎛⎭⎪⎫2x +π4-2, 故最小正周期为π.答案:π16.我国古代数学家赵爽的弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于________.解析:题图中小正方形的面积为1,大正方形的面积为25,故每个直角三角形的面积为6.设直角三角形的两条直角边长分别为a ,b ,则有⎩⎪⎨⎪⎧a2+b2=25,12ab =6,所以两条直角边的长分别为3,4.则cos θ=45,cos 2θ=2cos2θ-1=725. 答案:725三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知0<α<π2,sin α=45. (1)求sin2α+sin 2αcos2α+cos 2α的值; (2)求tan ⎝⎛⎭⎪⎫α-5π4的值. 解:(1)由0<α<π2,sin α=45,得cos α=35. 所以sin2α+sin 2αcos2α+cos 2α=sin2α+2sin αcos α3cos2α-1= ⎝ ⎛⎭⎪⎫452+2×45×353×⎝ ⎛⎭⎪⎫352-1=20.(2)因为tan α=sin αcos α=43,所以tan ⎝ ⎛⎭⎪⎫α-5π4=tan α-11+tan α=43-11+43=17. 18.(本小题满分12分)已知函数f(x)=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R. (1)求f ⎝ ⎛⎭⎪⎫-π6; (2)若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝⎛⎭⎪⎫2θ+π3. 解:(1)f ⎝ ⎛⎭⎪⎫-π6=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=1. (2)f ⎝⎛⎭⎪⎫2θ+π3 =2cos ⎝⎛⎭⎪⎫2θ+π3-π12 =2cos ⎝⎛⎭⎪⎫2θ+π4 =cos 2θ-sin 2θ.因为cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π, 所以sin θ=-45. 所以sin 2θ=2sin θcos θ=-2425. cos 2θ=cos 2θ-sin 2θ=-725. 所以f ⎝⎛⎭⎪⎫2θ+π3=cos 2θ-sin 2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725. 19.(本小题满分12分)已知函数f(x)=3sin 2x -2cos 2x.(1)求f(x)的最大值;(2)若tan α=23,求f(α)的值.解:(1)f(x)=3sin 2x -2cos 2x =3sin 2x -cos 2x -1=2sin ⎝⎛⎭⎪⎫2x -π6-1. 当2x -π6=2k π+π2,即x =k π+π3,k ∈Z 时. f(x)的最大值为1. (2)f(α)=3sin 2α-2cos 2α =23sin αcos α-2cos 2αsin 2α+cos 2α=23tan α-2tan 2α+1, 因为tan α=23,所以f(α)=23×23-24×3+1=1013. 20.(本小题满分12分)已知向量m =(sin A ,cos A),n =(3,-1)且m·n=1,且A 为锐角.(1)求角A 的大小;(2)求函数f(x)=cos 2x +4cos Asin x (x∈R)的值域.解:(1)由题意得m·n=3sin A -cos A =2sin ⎝⎛⎭⎪⎫A -π6=1, sin ⎝⎛⎭⎪⎫A -π6=12. 由A 为锐角得A -π6=π6,所以A =π3. (2)由(1)知cos A =12, 所以f(x)=cos 2x +2sin x =1-2sin 2x +2sin x = -2⎝⎛⎭⎪⎫sin x -122+32. 因为x∈R,所以sin x ∈[-1,1],因此,当sin x =12时,f(x)有最大值32,当sin x =-1时,f(x)有最小值-3, 所以所求函数f(x)的值域为⎣⎢⎡⎦⎥⎤-3,32. 21.(本小题满分12分)设向量a =(sin x ,cos x),b =(cos x ,cos x),x ∈R ,函数f(x)=a·(a +b).(1)求函数f(x)的最大值与最小正周期;(2)求使不等式f(x)≥32成立的x 的取值范围. 解:(1)因为f(x)=a·(a+b)=a·a+a·b=sin 2x +cos 2x +sin xcos x +cos 2x =1+12sin 2x +12(cos2x +1)=32+22sin ⎝⎛⎭⎪⎫2x +π4, 所以f(x)的最大值为32+22,最小正周期T =2π2=π. (2)由(1)知f(x)≥32⇔32+22sin ⎝ ⎛⎭⎪⎫2x +π4≥32⇔sin ⎝⎛⎭⎪⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k∈Z). 