轴对称知识点及习题.doc

合集下载

八上 线段、角的轴对称性 知识点+例题+练习 (非常好 分类全面)

八上 线段、角的轴对称性 知识点+例题+练习 (非常好 分类全面)

两点,EC=4,ABC∆的周长为的垂直平分线分别交AC,AD,的对称点,线段MN分⊥,延长AE,BE,BE AE8.如图,D是ABC∆的边BC的中点,过AD延长线上的点E作AD的垂线EF,垂足为E,EF 与AB的延长线交于点F,点O在AD上,AO COBC EF.=,//求证:(1)AB AC= ;(2)点O是ABC∆三边垂直平分线的交点.【知识点4】最值问题1.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是()A.10 B.15 C.20 D.303.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.4.如图,在△ABC 中,∠C=90°,AB=4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ+PQ 的最小值是 .5.如图,已知等边△ABC ,点D 为AC 的中点,BD=4,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为角平分线的性质知识点1 角平分线的性质1. 如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,有下列结论:①CD ED =;②AC BE AB +=;③BDE BAC ∠=∠; ④DA 平分CDE ∠.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个2. 若△ABC 的周长为41 cm ,边BC =17 cm .AB<AC ,角平分线AD 将△ABC 的面积分成3:5的两部分,则AB =______cm .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一动点,若3PA =,则PQ 的最小值为( )A.32B. 2C. 3D.不能确定的平分线BE,CD,平分BAC=;∠;③AP PC2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺的一边与射线OB重合,另一把直尺的一边与射线OA重合并且与第一把直尺交于点P,小明说:“射线OP就是BOA∠的平分线.”他这样做的依据是( )A.角的内部到角两边的距离相等的点在角的平分线上B.角平分线上的点到角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确3.如图,已知点P到,,AE AD BC的距离相等,下列说法:①点P在BAC∠的平分线上;②点P 在CBE∠,BCD∠,CBE∠的平分∠的平分线上;④点P是BAC∠的平分线上;③点P在BCD线的交点.其中所有正确的序号是( )A.①②③④B.①②③C.④D.②③4.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.3 C.4 D.55.如图,已知射线OC上的任意一点到AOBD E F分别在边∠的两边的距离相等,点,,OC OA OB上,如果想要证明OE OF,,=,只需要添加以下四个条件中的某一个即可,请写出所有可能条件的序号 .①ODE ODF⊥.∠=∠;②OED OFD∠=∠; ③ED FD=;④EF OC6.如图,已知CE AB=.⊥,垂足分别为点,E F,BF交CE于点D,BD CD⊥,BF AC(1)求证:点D在BAC∠的平分线上;(2)若将条件“BD CD∠的平分线上”互换,成立吗?试说明=”与结论“点D在BAC理由.知识点3 角平分线的性质在生活中的应用1.如图,△ABC中,∠C=90°,(1)在BC上找一点D,使点D到AB的距离等于DC的长度;(2)连接AD,画一个三角形与△ABC关于直线AD对称.3. 如图,直线123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到4. 三条公路的距离都相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处3.如图,两条公路OA 和OB 相交于点O ,在AOB ∠的内部有两个工厂C ,D ,现要在AOB ∠内部修建一个货站P ,使货站P 到两条公路的距离相等,且到两个工厂C ,D 的距离也相等,用尺规作出货站尸的位置.(要求:保留作图痕迹,不写作法)4.如图,三家公司A 、B 、C 准备共建一个污水处理站M ,使得该站到B 、C 两公司的距离相等,且使A 公司到污水处理站M 的管线最短,试确定污水处理站M 的位置.5.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB:(2)在直线l上求一点Q,使l平分∠AQB.。

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

轴对称知识点总结98392.doc

轴对称知识点总结98392.doc

轴对称知识点总结98392.轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

lAB4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:方法1方法2方法3例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

专题13 轴对称的性质(知识点串讲)(解析版)

专题13 轴对称的性质(知识点串讲)(解析版)

