数值分析期末试题
数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析期末试卷A卷

数值分析期末试卷A卷第 1 页共 6 页西北农林科技⼤学本科课程考试试题(卷)2015—2016学年第⼆学期《数值分析》课程A 卷专业班级:命题教师:审题教师:学⽣姓名:学号:考试成绩:⼀、填空题(每空2分,共20分)得分:分1. 设x 1=1.216, x 2=3.654均具有3位有效数字,则x 1+ x 2的误差限为 .2. 近似值x *=0.231关于真值x =0.229有位有效数字.3. 误差有多种来源,数值分析主要研究误差和误差.4. 已知f (1)=2,f (2)=3,f (4)=5.9,则2次Newton 插值多项式中x 2项前⾯的系数为 .5. 计算积分?15.0d x x , 计算结果取4位有效数字. ⽤梯形公式计算的近似值为,⽤Simpson 公式计算的近似值为 . 其中,梯形公式的代数精度为,Simpson 公式的代数精度为. ( 1.7321≈≈) 6. 假设n n H R ?∈是Householder 矩阵,n v R ∈是⼀个n 维向量,则Hv = .⼆、选择题(每⼩题 2分,共20分)得分:分1. ⽤13x+所产⽣的误差是误差.A. 舍⼊B. 观测C. 模型D. 截断2.1.732≈,计算)41x =,下列⽅法中最好的是 .A.28-B. (24-C. ()2164+D. ()4161 3. 在Newton-Cotes 求积公式中,当Cotes 系数为负值时,求积公式的稳定性不能保证. 因此在实际应⽤中,当时的Newton-Cotes 求积公式不使⽤.第 2 页共 6 页A. 8n ≥B. 7n ≥C. 5n ≥D. 6n ≥4. 解⽅程组Ax =b 的简单迭代格式(1)()k k x Bx g +=+收敛的充要条件是 .A. ()1A ρ<B. ()1B ρ<C. ()1A ρ>D. ()1B ρ>5. 已知⽅程3250x x --=在x =2附近有根,下列迭代格式中在02x =附近不收敛的是 .A. 1k x +=B.1k x +=C.315k kk x x x +=-- D.3122532k k k x x x ++=- 6. 设--=700150322A ,则)(A ρ为. A . 2 B . 5 C . 7 D . 37. 三点的⾼斯求积公式的代数精度为 .A . 2B .5C . 3D . 48. ⽤列主元消去法解线性⽅程组??-=+--=-+-=+-134092143321321321x x x x x x x x x ,第1次消元时,选择的主元为 .A.-4B. 3C.4D.-99. 假设cond (A )表⽰⾮奇异矩阵A 的条件数,则下列结论中错误的是 .A.()()1cond A cond A -=B.()(),cond A cond A R λλλ=∈C. ()1cond A ≥D.()1cond A A A -=?10. 设)(x f 可微, 求⽅程)(x f x =的⽜顿迭代格式是 .A. 1()1()k k k k k x f x x x f x +-=-'-B. 1()1()k k k k k x f x x x f x ++=+'+C. 1()()k k k k f x x x f x +=-'D. 1()()k k k k f x x x f x +=+'三、简答题(每⼩题5分,共20分)得分:分1. 什么是数值算法的稳定性?如何判断算法是否稳定?为什么不稳定的算法不能使⽤?2. 埃尔⽶特插值与⼀般函数插值有什么不同?3. 简述⼆分法的优缺点.4. 什么是矩阵的条件数?如何判断线性⽅法组是病态的?第 3 页共 6 页第 4 页共 6 页四、计算题(每⼩题8分,共32分)得分:分1. 已知下列函数表(1) 写出相应的3次(2) 作均差表,写出相应的3次Newton 插值多项式,并计算f (1.5)的近似值。
《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析期末实验试题及答案

