色谱基本理论a塔板理论

合集下载

塔板理论

塔板理论

第二章 气相色谱分析gas chromatographic analysis,GC第二节 色谱理论基础fundamental of chromatograph theory色谱理论需要解决的问题:色谱分离过程的热力学和动力学问题。

影响分离及柱效的因素与提高柱效的途径,柱效与分离度的评价指标及其关系。

组分保留时间为何不同色谱峰为何变宽组分保留时间:色谱过程的热力学因素控制;(组分和固定液的结构和性质)色谱峰变宽:色谱过程的动力学因素控制;(两相中的运动阻力,扩散)两种色谱理论:塔板理论和速率理论;一、塔板理论-柱分离效能指标1.塔板理论(plate theory )半经验理论;将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程);塔板理论的假设:(1) 在每一个平衡过程间隔内,平衡可以迅速达到;(2) 将载气看作成脉动(间歇)过程;(3) 试样沿色谱柱方向的扩散可忽略;(4) 每次分配的分配系数相同。

色谱柱长:L ,虚拟的塔板间距离:H ,色谱柱的理论塔板数:n ,则三者的关系为:n = L / H 理论塔板数与色谱参数之间的关系为: 保留时间包含死时间,在死时间内不参与分配!2.有效塔板数和有效塔板高度•单位柱长的塔板数越多,表明柱效越高。

•用不同物质计算可得到不同的理论塔板数。

222116545)()(./bR R W t Y t n ==•组分在t M 时间内不参与柱内分配。

需引入有效塔板数和有效塔板高度:3.塔板理论的特点和不足(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高,所得色谱峰越窄。

(2)不同物质在同一色谱柱上的分配系数不同,用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应指明测定物质。

(3)柱效不能表示被分离组分的实际分离效果,当两组分的分配系数K 相同时,无论该色谱柱的塔板数多大,都无法分离。

第二章-色谱基本理论

第二章-色谱基本理论
(二) 塔扳理论存在的不足:
1.塔板理论是模拟在一些假设条件下而提出的,假设同实际情况有差距,所以他描述的色谱分配过程定量关系合有不准确的地方。 2.对于塔板高度H这个抽象的物理量究竟由哪些参变量决定的?H又将怎样影响色谱峰扩张等一些实质性的较深入的问题,塔板理论却不能回答。
3.为什么流动相线速度(U)不同,柱效率(n)不同;而有时当U值由很小一下变得很大时,则柱效能(n)指标并未变化许多,但峰宽各异,这些现象塔板理论也无能为力. 4.塔报理论忽略了组分分子在柱中塔板间的纵向扩散作用,特别当传质速率很快时,其纵向扩散作用为主导方面,这一关键问题并未阐述。
二 区域宽度
(1)标准偏差σ (2) 半峰宽 W1/2 (3) 峰底宽度W 从色谱图中,可得许多信息: 1 色谱峰的个数,可判断所含组分的最少个数; 2 根据色谱峰的保留值,可以进行定性分析; 3 根据色谱峰的面积或峰高,可以进行定量分析; 4 色谱峰的保留值及其区域宽度,评价柱效依据; 5 色谱峰两峰间的距离
三 分配系数K与分配比(容量因子)K’ : 1 分配系数K 平衡状态时组分在固定相(CL)与流动相(CG)中的浓度之比。 2 分配比(容量因子)K’: 平衡状态时组分在固定相(P)与流动相(q)中的质量之比。
讨论: K’=0 则 tR = tM 组分无保留行为 K’=1 则 tR = 2tM K’→∞ tR很大 组分峰出不来 所以K’=1-5 最好 如何控制K’? 主要选择合适的固定液 色谱测K’容易(只测tR tM )所以常用K’
3,温度校正
空心柱的载气流速通常不用皂膜流量计测量。而是由tM计算得到 载气的平均线速U=L/ tM 例题“实验与习题”例4 (P125) 作业:P131 41;42(思考);43;