专题13 轴对称的性质知识网络重难突破知识点一轴对称图形及轴对称性质1、轴对称图形如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.注意:轴对称图形的对称轴可能只有一条,也可能有多条甚至无数条.2、两个图形成轴对称如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.3、轴对称的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.注意:在轴对称图形或两个成轴对称的图形中,沿对称轴折叠后,重合的点是对应点,叫做对称点.类似地,重合的线段是对应线段,重合的角是对应角.典例1(2019春•青羊区期末)下列大学的校徽图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.典例2如图,ABC∠的度数为()∆与△A B CC∠'=︒,则B'''关于直线l对称,98A∠=︒,28A.28︒B.54︒C.74︒D.78︒【解答】解:ABC'''关于直线l对称,∆与△A B C∴∆≅△A B C''',ABC∴∠=∠',C CC∠'=︒,∠=︒,28A98∴∠=︒-∠-∠=︒-︒-︒=︒.180180982854B A C故选:B.典例3(2019春•陕西期末)下列说法:(1)线段的对称轴有两条;(2)角是轴对称图形,对称轴是它的角平分线;(3)两个全等的等边三角形一定成轴对称;(4)两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;(5)到直线L距离相等的点关于L对称.其中说法不正确的有()A.3 个B.2 个C.1 个D.4 个【解答】解:(1)线段的对称轴有两条,说法正确;(2)角是轴对称图形,它的角平分线所在的直线就是它的对称轴,说法错误;(3)两个全等的图形不一定组成轴对称图形,说法错误;(4)两个图形关于某直线对称,则这两个图形不一定分别位于这条直线的两侧,说法错误;(5)到直线l距离相等的两点不一定关于l对称,说法错误;其中不正确的有4个;故选:D.知识点二利用轴对称作图1、已知轴对称图形求作对称轴方法:先确定图形的两个对应点,再作以这两个对应点为端点的线段的垂直平分线,这条直线就是它的对称轴.2、已知对称轴,求作与已知图形成轴对称的图形的步骤方法:(1)先观察已知图形,并确定能代表已知图形的关键点;(2)分别作出这些关键点关于对称轴的对应点;(3)根据已知图形连接这些对应点,即可得到与已知图形成轴对称的图形.典例1(2019春•金牛区期末)如图,在正方形网格上有一个ABC.(1)画ABC ∆关于直线MN 的对称图形(不写画法); (2)若网格上的每个小正方形的边长为1,求ABC ∆的面积.【解答】解:(1)ABC ∆关于直线MN 的对称图形如图所示;(2)ABC ∆的面积11145141453222=⨯-⨯⨯-⨯⨯-⨯⨯,20227.5=---, 8.5=.典例2(2019春•罗湖区期末)如图,在1010⨯的正方形网格中,每个小正方形的边长都为1,网格中有一个格点ABC ∆(即三角形的顶点都在格点上)(1)在图中作出ABC ∆关于直线l 对称的△111A B C (要求:A 与1A ,B 与1B ,C 与1C 相对应) (2)在(1)的结果下,连接1BB ,1AB ,则△11A BB 面积是 ;(3)在对称轴上有一点P ,当PBC ∆周长最小时,P 点在什么位置,在图中标出P 点.【解答】解:(1)如图所示,△111A B C 即为所求;(2)如图,△11A BB 面积是12442⨯⨯=,故答案为:4;(3)如图所示,点P 即为所求.知识点三 轴对称的应用(最短路径)基本问题:在直线l 上找一点P ,使得其到直线异侧两点A 、B 的距离之和最小.变式1:在直线l上找一点P,使得其到直线同侧两点A、B的距离之和最小.变式2:直线m、n交于O,P是两直线间的一点,在直线m、n上分别找一点A、B,使得PAB的周长最短.典例1(2019秋•南开区期末)如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.【解答】解:作点A关于直线l的对称点A',连接BA'交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.典例2(2017•花都区一模)四边形ABCD中,130B D∠=∠=︒,在BC、CD上分别找一点M、N,∠=︒,90BAD使三角形AMN周长最小时,则AMN ANM∠+∠的度数为()A.80︒B.90︒C.100︒D.130︒【解答】解:延长AB到A'使得BA AB''=,连接A A'''与BC、CD分别交于'=,延长AD到A''使得DA AD点M、N.∠=∠=︒,ABC ADC90∴、A'关于BC对称,A、A''关于CD对称,A此时AMN∆的周长最小,⊥,=',MB ABBA BA∴=',同理:NA NAMA MA='',∴∠'=∠,A NADA MAB∠''=∠,∠=∠''+∠=∠'',ANM A NAD A∠=∠'+∠=∠',22AMN A MAB A∴∠+∠=∠'+∠'',2()AMN ANM A A∠=︒,BAD130∴∠'+∠''=︒-∠=︒A A BAD18050∴∠+∠=⨯︒=︒.AMN ANM250100故选:C.巩固训练一、单选题(共8小题)1.(2019春•金牛区期末)下列图形中,为轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.(2019春•光明区期末)石鼓文,秦刻石文字,因其刻石外形似鼓而得名.下列石鼓文,是轴对称的是( )A.B.C.D.【解答】解:A中图形是轴对称图形,B、C、D中图形都不是轴对称图形,故选:A.3.(2019春•陕西期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D【解答】解:由镜面对称的性质,连接对应点的线段与镜面垂直并且被镜面平分,即可得出只有B与原图形成镜面对称.故选:B.4.(2019春•罗湖区期末)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④【解答】解:①角平分线上任意一点到角两边的距离相等是正确的.