所以使f(x)≥32成立的x 的取值范围是 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π8≤x≤kπ+3π8,k ∈Z . 22. (本小题满分12分)已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f(x)的最小正周期及单调递增区间. 解:法一:(1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4= -2cos π4⎝⎛⎭⎪⎫-sin π4-cos π4=2. (2)因为f(x)=2sin xcosx +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2k π+π2,k ∈Z , 得kπ-3π8≤x ≤k π+π8,k ∈Z. 所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z. 法二:f(x)=2sin xcos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2k π+π2,k ∈Z ,得kπ-3π8≤x ≤k π+π8,k ∈Z. 所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.。
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
高中数学 第二章 平面向量 2.7 向量应用举例例题与探究(含解析)北师大版必修4-北师大版高一必修

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和.思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2.证法一:如图2-7-1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a.图2-7-1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b-a)2=a2-2a·b+b2.∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2-7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2-7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD-AB=OD-OB=(a,b)-(c,0)=(a-c,b).∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.绿色通道:1.向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系.这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译).2.平面几何经常涉及距离、夹角的问题.而平面向量的运算,特别是数量积主要涉及向量的模及向量的夹角.因此,我们可以用向量方法解答几何问题.在具体问题中,先用向量表示相应的点、线段、夹角等几何元素,然后通过向量的运算,特别是数量积来研究点、线段等几何元素之间的关系,最后将结论转化为几何问题.变式训练如图2-7-3所示,AC、BD是梯形ABCD的对角线,BC>AD,E、F分别为BD、AC的中点.试用向量证明:EF∥BC.图2-7-3 思路分析:证明EF ∥BC,转化为证明EF ∥BC,选择向量基底或建立坐标系均可解决. 证法一(基向量法):设AB =a ,AD =b ,则有BD =AD -AB =b -a . ∵AD ∥BC ,∴存在实数λ>1使BC =λAD =λb . ∵E 为BD 的中点,∴BE =21BD =21 (b -a ). ∵F 为AC 的中点, ∴BF =BC +CF =BC +21CA =BC +21(BA -BC )=21(BA +BC )=21(BC -AB )=21 (λb -a ).∴EF =BF -BE =21 (λb -a )-21 (b -a )=(21λ-21)b . ∴EF =[(21λ-21)·λ1]BC . ∴EF ∥BC .EF ∥BC.证法二(坐标法):如图2-7-4所示,以BC 为x 轴,以B 为原点建立平面直角坐标系.则B(0,0),设A (a,b ),D(c,b),C(d,0).