A =
1 0 0 2
0 1 0 4
0 0 1 3
Jacobi输出结果:
N x1 x2 x3 err
2, 1.656250, 3.875000, 3.175000, 1.250000
3, 1.925000, 3.850000, 2.887500, 0.287500
4, 1.990625, 3.948437, 3.000000, 0.112500
Gauss-Seidel迭代法:
N x1 x2 x3 err
2, 1.875000, 3.937500, 2.962500, 0.437500
3, 1.993750, 3.992188, 2.999063, 0.118750
4, 1.998281, 3.999023, 2.999508, 0.006836
SOR迭代法
N x1 x2 x3 err
2, 1.721568, 3.608925, 2.679907, 0.233925
3, 1.824455, 3.629131, 2.727301, 0.102888
4, 1.812174, 3.627893, 2.720033, 0.012281
5, 1.814371, 3.628155, 2.721265, 0.002197
end
function[y,n]=sor(A,b,x0,ep,w)
D=diag(diag(A));
L=-tril(A,-1);
U=-triu(A,1);
B=(D-w*L)\((1-w)*D+w*U);
f=w*(D-w*L)\b;
y=B*x0+f;
n=1;
whileabs(norm(y-x0,inf))>=ep
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A)21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-6 2. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦(B)10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦ (D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.10 4. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字; 2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为( ); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x 其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析期末考卷

数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
数值方法期末考试题及答案

数值方法期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 快速傅里叶变换B. 高斯消元法C. 牛顿法D. 辛普森积分法答案:B2. 插值和逼近的主要区别是什么?A. 插值点必须在数据点上B. 逼近点可以不在数据点上C. 插值是线性的,逼近是非线性的D. 插值是多项式,逼近是函数答案:A3. 以下哪个是数值稳定性好的算法?A. 直接迭代法B. 雅可比迭代法C. 高斯-塞德尔迭代法D. 松弛法答案:C4. 牛顿-拉弗森方法用于求解什么类型的方程?A. 线性方程B. 非线性方程C. 微分方程D. 积分方程答案:B5. 以下哪个是数值积分方法?A. 欧拉方法B. 辛普森方法C. 拉格朗日插值D. 牛顿法答案:B...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 解释什么是病态问题,并给出一个例子。
答案:病态问题是指那些微小的输入变化会导致输出结果产生巨大变化的问题。
例如,在数值分析中,求解线性方程组时,如果系数矩阵的条件数很大,那么该问题就被认为是病态的。
这意味着即使输入数据只有微小的误差,也会导致解的误差非常大。
2. 描述数值微分和数值积分的区别。
答案:数值微分是估计函数在某点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常涉及到差分,例如前向差分、后向差分和中心差分等。
数值积分则涉及到数值积分方法,如梯形法则、辛普森法则等。
3. 解释什么是条件数,并说明它在数值分析中的重要性。
答案:条件数是一个量度,用来衡量问题的敏感性,即输入数据的微小变化会导致输出结果多大的变化。
在数值分析中,一个条件数较小的问题被认为是良态的,因为这意味着问题对输入数据的微小变化不敏感。
相反,条件数较大的问题被认为是病态的,需要特别小心处理,以避免数值误差的累积。
三、计算题(每题25分,共50分)1. 给定线性方程组:\[\begin{align*}4x + y - 2z &= 6 \\2x - y + 3z &= -1 \\-2x + 3y + z &= 4\end{align*}\]使用高斯消元法求解该方程组,并给出解。
数值分析期末试题

数值分析期末试题一、填空题(20102=⨯分)(1)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=283012251A ,则=∞A ______13_______。
(2)对于方程组⎩⎨⎧=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ⎥⎦⎤⎢⎣⎡05.25.20。
(3)3*x 的相对误差约是*x 的相对误差的31倍。
(4)求方程)(x f x =根的牛顿迭代公式是)('1)(1n n n n n x f x f x x x +--=+。
(5)设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 。
(6)设n n ⨯矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi ni λ≤≤1max 。
(7)已知⎥⎦⎤⎢⎣⎡=1021A ,则条件数=∞)(A Cond 9(8)为了提高数值计算精度,当正数x 充分大时,应将)1l n (2--x x 改写为)1ln(2++-x x 。
(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。
(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3131∑==i i x f y 。
二、(10分)证明:方程组⎪⎩⎪⎨⎧=-+=++=+-12112321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。
证明:Jacobi 迭代法的迭代矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=05.05.01015.05.00J BJ B 的特征多项式为)25.1(5.05.0115.05.0)det(2+=---=-λλλλλλj B IJ B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代法不收敛性。
三、(10分)定义内积⎰=1)()(),(dx x g x f g f试在{}x SpanH ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。
数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。
n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。
( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。
( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。
5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。
数值分析期末复习题