气相色谱仪塔板理论实用PPT文档

气相色谱仪塔板理论实用PPT文档
效越高。
气相色谱仪塔板理论
有关塔板理论的说明: (1)说明柱效时,必须注明该柱效是针对何种物质、 固定液种类及其含量、流动相种类及流速、操作条件等; (2)应定期对柱效进行评价,以防柱效下降、延长 柱寿命。
气相色谱仪塔板理论
(4)某组分在所有塔板上的分配系数相同 ; (1) 组分在各塔板内两相间的分配瞬间达至平衡; 有关塔板理论的说明:
精馏塔 。
(4)某组分在所有塔板上的分配系数相同 ;
Heff=L/neff (1)说明柱效时,必须注明该柱效是针对何种物质、固定液种类及其含量、流动相种类及流速、操作条件等; 任务四:气相色谱基本理论
塔板理论是一种半经验性理论。
每一块塔板的高度用H表示,称为塔板高度,简称板高。 任务四:气相色谱基本理论
通常用有效塔板数(neff)来评价柱的效能比较符合实际。
气相色谱仪塔板理论
塔板理论的意义: 塔板理论是一种半经验性理论。它用热力学的观点定
量说明了溶质在色谱柱中移动的速率,解释了流出曲线的 形状,并提出了计算和评价柱效高低的参数。
Thank You
积加入。气相色谱仪塔板理论塔板数(n)的计算公式为: H=L/n
气相色谱仪塔板理论
气相色谱仪塔板理论 有效塔板数(neff)的计算公式为:
Heff=L/neff
n=
1+k k
2
• neff
气相色谱仪塔板理论
气相色谱仪塔板理论
通常用有效塔板数(neff)来评价柱的效能比
n 较符合实际。 eff 越大或Heff越小,则色谱柱的柱
塔(板1)理组论分是过在一各种程塔半板经、内验两性导相理间论出的。分流配瞬出间达曲至平线衡;的数学模型、解释了流出曲线形状和 位置、提出了计算和评价柱效的参数。 1941年,Martin(马丁)、synge (辛格)等人建立“塔板理论”模型,1952年提出的塔板理论将一根色谱柱当作一个由许多塔板组成的

气相色谱仪塔板理论课件.ppt

气相色谱仪塔板理论课件.ppt
知识点:气相色谱仪塔板理论
情境六:气相色谱对微量组分分析 任务四:气相色谱基本理论
课程:仪器分析
气相色谱仪塔板理论
塔板理论( Martin and Synge 1941) 1941年,Martin(马丁)、synge (辛格)等人建立 “塔板理论”模型,1952年提出的塔板理论将一根色谱 柱当作一个由许多塔板组成的精馏塔 。
气相色谱仪塔板理论
塔板理论的意义: 塔板理论是一种半经验性理论。它用热力学的观点定
量说明了溶质在色谱柱中移动的速率,解释了流出曲线的 形状,并提出了计算和评价柱效高低的参数。

气相色谱仪塔板理论
塔板数(n)的计算公式为: H=L/n
气相色谱仪塔板理论
气相色谱仪塔板理论 有效塔板数(neff)的计算公式为:
H43;k k
2
• neff
气相色谱仪塔板理论
气相色谱仪塔板理论
通常用有效塔板数(neff)来评价柱的效能比
n 较符合实际。 eff 越大或Heff越小,则色谱柱的柱
效越高。
气相色谱仪塔板理论
有关塔板理论的说明: (1)说明柱效时,必须注明该柱效是针对何种物质、 固定液种类及其含量、流动相种类及流速、操作条件等; (2)应定期对柱效进行评价,以防柱效下降、延长 柱寿命。
气相色谱仪塔板理论
(3)塔板理论描述了组分在柱内的分配平衡和分离 过程、导出流出曲线的数学模型、解释了流出曲线形状和 位置、提出了计算和评价柱效的参数。
气相色谱仪塔板理论
把色谱柱比作一个精馏塔,沿用精馏塔中塔板的概念 来描述组分在两相间的分配行为,同时引入理论塔板数作 为衡量柱效率的指标,即色谱柱是由一系列连续的、相等 的水平塔板组成。每一块塔板的高度用H表示,称为塔板 高度,简称板高。