图2-7-4∴E(2,2b c ),F(2,2b b a +). ∴EF =(2,2b b a +)-(2,2b c )=(0,2c d a -+),BC =(d,0).∵2c d a -+×0-d×0=0. ∴EF ∥BC .∴EF ∥BC.例2如图2-7-5,一艘船从A 点出发以32km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为2 km/h ,求船的实际航行速度的大小与方向(用与流速间的夹角表示).图2-7-5 思路分析:船的实际航行速度是船的速度与水流速度的合速度,用平行四边形法则合成即可. 解:如图2-7-5所示,设AD =a 表示船垂直于对岸行驶的速度,AB =b 表示水流的速度,以AD 、AB 为邻边作平行四边形ABCD ,则AC 就是船的实际航行速度,即AC =a +b , ∵|a |=32,|b |=2,a ·b =0,∴|AC |2=(a +b )2=a 2+2a ·b +b 2=16,即|AC |=4. ∵AC ·AB =(a +b )·b =a ·b +b 2=4, ∴cos〈AC ,AB 〉21424||||=⨯=AB AC . 又∵0°≤〈AC ,AB 〉≤180°,∴〈AC ,AB 〉=60°,即船的实际航行速度的大小为4 km/h ,方向与水的流速间的夹角为60°.绿色通道: 用向量法解决物理问题的步骤:(类似于用向量方法解决平面几何问题的步骤) ①把物理问题中的量用向量来表示;②将物理问题转化为向量问题,通过向量运算解决数学问题;③把结果还原为物理问题.变式训练如图2-7-6所示,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠AC W=150°,∠BC W=120°,求A 和B 处所受力的大小.(忽略绳子的质量)思路分析:由于力和重量都是向量,求A 和B 处所受力的大小转化为求向量的模|CE |和|CF |.A 和B 处所受力的合力是10 N ,即物体W 的重量,用平行四边形法则解决.图2-7-6解:由题意,得四边形CEWF 是矩形, 则有CF +CE =CW ,CF ⊥CE |,CW |=10,∠FCW=60°.∴CF ·CE =0, ∴|CW |2=(CF +CE )2=|CF |2+2CF ·CE +|CE |2. ∴|CF |2+|CE |2=100.① 又∵CF ·CE =0,〈CF ,CW 〉=60°,∴CF ·CW =CF ·(CF +CE )=2CF +CF ·CE =2CF . ∴cos〈CF ,CW 〉||||CW CF 21||=CW . ∴|CF |=21|CW |=5,| CE |=35, 即A 和B 处所受力分别是35N 和5 N.例3(2006某某高三百校第二次考试卷,文9)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +λ(AB +AC ),λ∈[0,+∞),则P 的轨迹一定通过△A BC 的( ) A.外心 B.垂心C.内心D.重心思路解析:OP =OA +λ(AB +AC )可以化为AP =λ(AB +AC ).所以AP ∥(AB +AC ).又AB +AC 所在直线平分BC .所以AP 所在直线也平分BC .所以P 的轨迹一定通过△ABC答案:D绿色通道:判断图形的特点,主要从已知出发,利用向量运算的几何意义或由已知向量的关系判断出线线的位置关系或等量关系,从而对图形的特殊性作出判断.要作出准确判断,还要结合几何图形即数形结合.另外还要掌握三角形和特殊四边形的性质,例如三角形的四心(内心、外心、重心、垂心)的定义和性质,四边相等的四边形是菱形,对角线相等且相互平分的四边形是矩形等.变式训练1在四边形ABCD中,AB·BC=0,且AB=DC,则四边形ABCD是()A.梯形B.菱形C.矩形D.正方形思路解析:由AB·BC=0,得AB⊥BC,又AB=DC,∴AB与DC平行且相等.从而四边形ABCD是矩形.答案:C变式训练2(2005全国高考卷Ⅰ,文12)点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点思路解析:由OA·OB=OB·OC,得OA·OB-OB·OC=0.∴OB·(OA-OC)=0,即OB·CA=0,∴OB⊥CA.同理可证OA⊥CB,OC⊥AB.∴OB⊥CA,OA⊥CB,OC⊥AB.答案:D问题探究问题1一位年轻的父亲将不会走路的小孩的两条胳膊悬空拎起,结果造成小孩胳臂受伤,试一试你能用向量知识加以解释吗?导思:这是日常生活中司空见惯的事情,解决这个题目的关键是首先建立数学模型,然后根据数学知识来解决,针对小孩的两条胳膊画出受力图形,然后通过胳膊受力分析,建立数学|F 1|=2cos 2||θG ,θ∈[0,π]来确定何种情景时,小孩的胳膊容易受伤.图2-7-7探究:设小孩的体重为G ,两胳膊受力分别为F 1,F 2,且F 1=F 2,两胳膊的夹角为θ,胳膊受力分析如图2-7-7(不计其他因素产生的力),不难建立向量模型:|F 1|=2cos 2||θG ,θ∈[0,π],当θ=0时|F 1|=2||G ;当θ=3π2时,|F 1|=|G |;又2θ∈(0,2π)时,|F 1|单调递增,故当θ∈(0, 3π2)时,F 1∈(2||G ,|G |),当θ∈(3π2,π)时,|F 1|>|G |.此时,悬空拎起小孩容易造成小孩受伤.。