②根据三角形面积公式即可得到等腰三角形两腰上的高相等,说法是正确;③等腰三角形的中线不一定是它的高,说法是错误;④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.故选:C.5.如图,ABC∆关于直线MN轴对称,则以下结论中错误的是()∆与DEFA .//AB DF B .B E ∠=∠C .AB DE =D .AD 的连线被MN 垂直平分【解答】解:A 、AB 与DF 不是对应线段,不一定平行,故错误;B 、ABC ∆与DEF ∆关于直线MN 轴对称,则ABC DEF ∆≅∆,B E ∠=∠,正确;C 、ABC ∆与DEF ∆关于直线MN 轴对称,则ABC DEF ∆≅∆,AB DE =,正确;D 、ABC ∆与DEF ∆关于直线MN 轴对称,A 与D 的对应点,AD 的连线被MN 垂直平分,正确.故选:A .6.(2019秋•路北区期末)已知30AOB ∠=︒,点P 在AOB ∠内部,点1P 与点P 关于OA 对称,点2P 与点P 关于OB 对称,则△12POP 是( ) A .含30︒角的直角三角形 B .顶角是30︒的等腰三角形 C .等边三角形D .等腰直角三角形【解答】解:P 为AOB ∠内部一点,点P 关于OA 、OB 的对称点分别为1P 、2P , 12OP OP OP ∴==且12260POP AOB ∠=∠=︒,∴故△12POP 是等边三角形.故选:C .7.(2017•青羊区校级自主招生)在日常生活中,有一些含有特殊数字规律的车牌号码,如川80808A ,川22222A ,川12321A 等,这些牌照中的五个数字都是关于中间的一个数字“对称”的我们不妨把这样的牌照叫做数字对称牌照,如果让你负责制作以9为字母“A ”后的第一个数字,且有五个数字的“数字对称”牌照,那么最多可制作( )A.500个B.300个C.100个D.50个【解答】解:以9为字母“A”后的第一个数字且有五个数字的“数字对称”牌照,即牌照是99ABA,则A有09-共10种可能,B有09-共10种可能,所以9开头的组合最多是1010100⨯=个.故选:C.8.(2018春•锦江区期末)如图,ABCBD=,过点D作AB的垂线∆的周长为16.点D是AB边的中点,2∆的周长最小值为()l,E是l上任意一点,则AECA.12B.14C.16D.18【解答】解:点D是AB边的中点,2BD=,∴==,AB BD24∆的周长为16,ABC12∴+=,AC BC如图,连接BE,点D是AB边的中点,l AB⊥,l∴是AB的垂直平分线,∴=,AE BE∴+=+,AE CE BE CEBE CE BC+,+的最小值等于BC的长,而AC长不变,∴当B,E,C在同一直线上时,BE CE+=,AC BCAEC∴∆的周长最小值等于12故选:A.二、填空题(共3小题)9.(2018春•深圳期末)如图,直线l是四边形ABCD的对称轴.若//AD BC,则下列结论:(1)//=.∠;(4)AO CO=;(3)BD平分ABCAB CD;(2)AB BC其中正确的有(填序号).【解答】解:如图,直线l是四边形ABCD的对称轴,∴∠=∠,3412∠=∠,AD BC,//∴∠=∠,23∴∠=∠=∠,134∴,AB BC=,故(1)(2)正确;//AB CD由轴对称的性质,AC BD⊥,∴平分ABCBD∠,AO CO=(等腰三角形三线合一),故(3)(4)正确.综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(3)(4).10.(2019春•金牛区期末)如图,在ABC ∆中,AD 平分BAC ∠交BC 于点D ,点M ,N 分别是AD 和AB 上的动点,当12ABC S ∆=,8AC =时,BM MN +的最小值等于 .【解答】解:如图,AD 是BAC ∠的平分线,∴点B 关于AD 的对称点B '在AC 上,过点B '作B N AB '⊥于N 交AD 于M ,由轴对称确定最短路线问题,点M 即为使BM MN +最小的点,B N BM MN '=+, 过点B 作BE AC ⊥于E ,8AC =,20ABC S ∆=, ∴18122BE ⨯=, 解得3BE =,AD 是BAC ∠的平分线,B '与B 关于AD 对称,AB AB ∴=',ABB ∴∆'是等腰三角形,3B N BE ∴'==,即BM MN +的最小值是3.故答案为:3.11.(2019春•市中区期末)如图,AD为等边ABC∆的高,E、F分别为线段AD、AC上的动点,且AE CF=,当BF CE∠=︒.+取得最小值时,AFB【解答】解:如图1,作CH BC⊥,且CH BC=,连接BH交AD于M,连接FH,⊥,∆是等边三角形,AD BCABC∠=︒,DAC∴=,30AC BC∴=,AC CHACB∠=︒,60∠=︒,BCH90∴∠=︒-︒=︒,906030ACH∴∠=∠=︒,DAC ACH30=,AE CF∴∆≅∆,()AEC CFH SAS+=+,CE FH∴=,BF CE BF FH+的值最小,∴当F为AC与BH的交点时,如图2,BF CE此时45FCB∠=︒,∠=︒,60FBC∴∠=︒,AFB105故答案为:105.三、解答题(共2小题)12.(2019春•青羊区期末)下面的方格图是由边长为1的42个小正方形拼成的,ABC∆的顶点A、B、C 均在小正方形的顶点上.(1)作出ABC∆关于直线m对称的△A B C''';(2)求ABC∆的面积.【解答】解:(1)如图,△A B C'''为所作;(2)ABC∆的面积11133132123 3.5222=⨯-⨯⨯-⨯⨯-⨯⨯=.13.(2019春•商河县期末)如图,正方形网格中每个小正方形的边长为1,网格中有一个ABC∆.(1)请直接写出ABC∆的面积为.(2)利用方格找出点A、B、C关于直线MN的对称点D、E、F,并顺次连接D、E、F三点.(3)若点P是直线MN上的一个动点,则PC PA+的最小值为.【解答】解:(1)ABC∆的面积为:12442⨯⨯=;故答案为:4;(2)如图所示:EDF∆即为所求;(3)PC PA+的最小值为:6PA PC DC+==.故答案为:6.。