第2章-色谱基本理论a-塔板理论

第2章-色谱基本理论a-塔板理论

选择因子
在定性分析中, 在定性分析中,通常固定一个色谱峰作为标 ),然后再求其它峰 然后再求其它峰( 准(s),然后再求其它峰(i)对这个峰的相对 保留值.在多元混合物分析中, 保留值.在多元混合物分析中,通常选择一对最 难分离的物质对, 难分离的物质对,将它们的相对保留值作为重要 参数.在这种特殊情况下,可用符号α表示: 参数.在这种特殊情况下,可用符号α表示:
4.死体积 VM
指色谱柱在填充后, 指色谱柱在填充后 , 柱管内固定相颗 粒间所剩留的空间、 粒间所剩留的空间 、 色谱仪中管路和连接 头间的空间以及检测器的空间的总和. 头间的空间以及检测器的空间的总和 . 当 后两项很小而可忽略不计时, 后两项很小而可忽略不计时 , 死体积可由 死时间与流动相体积流速F min) 死时间与流动相体积流速 F0 ( L / min ) 计 算:
一、分配系数K和分配比k 一、分配系数K和分配比k
1.分配系数K .分配系数K
色谱的分离是基于样品组分在固定相和流动相之间 反复多次地分配或吸附--脱附过程。 --脱附过程 反复多次地分配或吸附--脱附过程。 分配系数是描述分离过程中样品分子在两相间分配 的参数,它是指在一定温度和压力下, 的参数,它是指在一定温度和压力下,组分在固 定相和流动相之间分配达平衡时的浓度之比值
L u = tm
保留时间t 2.保留时间tR 试样从进样开始到柱后出现峰极大 点时所经历的时间,称为保留时间, 点时所经历的时间,称为保留时间,如 O′B. 图2-1 O′B.它相应于样品到达柱末端 的检测器所需的时间. 的检测器所需的时间.
图2-1 色谱流出曲线
3.调整保留时间tR′ 调整保留时间t
2—3 色谱法分析的基本原理 3
目的:将样品中各组分彼此分离, 目的:将样品中各组分彼此分离,组分要达到完 全分离,两峰间的距离必须足够远. 全分离,两峰间的距离必须足够远. 两峰间的距离是由组分在两相间的分配系数决定 即与色谱过程的热力学性质有关。 热力学性质有关 的,即与色谱过程的热力学性质有关。但是两峰 间虽有一定距离,如果每个峰都很宽, 间虽有一定距离,如果每个峰都很宽,以致彼此 重叠,还是不能分开。 重叠,还是不能分开。这些峰的宽或窄是由组分 在色谱柱中传质和扩散行为决定的, 在色谱柱中传质和扩散行为决定的,即与色谱过 程的动力学性质有关。因此, 动力学性质有关 程的动力学性质有关。因此,要从热力学和动力 学两方面来研究色谱行为。 学两方面来研究色谱行为。

简述色谱基础理论中的塔板理论和速率理论

简述色谱基础理论中的塔板理论和速率理论

1、简述色谱基础理论中得塔板理论与速率理论(10分)塔板理论就是由以下四个假设构成得:1、在柱内一小段长度H 内,组分可以在两相间迅速达到平衡。

这一小段柱长称为理论塔板高度H 。

2、流动相(如载气)进入色谱柱不就是连续进行得,而就是脉动式,每次进气为一个塔板体积(ΔVm )。

3、所有组分开始时存在于第0号塔板上,而且试样沿轴(纵)向扩散可忽略。

4、分配系数在所有塔板上就是常数,与组分在某一塔板上得量无关。

(3分)速率理论:就是由荷兰学者范弟姆特等提出得。

结合塔板理论得概念,把影响塔板高度得动力学因素结合进去,导出得塔板高度H 与载气线速度u 得关系:Cu u B A H ++=其中:A 称为涡流扩散项,B 为分子扩散项, C 为传质阻力项涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”得流动,因而引起色谱得扩张。

由于 A=2λd p ,表明 A 与填充物得平均颗粒直径 dp 得大小与填充得不均匀性 λ 有关,而与载气性质、线速度与组分无关,因此使用适当细粒度与颗粒均匀得担体,并尽量填充均匀,就是减少涡流扩散,提高柱效得有效途径。