2019【人教A版】高中数学:必修4课本例题习题改编(含答案)

人教版高中数学必修精品教学资料人教A 版必修4课本例题习题改编1.原题(必修4第十页A 组第五题)改编1 下列说法中正确的是( ) A .第一象限角一定不是负角 B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等 解:选C. -330°=-360°+30°,所以-330°是第一象限角,所以A 错误;-831°=(-3)×360°+249°,所以-831°是第三象限角,所以B 错误;0°角,360°角终边与始边均相同,但它们不相等,所以D 错误. 改编2 已知θ为第二象限角,那么3θ是( ) A. 第一或第二象限角 B. 第一或四象限角 C. 第二或四象限角 D. 第一、二或第四象限角解:选D.36090360180,,1203012060,3k k k z k k k z θθ+〈〈∙+∈∴∙+〈〈∙+∈(1)当()3,36030360180,,3k n n z n n n z θ=∈∙+〈〈∙+∈时此时3θ为第一象限角;(2)当()31,360150360180,,3k n n z n n n z θ=+∈∙+〈〈∙+∈时此时3θ为第二象限角;(3)当()32,360270360300,3k n n z n n θ=+∈∙+〈〈∙+时此时3θ为第四象限角。
改编3 设α角属于第二象限,且2cos2cosαα-=,则2α角属于( )A .第一象限B .第二象限C .第三象限D .第四象限 解:22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限;而coscoscos0222ααα=-⇒≤,2α∴在第三象限;答案:C2.原题(必修4第十页B 组第二题)改编 时钟的分针在1点到3点20分这段时间里转过的弧度数为( ) A.143 π B .-143 π C.718 π D .-718 π解:选B. 显然分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是-4π-13×2π=-143π.故选B.3.原题(必修4第十九页例6)改编 (1)已知sin α 13=,且α为第二象限角,求tan α;(2)已知sin α= m (0,1)m m ≠≠±,求tan α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修4基础知识与典型例题
三角函数
角的概念1.①与α终边相同的角β的集合:__________________________
②第一象限角的集合:_____________________________
2.角度与弧度的互换关系:______________________
3.弧长公式:____________ 扇形面积公式:_____________
例1.已知α为第三象限角,则
2
α
所
在的象限是( )
(A)第一或第二象限
(B)第二或第三象限
(C)第一或第三象限
(D)第二或第四象限
三角函数的定义1.三角函数定义:在角α终边上任取一点(,)
P x y(与原点不重合),记
2
2y
x
r+
=,则=
α
sin____,=
α
cos____,=
α
tan____
2.各象限角的三角函数值符号:
一全二正弦,三切四余弦
α
sinα
cosα
tan
1.同角三角函数基本关系:_________________________________
2.诱导公式:
公式(一)公式(二)
=
+)
2
sin(x
kπ_______; =
-)
sin(x_________;
=
+)
2
cos(x
kπ_______; =
-)
cos(x________;
=
+)
2
tan(x
kπ_______; =
-)
tan(x_________;
公式(三)公式(四)
=
+)
sin(x
π_________; =
-)
sin(x
π_________;
=
+)
cos(x
π_________; =
-)
cos(x
π_________;
=
+)
tan(x
π_________; =
-)
tan(x
π_________;
例 2.已知角α的终边经过点
)3
,4(-
P,求α
αcos
sin
2+的值.