八年级第十三章《轴对称》知识点及典型例题

八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

最新轴对称知识点及习题

最新轴对称知识点及习题

轴对称知识点及习题轴对称知识要点1.轴对称图形与轴对称轴对称知识点及习题轴对称知识点及习题叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);温馨提示1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.等腰三角形知识要点1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.温馨提示1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.方法技巧1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC 与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M 的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)。

轴对称知识点及习题

轴对称知识点及习题

第十三章轴对称轴对称知识要点1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠;直线两旁的部分能够互相重合;这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠;如果它能够与另一个图形重合;那么就说这两个图形关于这条直线成轴对称;这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称;那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点;在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点x;y关于x轴对称的点的坐标为x;-y;点x;y关于y轴对称的点的坐标为-x;y;温馨提示1.轴对称图形是针对一个图形而言;是指一个具有对称的性质的图形;轴对称是针对两个图形而言;它描述的是两个图形的一种位置关系.2.在平面直角坐标系中;关于x轴对称的两个图形的对应点的横坐标相同;纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数;纵坐标相同.等腰三角形知识要点1.等腰三角形的性质性质1:等腰三角形的两个底角相等简写成“等边对等角”;性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合简写成“三线合一”.2.等腰三角形的判定方法如果一个三角形有两个角相等;那么这两个角所对的边也相等简写成“等角对等边”.3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等;并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中;如果一个锐角等于30°;那么它所对的直角边等于斜边的一半.温馨提示1.“等边对等角”和“等角对等边”只限于在同一个三角形中;在两个三角形中时;上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:1必须是在直角三角形中;2必须有一个锐角等于30°.方法技巧1.等腰三角形的性质是证明两个角相等的重要方法;当要证明同一个三角形的两个内角相等时;可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法;当要证明位于同一个三角形的两条线段相等时;可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题;本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形1.2012·连云港下列图案是轴对称图形的是2.众所周知;几何图形中有许多轴对称图形;写出一个你最喜欢的轴对称图形是:______________________.答案不唯一3.如图;阴影部分是由5个小正方形组成的一个直角图形;请用两种方法分别在下图方格内涂黑两个小正方形;使它们成为轴对称图形.专题二轴对称的性质4.如图;△ABC和△ADE关于直线l对称;下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有A.0个 B.1个 C.2个 D.3个5.如图;∠A=90°;E为BC上一点;A点和E点关于BD对称;B点、C点关于DE对称;求∠ABC 和∠C的度数.6.如图;△ABC和△A′B′C′关于直线m对称.1结合图形指出对称点.2连接A、A′;直线m与线段AA′有什么关系3延长线段AC与A′C′;它们的交点与直线m有怎样的关系其他对应线段或其延长线的交点呢你发现了什么规律;请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图;在Rt△ABC中;∠ACB=90°;AB的垂直平分线DE交于BC的延长线于F;若∠F=30°;DE=1;则EF的长是A.3 B.2 C D.18.如图;在△ABC中;BC=8;AB的垂直平分线交BC于D;AC的垂直平分线交BC与E;则△ADE的周长等于________.9.如图;AD⊥BC;BD=DC;点C在AE的垂直平分线上;那么线段AB、BD、DE之间有什么数量关系并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P-2;3关于y轴的对称点为Qa;b;则a+b的值是A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P23-2a;2a-5是第三象限内的整点横、纵坐标都为整数的点;称为整点;则P1点的坐标是__________.13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中;BF、CF是角平分线;DE∥BC;分别交AB、AC于点D、E;DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.填序号3.如图;已知△ABC是等腰直角三角形;∠BAC=90°;BE是∠ABC的平分线;DE⊥BC;垂足为D.1请你写出图中所有的等腰三角形;2请你判断AD与BE垂直吗并说明理由.3如果BC=10;求AB+AE的长.专题二等边三角形的性质和判定4.如图;在等边△ABC中;AC=9;点O在AC上;且AO=3;点P是AB上一动点;连接OP;以O为圆心;OP长为半径画弧交BC于点D;连接PD;如果PO=PD;那么AP的长是__________.5.如图.在等边△ABC中;∠ABC与∠ACB的平分线相交于点O;且OD∥AB;OE∥AC.1试判定△ODE的形状;并说明你的理由;2线段BD、DE、EC三者有什么关系写出你的判断过程.6.如图;△ABC中;AB=BC=AC=12 cm;现有两点M、N分别从点A、点B同时出发;沿三角形的边运动;已知点M的速度为1 cm/s;点N的速度为2 cm/s.当点N第一次到达B点时;M、N同时停止运动.1点M、N运动几秒后;M、N两点重合2点M、N运动几秒后;可得到等边三角形△AMN3当点M、N在BC边上运动时;能否得到以MN为底边的等腰三角形AMN 如存在;请求出此时M、N运动的时间.专题三最短路径问题7.如图;A、B两点分别表示两幢大楼所在的位置;直线a表示输水总管道;直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点;安装分管道将水和煤气输送到A、B两幢大楼;要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中;点A′是点A关于直线b的对称点;A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点;B′A 分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是A.F和C B.F和E C.D和C D.D和E8.如图;现准备在一条公路旁修建一个仓储基地;分别给A、B两个超市配货;那么这个基地建在什么位置;能使它到两个超市的距离之和最小保留作图痕迹及简要说明。