一、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数 ,绝对误差为 , 相对误差为 。
2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为 。
3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。
4.设f(x)可微,求方程x=f(x)根的牛顿迭代法格式是 。
5.设方程x=ϕ(x)有根x *,且设ϕ(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 。
6.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 。
7.⎪⎪⎭⎫ ⎝⎛=011001001001....A ,||A||∝= ,cond(A)∝= 。
8.n 次Legendre 多项式的最高次项系数为 。
9.中矩形公式:)()2()(a b b a f dx x f b a -+=⎰的代数精度为 。
10.求积公式:)1(21)0()(10f f dx x f '+≈⎰的代数精度为 。
11.在区间[1,2]上满足插值条件⎩⎨⎧==3)2(1)1(P P 的一次多项式P(x)= 。
12.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= 。
13.梯形公式和改进的Euler 公式都是 阶精度的。
二、计算题1.利用矩阵的高斯消元法,解方程组⎪⎩⎪⎨⎧=++=++=++2053182521432321321321x x x x x xx x x2.设有函数值表试求各阶差商,并写出Newton 插值多项式。
3.求解超定方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛43231211121x x的最小二乘解。
4.给定下列函数值表:求3次自然样条插值函数5.给定x x f =)(在x=100, 121, 144 三点处的值,试以这三点建立f(x)的二次(抛物)插值公式,利用插值公式求115的近似值并估计误差。
武汉大学数值分析期末考试题目和答案.pdf

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考n λ≥,
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考。
(完整word版)《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A) 21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-62. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦ (B) 10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦(D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.104. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字;2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为(); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。
数值分析期末考试复习题及其答案