例 3.若θ是第三象限角,且
cos cos
22
θθ
=-,则
2
θ
是( )
(A)第一象限角(B)第二象限角
(C)第三象限角(D)第四象限角
例4.若cos0,
θ>sin20,
θ<
且
θ
则角的终边所在象限是()
(A)第一象限(B)第二象限
(C)第三象限(D)第四象限
例5.化简:①
440
sin
12
-
②
)
2
5
sin(
)
4
tan(
)
tan(
)
2
3
cos(
)
sin(
α
π
α
π
α
π
α
π
α
π
+
-
-
-
-
-
③α
αsin
3
cos+
例 6.已知点P(cos,sin)
θθ在直线
20
x y
-=上,试求下列各三角函数
式的值:
三角函数 三角函数
1.向量的有关概念
(1)向量:既有_____又有____的量.向量的_______叫向量的模(也就是用来表示向量的有向线段的长度). (2)理解零向量、相等向量、单位向量、共线向量、相反向量的概念。
注:①向量不能比较大小,向量可以自由平移,平移前后的向量相等.两向量a 与b 相等,记为a b = ②共线向量又称为平行向量。
规定:0与任一向量共线. 0与任一向量垂直。
2.向量的运算 运 算
图形语言
符号语言
坐 语言
加法与 减法
OA --→
+OB --→
=_____
OB --→OA --→
-=_____ 记OA --→
=(x 1,y 1),OB --→
=(x 1,y 2) 则OA OB +=_____________
OB OA -=_______________
OA --→
+AB --→
=______
实数与向量的乘积
AB --→=λa →
,λ∈R
记a →
=(x ,y ),则λa →
=__________ ___
两个向量的数量积
=•b a _________
记1122(,),(,)a x y b x y == 则a →
·b →
=________________
叫做表示这一平面内所有向量的②平面内任一向量都可以沿两个不共线向量1122e e λλ+①当向量起点在原点时,定义向量坐标为终点坐标,即若___________________________ (求线段的长度b 在a 的模与b 在a =____________;如果
1(P x
4.已知向量→a =(4,2),→b =(x ,3),且→a ∥→
b ,则x 的值是( ) A .6 B .-6 C .9 D .12
5.已知向量)2,3(-=a , )0,1(-=b ,向量a b λ+与b a 2-垂直,则实数λ的值为( ) A.71-
B. 71
C. 61
D. 6
1
-
6.已知a 、→
b 均为单位向量,它们的夹角为60°,那么|a + 3→
b | =( ) A .7
B .10
C .13
D .4
7.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A .
65
63
B .
65 C .513
D .13
8.已知向量a ,→
b 满足a ⊥→
b ,|a |=1,|→
b |=2,则|2a -→
b |=( ) A .0 B .2 2 C .4
D .8
9.如图,ABC ∆为等腰三角形,ο
30=∠=∠B A ,设,
,AC 边上的高为BD .若用b a ,表示
,
则表达式为( ) A .
B .
C .
D .
10.以A(2,5),B(5,2),C(10,7)为顶点的三角形的形状是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形 11.已知12,5||,3||=⋅==b a b a 且,则向量a 在向量b 上的投影为( ) A .
5
12 B .3
C .4
D .5
12.若向量a =(1,1),→
b =(2,5),
c =(3,x ),满足条件(8a -→
b )·
c =30,则x =( ) A .6 B .5 C .4 D .3
13. 若平面向量b 与向量)2,1(-=a 的夹角是o
180,且53||=b ,则=b ( )
A .)6,3(-
B .)6,3(-
C .)3,6(-
D .)3,6(- 14.已知向量)3,2(),2,1(-==b a ,.若向量c 满足b a c //)(+,)(b a c +⊥,则c =
( )
A .77
(,)93 B .77(,)39-- C .77(,)39 D .77(,)9
3--
15.若OA =)8,2(,OB =)2,7(-,则
3
1
AB =___________ 16.已知向量)2,1(,3==b a
,且b a ⊥,则a 的坐标是____________
17.若3a =,2b =,且a 与b 的夹角为0
60,则a b -= 。
18.在平面四边形ABCD 中,若AB =DC ,且|AB |=|BC |,则四边形ABCD 是__________. 19.已知4,
3==→→
b a ,且向量→a ,→b 不共线,若向量→a +k →b 与向量→a -k →
b 互相垂直,则实数k 的值为 .
的最大值为 .
的夹角为60。