分子扩散项 B/u 由于试样组分被载气带入色谱柱后,就是以“塞子”得形式存在于柱得很小一段空间中,在“塞子”得前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着得分子产生纵向扩散。

而 B=2rD g r 就是因载体填充在柱内而引起气体扩散路径弯曲得因数 ( 弯曲因子 ) , D g 为组分在气相中得扩散系数。

分子扩散项与 D g 得大小成正比,而 D g 与组分及载气得性质有关:相对分子质量大得组分,其 D g 小 , 反比于载气密度得平方根或载气相对分子质量得平方根,所以采用相对分子质量较大得载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。

弯曲因子 r 为与填充物有关得因素。

传质项系数 Cu C 包括气相传质阻力系数 C g 与液相传质阻力系数 C 1 两项。

色谱分析方法基本理论

色谱分析方法基本理论

色谱分析方法基本理论一、保留时光理论保留时光是样品从进入色谱柱到流精彩谱柱所需要的时光,不同的物质在不同的色谱柱上以不同的流淌相洗脱会有不同的保留时光,因此保留时光是色谱分析法比较重要的参数之一。

保留时光由物质在色谱中的分配系数打算: tR=t0(1+KVs/Vm)式中:tR —某物质的保留时光; t0—色谱系统的死时光,即流淌相进入色谱柱到流精彩谱柱的时光,这个时光由色谱柱的孔隙、流淌相的流速等因素打算; K-分配系数; Vs,Vm—固定相和流淌相的体积。

这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。

在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。

比移值是一个与保留时光相对应的概念,它是样品点在色谱过程中移动的距离与流淌相前沿移动距离的比值。

与保留时光一样,比移值也由物质在色谱中的分配系数打算: Rf=Vm/(Vm+KVs) 式中:Rf—比移值;K一色谱分配系数; Vs,Vm—固定相和流淌相的体积。

二、塔板理论塔板理论是色谱学的基础理论。

塔板理论将色谱柱看作一个分馏塔,待分别组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流淌相之间形成平衡,随着流淌相的流淌,组分分子不断从一个塔板移动到下一个塔板并不断形成新的平衡。

色谱柱的塔板数越多,其分别效果越好。

按照塔板理论,待分别组分流精彩谱柱时的浓度随时光展现二项式分布,当色谱柱的塔板数很高时,二项式分布趋于正态分布。

流出曲线上组分浓度与时光的关系可以表示如下:式中:Ct—t时刻的组分浓度; C0—组分总浓度,即峰面积;σ—半峰宽,即正态分布的标准差; tR—组分的保留时光。

该方程称作流出曲线方程。

按照流出曲线方程,色谱柱的理论塔板高度被定义为单位柱长度的色谱峰方差: H=σ2/T 理论塔板高度越低,在单位长度色谱柱中的塔板数越多,分别效果越好。

打算理论塔板高度的因素有固定相的材质、色谱柱的匀称程度、流淌相的理化性质以及流淌相的流速等。

塔板理论

塔板理论

n=L/H 或 H=L/n
色谱柱与色谱图
3
由此可见,当色谱柱长L固定时,n 值越大,或H值越小,柱效率越高,分பைடு நூலகம்离能力越强。n 和H可以等效地用来描述柱效率。
由塔板理论可导出理论塔板数n的计算公式为:
式中:tR是组分的保留时间;Wb是色谱峰两边转折点所划切线与基线相 交点之间的截距;W1/2是半峰宽;三者均需以同样单位表示(时间或距离)。 理论塔板数表达了色谱峰的扩张程度和色谱峰的陡度,但不能说明色谱柱对 组分的选择性。式中,保留时间和峰宽度的单位(cm和s)要一致,计算结 果取两位有效数字。
塔板理论 - 理论假定

塔板理论是从精馏中 借用的,是一种半经 验理论,但它成功地 解释了色谱流出曲线 呈正态分布。该理论 有如下假设:
色谱柱
每一塔板内,组分可瞬间在两相中达分配平衡。达到一次分配平衡 1 所需的最小柱长称为一个理论塔板高度H。
2
流动相进入色谱柱(洗脱过程)是间歇式的,每次进入一个板体积。