《计篥方法P 实验报告1. 已知X ; =325413, X ; =0.325413都有6位有效数字,求绝对误差限。
(4 分)解:由已知可知,n 二6X : =0.325413x1()6* =6北一n = 0,绝对误差限^ =丄 xl0° =0.522X ; =0・325413xl0°,k=(U—〃 = —6,绝对误差限& =-xl0"62・ -2分心("刃=皿{1,8,32} = 32 1分|H|2 =732=4^23. 设/(x) = (x 2-«)3(6 分)① 写岀f (x)二0解的Newton 迭代格式②当a 为何值时,仏|=卩(忑)(k 二0,1……)产生的序列伉}收敛于、伍【值分析期末考试复习题及其答案1 02.已知4= 02 0 -2解:”州=max{l,4,8} = &分4求IKMJK (6分) 4||^||x =max{l,6,6} = 6,分皿讥如)分_1 0 0 ■ '1A TA = 0 2-20 4 40 0■ 24 二 08 0 -2 4.0 32_w :①Newton 迭代格式为:丿(忑)0(戈)=竺+丄6 6%(屛-°)' _ 5x k a , ・・ , ,6忑(X ;_G )26 6x©⑴三一曲曲以血)卜10—6/~vF<1,即-2<“ <22时迭代收敛 4・给定线性方程组Ax 二b,其中:A =3 -1用迭代公式牙=才「+a(b- Ax (k}) (k=0,1 ........... )求解 Ax 二b, 问取什么实数Q ,可使迭代收敛 (8分)-a 1 一2a.其特征方程为|刀-=八° 一3a}2(X=02分aA-(l -2<z)即,解得=l-a,22 =l-4a2分 要使其满足题意,须使p (B ) < 1,当且仅当0 vav0・52分'12 -2"丁111,b = 6 2 2 1.7.迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:A=L+D+UB, =-D~\L + U)= -1-2 -2 0 -22 -1 0|/1/ — By | = A 3= 0,/lj = = Aj = 0即p (B y ) = 0<l,由此可知Jacobi 迭代收敛1一 3a-la所给迭代公式的迭代矩阵为B = I — aA =2分试讨论解此方程的Jacobi5. 设方程Ax 二b,其中A =Gauss-Seidel 迭代格式:X 严=5-2垮)+2宅) <垮+—6-尤严—才 兀严)=7 — 2#申一 2卅Z用Doolittle 分解汁算下列3个线性代数方程组:Ax f =b, (i=l,2,3)其中"2 1 r4' A = 2 3 2 ,s = 7 2 3 4 96. 解: 上2 =兀]上3 =X2 (12分) ① Ax l =b 、x\ =A=由 Ly=bl,由 lxl=y, ②虹=b 2=LU 即y= 4791 10 0 11 12 得xl 二12 0'2 1 rT 2 32 x2= 12 3 4.11 0 o'TT1 1 oy= 1得y= 01 1 11由 Ly=b2=xl,即 (k=0,1,2, 3……)"2 1r丁「OS由Ux2=y,即 02 1 x2= 0得x2二 00 0 2③山3 =仏"2 1r'0.5'2 3 2 x3= 023 4.)0 0"'0.5 '由 Ly=b3=x2,即 1 10 y= 0得y 二 -0.51 110 .0 .'2 1r0.5 ''0.375 -由Ux3二y,即2 1 x3= -0.5得x3二 -0.250 2要求一次数不超过3的H 插值多项式,使 H 3(x /) = y r ,/73(x 1) = y I解:作重点的差分表,如下:H 3(X)= f[x {)] + /[x^x^ ](x-x Q ) + f[x 0,x^x { ](x-x ())(x-x I ) + /[xD ,x p x p x 2](x-x 0)(x-x I )2 二T+(x+l)-x(x+l)+2x. x(x+l)二2x 3 + x 27•已知 函 数 8.有如下函数表:关 数 据(6分)试讣算此列表函数的差分表,并利用Newton前插公式给出它的插值多项式(7分) 解:由已知条件可作差分表,x f = x0 + ih = i (i=0, 1, 2, 3 )为等距插值节点,则Newton向前插值公式为:N3 = f0 + 气評农 + +(—。
数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛 (8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss —Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f (x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x (x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x (x-1)=442++x x 4分9. 求f (x )=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x , k=2x ,计算得: (m ,m)=dx ⎰-111=0 (m,n )=dx x ⎰-11=1 (m,k)=dx x ⎰-112=0(n,k )=dx x ⎰-113=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信02数值分析期末试卷 2005.6.20
班级:__________ 姓名:_________ 分数:___________
一、填空题(每空2分,共10分)
1、计算正方形面积要使相对误差限为2%, 则边长L 时相对误差限为____.
2、设求积公式⎰∑≈=b
a
n
i i i x f x x f 0
)(d )(ω是插值型的,其中n 为正整数,
b x x x a n ≤<<<≤ 10,则其代数精度至少为____,至多为_____.
3、如果某方法的误差)
(k X
满足关系式)1()
(5.002-⎥⎦
⎤⎢⎣⎡=k k X a X
,其中
,2,1=k ,并且该方法是收敛的,那么a 的范围是______.
4、四阶Runge-Kutta 方法解常微分方程初值问题的局部截断误差是____.
二、(10分) 证明方程0sin 1=--x x 在]1,0[上有根,写出牛顿迭代公式,
并取初始值为10=)(x 求近似根?)(=2x (保留六位小数)
三、(20分) 求x
x f +=
11)(在]1,0[上的一次最佳一致逼近多项式和一次最佳
平方逼近多项式.
四、(12分) 考虑利用Gauss-Seidle 迭代法分别求解线性方程组
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡24210
1
014120321x x x 和⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡22410
1
120014
321x x x , (1)说明两者的收敛性;(2)并对收敛的迭代法写出计算格式,再由
初始向量T X )0,0,0()0(=,计算=)(4X ?
五、(13分) 已知)(x f y =的观察数据表如下:
)(3x P )1(3-P
六、(10分) 建立高斯求积公式 )()()(11001
12x f A x f A dx x f x +≈⎰-.
七、(10分) 设矩阵⎥⎦⎤
⎢⎣⎡=3212A ,1)利用乘幂法求其最大特征值和相应的特
征向量(初值⎥⎦⎤
⎢⎣⎡==1
1)0()0(v u ,迭代四次);2)求出相应的准确解.
八、(15分) 对于常微分方程初值问题
⎩⎨
⎧=≤≤-='
.1)0(,
4.00 ,y x y x y 1、用欧拉预测—校正方法,求出各节点上的数值解,取步长h=0.2; 2、求出准确解,及其在4.0=x 处的数值解的相对误差.。