(文末附解析)初中数学轴对称重点题型及重要知识点的整理

(文末附解析)初中数学轴对称重点题型及重要知识点的整理

(文末附解析)初中数学轴对称重点题型及重要知识点的整理单选题1、在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(−3,2)B.(−2,3)C.(2,−3)D.(3,−2)2、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④3、如图,在△ABC中,AB=AC,AD为BC边上的中线,∠B=25°,则∠BAD的度数为().A.55°B.65°C.75°D.45°4、如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5、如图,E是∠AOB平分线上的一点.EC⊥OA于点C,ED⊥OB于点D,连结∠ECD=25°,则∠AOB=()A.50°B.45°C.40°D.25°6、如图,△ABC中,AB=AC,DE是AB的垂直平分线交AB于点E,交AC于点D,连接BD;若BD⊥AC,则∠CBD的度数是()A.22°B.22.5°C.24°D.24.5°7、观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C.D.8、如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm,则BC的长为().A.8cm B.12cm C.15cm D.16cm填空题9、如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A′,点B落在B′,点A′,B′,E在同一直线上,则∠FEG=_______度;10、如图,在ΔABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为__.11、如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.12、已知∠MON=50∘,点P为∠MON内一点,点A为OM上一点,点B为ON上一点,当ΔPAB的周长取最小值时,ΔPAB的度数为_______________.13、如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=________ 时,△AOP为等边三角形.解答题14、如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.15、如图,已知△ABC.求作:BC边上的高与内角∠B的角平分线的交点.(文末附解析)初中数学轴对称_00C 参考答案1、答案:D解析:利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D .小提示:本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.2、答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°, ∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.3、答案:B解析:首先根据三角形的三线合一的性质得到AD⊥BC,然后根据直角三角形的两锐角互余得到答案即可.∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故选:B.小提示:本题考查了等腰三角形的性质,了解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键.4、答案:C解析:∠1,再根据三角形内角和定理可得.根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=1∠1=22°,2∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故选C.小提示:本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5、答案:A解析:根据角平分线的性质得到ED=EC,得到∠EDC=∠ECD=25°,求出∠ODC=∠OCD=65°,利用三角形内角和定理求出答案.解:∵OE是∠AOB的平分线,EC⊥OA,ED⊥OB,∴ED=EC,∠ODE=∠OCE=90°,∴∠EDC=∠ECD=25°,∴∠ODC=∠OCD=65°,∴∠AOB=180°−∠ODC−∠OCD=50°,故选:A.小提示:此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键.6、答案:B解析:先利用线段垂直平分线的性质、等腰三角形的性质求得∠A、∠ABD、∠ABC,最后利用三角形内角和定理求解即可.解:∵BD⊥AC,DE是AB的垂直平分线,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故选B.小提示:本题主要考查了线段垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,明确题意、灵活应用相关知识点成为解答本题的关键.7、答案:C解析:根据角平分线画法逐一进行判断即可.A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为∠ACB的角平分线,满足题意。

八年级数学轴对称知识点整理及练习

八年级数学轴对称知识点整理及练习

教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。

16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。

八年级数学上册《第十三章轴对称》练习题及答案

八年级数学上册《第十三章轴对称》练习题及答案

八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。

中考数学必考知识点-轴对称与中心对称

中考数学必考知识点-轴对称与中心对称

中考数学必考知识点轴对称与中心对称知识点回顾知识点一:轴对称、轴对称图形1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是的,那么就称这样的图形为轴对称图形。

这条直线称为,一定为直线。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成,两个图形中的对应点叫。

例1:(2009湖南株洲)下列四个图形中,不是..轴对称图形的是A.B.C.D.解析:轴对称图形的特点就是对折后两旁部分完全重合,所以,判断图形是不是轴对称图形,关键是观察能不能找到一条直线可以对折。

四幅图案中,A、B、C都是轴对称图形;D不是。

选择D。

同步测试:1.(2009广西梧州)在下列对称图形中,对称轴的条数最少的图形是()A.圆 B.等边三角形 C.正方形 D。

正六边形【答案】B2.(2009贵州黔东南州)在下列几何图形中一定是轴对称图形的有()A、1个B、2个C、3个D、4个【答案】B知识点二:轴对称图形的性质1、轴对称图形的对应线段,对应角,对应点的连线被对称轴。

轴对称的两个图形,对应线段或延长线相交,交点在 上。

2、轴对称图形变换的特征是不改变图形的 和 ,只改变图形的 ,新旧图形具有对称性。

例2:(2009湖北荆门)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( ) A .40° B.30° C.20° D.10° 解析:有关折叠问题是中考常考的题型,必须要辨别清楚折叠前后图形和数量关系。

本题中,将∠A 折叠,出现了轴对称,∠CA ′D =∠A ,因为∠A =50°,所以∠CA ′D =50°。

在Rt △ABC 中,∠ACB =90°,∠B =90°-∠A =40°。

∠CA ′D 是△ A ′B D 的一个外角,等于∠A ′DB 与∠B 之和,所以∠A ′DB =∠A ′DB -∠B =50°- 40°=10°。

轴对称课本知识点总结

轴对称课本知识点总结

轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。

在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。

二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。

2. 轴对称图形的对称中心为图形的轴心。

3. 轴对称图形每一点的对应点与对称中心的距离相等。

三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。

2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。

3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。

四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。

2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。

3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。

五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。

2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。

3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。

六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。

2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。

七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。

2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。

3. 补全轴对称图形:在已知半图形的基础上补全对称图形。

八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。

2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。

九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。

《轴对称》练习题

《轴对称》练习题

《轴对称》练习题《轴对称》练习题一、知识点1、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。

⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。

两个图形中的对应点叫做__________2、线段垂直平分线的性质⑴线段是轴对称图形,它的对称轴是__________________⑵线段的垂直平分线上的点到______________________相等3、角平分线的性质⑴角是轴对称图形,其对称轴是_______________⑵角平分线上的点到______________________________相等4、等腰三角形的特征和识别⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)⑶如果一个三角形有两个角相等,那么这两个角所对的'________也相等(简称为“____________________”)5、等边三角形的特征和识别⑴等边三角形的各____相等,各____相等并且每一个角都等于________⑵三个角相等的三角形是__________三角形⑶有一个角是60°的____________三角形是等边三角形二、选择题1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个2.图9-19中,轴对称图形的个数是()A.4个B.3个C.2个D.1个3.下列判断正确的是()A.经过线段中点的直线是该线段的对称轴B.若两条线段相等,那么这两条线段关于某直线对称C.若两条线段关于某直线对称,那么这两条线段相等D.锐角三角形都是轴对称图形4.下列图形中不是轴对称图形的是( )A.有两个角相等的三角形;B.有一个角是45°的直角三角形.C.有两个角分别是50°和80°的三角形D.平行四边形.5.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不确定.6.有一个等腰三角形的周长为25,一边长为11,那么腰长为()A.11B.7C.14D.7或117.若三角形中最大内角是60°,那么这个三角形是( )A.等腰三角形B.等边三角形C.不等边三角形D.不确定8.等边三角形的两条高线相交所成钝角的度数是()A.105°B.120°C.135°D.150°9.若△ABC两边的垂直平分线的交点在三角形的外部,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能10.若三角形一边上的高也平分这条边,那么这个三角形是()A.直角三角形B.有两条边相等C.等边三角形D.锐角三角形11.图9-12中,点D在BC上,且DE⊥AB,DF⊥AC。

轴对称知识点总结与常考题型

轴对称知识点总结与常考题型

轴对称是几何学中的一个重要概念,它描述了一个图形相对于某条轴线具有对称性。

以下是轴对称的知识点总结以及常考题型:1. 轴对称的定义:一个图形相对于某条直线对称,如果将该图形沿着这条直线折叠,两边完全重合。

2. 轴对称的特点:-对称轴上的任意一点与它关于对称轴上的对应点距离相等。

-对称轴将图形分为两个对称的部分,其中一个部分可以通过另一个部分旋转180度得到。

3. 常见的轴对称图形:-矩形、正方形和长方形都是轴对称图形,其对称轴分别为中心线和对边的中垂线。

-圆是轴对称图形,其对称轴为任意直径。

-有些字母和数字如"A"、"H"、"8"等也是轴对称图形。

4. 轴对称的判断方法:-观察图形是否能够通过折叠使两边完全重合。

-寻找图形的对称轴,判断图形上的点是否关于对称轴对称。

5. 轴对称的常考题型:-判断图形是否具有轴对称性质。

-找出图形的对称轴。

-完成轴对称图形的绘制,只给出一部分图形或对称轴。

-求解与轴对称图形相关的问题,如周长、面积等。

举例:1. 判断图形是否具有轴对称性质:给定一个图形,观察其能否通过折叠使两边完全重合。

2. 找出图形的对称轴:观察图形,找到一个直线,使得图形上的点关于这条直线对称。

3. 完成轴对称图形的绘制:给出部分图形或对称轴,根据已知信息完成图形的绘制。

4. 求解与轴对称图形相关的问题:如给定一个轴对称图形的一条边的长度,求解它的周长或面积等。

掌握轴对称的知识和解题技巧,可以帮助你在几何学中更好地理解和应用轴对称概念。

多做相关的练习题,加深对轴对称的理解和应用。

轴对称整章知识点+复习试题[含答案解析]

轴对称整章知识点+复习试题[含答案解析]

m CA B P 图3图2mC A B第十二章 轴对称知识点总结 我保证认真独立地完成今天的作业!签名:____________一、知识梳理1、轴对称图形____________________ ____________________________ 这条直线叫做________________。

互相重合的点叫做________________。

轴对称_______________________________________________ _ 这条直线叫做________________。

互相重合的点叫做________________。

2、轴对称图形与轴对称的区别与联系:区别________________________________________________。

联系________________________________________________。

3、轴对称的性质:_______________________________________________。

_______________________________________________。

4、线段的垂直平分线定义:________________________________________________如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

5、线段的垂直平分线性质:_______________________________________________。

如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。

∴PA=PB 。

6、等腰三角形定义:___________________________________________:7、等腰三角形性质:___________________________________________:___________________________________________:8、等腰三角形判定。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。

轴对称知识点总结及经典练习

轴对称知识点总结及经典练习

轴对称知识点总结及练习1、轴对称图形:一个图形沿一条直线对折,直线两旁的局部能够 ;这条直线叫做 。

互相重合的点叫 。

2、成轴对称:两个图形沿一条直线对折,其中一个图形能够与 完全重合;这条直线叫做对称轴。

3、轴对称图形与轴对称的区别与联系:〔1〕区别:轴对称图形讨论的是“一个图形与一条直线的对称关系〞 ;轴对称讨论的是“两个图形与一条直线的对称关系〞。

〔2〕联系:把轴对称图形中“对称轴两旁的局部看作两个图形〞便是两图成轴对称;把成轴对称的“两个图形看作一个整体〞便是轴对称图形。

4、轴对称的性质:如图(1)成轴对称的两个图形 。

(2)连结“对应点的线段〞 被对称轴 。

(3)对应点到对称轴的距离 。

(4)〔4〕对应点的连线互相 或在同一直线。

5、线段的垂直平分线:〔1〕定义:经过线段的中点且 的直线,叫做线段的垂直平分线。

符号语言:如图∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 〔2〕性质: 。

m C A B D'D C'A'K J I H m P∵直线m 垂直平分AB ,点P 是直线m 上的点。

符号语言:如图∴PA=PB 。

〔3〕判定:与线段两端点距离相等的点在线段的 上。

如图,∵PA=PB ,∴点P 在 上 。

6、等腰三角形:〔1〕定义:有两边 的三角形,叫做等腰三角形。

相等的两条边叫做 。

第三条边叫做 。

两腰的夹角叫做 。

腰与底的夹角叫做 。

说明:底角顶角⨯-=2180 顶角顶角底角21-902180︒=-︒= 〔2〕性质: 等腰三角形是轴对称图形,其对称轴是 ,一般有 条。

等腰三角形的两个底角 ;简称 。

符号语言:如图,在△ABC 中 ∵AB=AC∴∠B=∠C 〔等边对等角〕。

三线合一:顶角平分线、 与 相互重合。

符号语言:如图,在△ABC 中 ∵AB=AC AD ⊥BC〔3〕判定方法:定义法:有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。

中考轴对称知识点总结

中考轴对称知识点总结

中考轴对称知识点总结一、轴对称的概念轴对称是指当平面图形的每一点关于一条直线对称时,这条直线叫做这个平面图形的轴对称轴。

在轴对称变换中,轴对称轴不动,图形上的每一个点关于这条直线对称后,它们的位置互换。

这种对称的变换叫做轴对称变换。

轴对称变换是平行移动和旋转变换的特殊情况。

二、轴对称的基本性质1. 任何点的轴对称图形也是原图形。

2. 轴对称图形和原图形相互关于轴对称。

3. 如果两个图形是轴对称的,那么,这两个图形一定在同一条轴对称轴两侧且关于这条轴对称轴对称。

三、轴对称的判断方法1. 如果一个图形的每一点关于一条直线对称,那么这个图形是关于这条直线轴对称的。

2. 通过图形的结构特点判断轴对称。

如正方形、矩形、正五边形、等腰三角形等图形均是轴对称的。

四、轴对称与轴对称图形的应用1. 轴对称常用来制作寓意深刻、图案美观的卡片、图片、图案等。

2. 在制作圆形物体或者对称形状的设计中,轴对称往往被广泛应用。

五、常见图形关于坐标轴的轴对称性质1. 镜景对称关于x轴、y轴、原点对称的图形。

2. 镜景对称关于直线y=x和y=-x的图形。

六、轴对称图形与轴对称图形的比较轴对称图形和轴对称图形都是对称图形,但两者在某些方面有一些不同。

1. 轴对称图形是相对于一个轴对称的直线对称的,而轴对称图形是相对于一个点对称的。

2. 轴对称图形是指形象把自己经过某一轴线翻折的图形,而轴对称图形是指形象把自己关于某一点翻折的图形。

七、轴对称的相关定理1. 定理1:如果一个图形是轴对称的,那么这个图形关于轴对称轴的任意两个对称点的中点是与直线相交的直线上的点。

2. 定理2:如果平行四边形的对角线互相垂直,那么这个平行四边形是轴对称的。

3. 定理3:如果多边形的每一条对角线相互垂直,那么这个多边形是轴对称的。

八、轴对称的相关定理证明1. 定理1的证明:以折叠模拟(将一张纸对折,使得一侧成为另一侧的镜像)可以证明。

将纸对折以后,对称图形的两个对称点的对称点是折痕上的对称点,而这两个对称点的中点就是这个折痕上的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点及习题
轴对称知识要点
1.轴对称图形与轴对称
轴对称知识点及习题
轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 (成轴 )对称 ,这条直线叫做对称轴.
2.轴对称的性质
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
3.线段的垂直平分线的性质和判定
性质:线段垂直平分线上的点与这条线段两个端点的距离相等.
判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
4.关于 x 轴、 y 轴对称的点的坐标的特点
点 (x,y) 关于 x 轴对称的点的坐标为(x,- y);
点 (x,y) 关于 y 轴对称的点的坐标为(- x,y) ;
温馨提示
1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.
2.在平面直角坐标系中,关于 x 轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y 轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.
等腰三角形知识要点
1.等腰三角形的性质
性质 1:等腰三角形的两个底角相等( 简写成“等边对等角”);
性质 2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).
2.等腰三角形的判定方法
如果一个三角形有两个角相等 ,那么这两个角所对的边也相等 (简写成“等角对等边” ).3.等边
三角形的性质和判定方法
性质:等边三角形的三个内角都相等,并且每一个角都等于60°.
判定方法1:三个角都相等的三角形是等边三角形.
判定方法2:有一个角是60°的等腰三角形是等边三角形.
4.直角三角形的性质
在直角三角形中,如果一个锐角等于30° ,那么它所对的直角边等于斜边的一半.
温馨提示
1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.
2.在应用直角三角形的性质时应注意以下两点:(1) 必须是在直角三角形中;(2)必须有一个锐角等于30°.
方法技巧
1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.
2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.
3.利用轴对称可以解决几何中的最值问题 ,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和
大于第三边.
13.1 轴对称
13.2 画轴对称图形
专题一轴对称图形
1.【 2012 ·连云港】下列图案是轴对称图形的是()
2.众所周知 ,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________ .(答案不唯一)
3.如图 ,阴影部分是由 5 个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.
专题二轴对称的性质
4.如图 ,△ABC 和△ ADE 关于直线l 对称 ,下列结论:①△ABC ≌△ ADE ;② l 垂直平分DB ;③∠ C=∠ E;④ BC 与 DE 的延长线的交点一定落在直线l 上.其中错误的有()
A.0 个B.1 个C.2 个D.3 个
5.如图 ,∠ A=90 °,E 为 BC 上一点 ,A 点和 E 点关于 BD 对称 ,B 点、 C 点关于 DE 对称 ,求∠ ABC 和∠ C 的度数.
6.如图 ,△ ABC 和△ A ′B′C′关于直线m 对称.
(1)结合图形指出对称点.
(2)连接 A、 A ′,直线 m 与线段 AA ′有什么关系?
(3)延长线段 AC 与 A ′C′,它们的交点与直线 m 有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规
律 ,请叙述出来与同伴交流.
专题三灵活运用线段垂直平分线的性质和判定解决问题
7.如图 ,在 Rt△ ABC 中 ,∠ ACB=90°,AB 的垂直平分线DE 交于 BC 的延长线于F,若∠ F=30°,DE=1, 则 EF 的长是()
A.3B.2C.3
D.1
8.如图 ,在△ ABC 中 ,BC=8,AB 的垂直平分线交BC 于 D,AC 的垂直平分线交BC 与 E,则△ ADE 的周长等于________.
9.如图 ,AD ⊥ BC,BD=DC, 点 C 在 AE 的垂直平分线上 ,那么线段 AB 、BD 、 DE 之间有什么数量关系?并加以证明.
专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围
10.已知点 P(- 2,3)关于 y 轴的对称点为Q( a,b) ,则 a+b 的值是()
A.1B.- 1C.5D.- 5
11.已知 P1点关于 x 轴的对称点P2( 3- 2a,2a- 5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点) , 则 P1点的坐标是 __________ .
13.3 等腰三角形
13.4 课题学习最短路径问题
专题一等腰三角形的性质和判定的综合应用
1.如图在△ ABC 中 ,BF、 CF 是角平分线 ,DE ∥ BC,分别交AB 、 AC 于点 D、 E,DE 经过点F.结论:①△BDF 和△ CEF 都是等腰三角形;②DE=BD+CE ;③△ ADE 的周长 =AB+AC ;④ BF=CF .其中正确的是___________. (填序号 )
3.如图 ,已知△ ABC 是等腰直角三角形,∠ BAC=90°,BE 是∠ ABC 的平分线 ,DE⊥ BC,垂足为 D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断 AD 与 BE 垂直吗?并说明理由.
(3)如果 BC=10, 求 AB+AE 的长.
专题二等边三角形的性质和判定
4.如图 ,在等边△ ABC 中,AC=9, 点 O 在 AC 上 ,且 AO=3, 点 P 是 AB 上一动点 ,连接 OP,以 O 为圆心 ,OP 长为半径画弧交BC 于点 D, 连接 PD,如果 PO=PD, 那么 AP 的长是 __________.
5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且 OD∥ AB,OE ∥ AC .
(1)试判定△ ODE 的形状 ,并说明你的理由;
(2)线段 BD 、 DE、 EC 三者有什么关系?写出你的判断过程.
6.如图 ,△ABC 中 ,AB=BC=AC=12 cm,现有两点 M、 N 分别从点 A 、点 B 同时出发 ,沿三角形的边运动 ,已知点 M 的速度为 1 cm/s,点 N 的速度为 2 cm/s.当点 N 第一次到达 B 点时 ,M 、N 同时停止运动.
( 1)点 M 、N 运动几秒后 ,M 、 N 两点重合?
( 2)点 M 、N 运动几秒后 ,可得到等边三角形△ AMN?
( 3)当点 M 、N 在 BC 边上运动时 ,能否得到以MN 为底边的等腰三角形AMN ?如存在 ,请求出此时M 、 N 运动的时间.
专题三最短路径问题
7.如图 ,A 、 B 两点分别表示两幢大楼所在的位置,直线 a 表示输水总管道,直线 b 表示输煤气总管道.现要在这两根
总管道上分别设一个连接点,安装分管道将水和煤气输送到 A 、 B 两幢大楼 ,要求使铺设至两幢大楼的输水分管道和
输煤气分管道的用料最短.图中,点 A′是点 A 关于直线 b 的对称点 ,A ′B分别交 b、 a 于点 C、 D;点 B′是点 B 关于直线 a 的对称点 ,B ′A分别交 b、 a 于点 E、 F.则符合要求的输水和输煤气分管道的连接点依次是()
A.F和C B.F和 E C.D和C D.D和E
8.如图 ,现准备在一条公路旁修建一个仓储基地,分别给 A 、 B 两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)。

相关文档
最新文档