当塔板数n较少时,组分在柱内达分配平衡的 次数较少,流出曲线呈峰形,但不对称;当 塔板数n>50时,峰形接近正态分布。根据呈 正态分布的色谱流出曲线可以导出计算塔板 数n的公式,用以评价一根柱子的柱效。 理论塔板数由组分保留值和峰宽决定。若柱 长为L,则每块理论塔板高度H为: H= L/n 由上式知道,理论塔板数n 越多、理论塔板高 度H越小、色谱峰越窄,则柱效越高。
有效理论塔板高度和有效理论塔 板数
在实际应用中,提 出了用有效理论塔 板数塔板理论作为 柱效能指标。其计 算公式为:
分配示意图




1、在色谱柱不变的情况下,即理论塔板数n和长度L 都不变的情况下,色谱峰宽度与保留时间t成正比。或 者说:同一次分析里,色谱峰的宽度与其保留时间成 正比。因此出峰越晚,峰宽越大。 2、在理论塔板数n不变的情况下,峰高与保留体积 (时间)t成反比。或者说:同一次分析中,同样浓度 的不同组分,出峰越晚峰高越小。 3、在色谱柱加长的情况下,理论塔板数n和保留体积 (时间)t都同时等倍增加,因此色谱峰宽与色谱柱长 度的平方根成正比。即色谱柱长增加一倍,峰宽增加 到原来的1.414倍。还记得柱长增加一倍,保留时间差 增加多少么?这是速度方程的结论,增加一倍。因此 分离度R在柱长增加一倍的情况下,只能增加到原来 的1.414倍。即:理论塔板高度H不变的情况下,分离 度R与柱长的平方根成正比。

塔板理论、速率方程

塔板理论、速率方程
荷兰学者Van Deemter特等人于1956年提出的
吸收了塔板理论的概念
结合了影响塔板高度的动力学因素
解释了影响塔板高度的各因素
内容:填充柱的柱效受分子扩散、传质阻力、 载气流速等因素的控制
H 2d p 2Dg u
2 2 0.01k 2 d p d 2 k f u 2 1 k 2 d g 3 (1 k ) DL
塔板理论有利于我们形象地理解色谱的分离过程;
导出色谱流出曲线方程,它符合高斯分布,与实验现 象相吻合;
导出理论塔板数的计算公式,作为柱效的评价指标;
塔板理论的局限:
定性地给出了塔板高度的概念,却无法解释板高的影
响因素;
不能解释流速对理论塔板数的影响; 四个假设与实际不相符合;
三、速率方程
论塔板数作为衡量柱效率
的指标。
二、塔板理论
Martin and Synge receiving the 1952 Nobel Prize in chemistry
二、塔板理论
塔板理论的假设:
(1)组分在两相间的分配可以瞬时完成。这样达到分
配平衡的一小段柱长称为理论塔板高度H;
(2)载气进入色谱柱不是连续的,而是脉动(间歇) 过程,每次进气为一个板体积; (3)试样开始时都加在0号塔板上,而且试样在相邻 两塔板间没有纵向扩散;
一、色谱分离基本参数
滞留因子
流动相在柱内的线速度为u cm· s-1,由于固定相对组分 的保留作用,组分在柱内的线速度us将小于u,两速度之比 称为滞留因子Rs
Rs us / u
Rs也可用质量分数ω表示
mM 1 1 Rs m mS mM 1 S 1 k mM

气相色谱基本理论知识

气相色谱基本理论知识

气相色谱基本理论知识气相色谱理论可分为热力学和动力学理论两方面。

热力学理论是从相平衡观点来研究分离过程,以塔片理论为代表。

动力学理论是从动力学观点来研究各种动力学因素对柱效的影响,以Van Deemter 方程式为代表。

在叙述这两个理论前先介绍有关基本概念。

一、基本概念l.色谱峰(流出峰) 由电信号强度对时间作图所绘制的曲线称为色谱流出曲线。

流出曲线(图2-2)上的突起部分称为色谱峰。

正常色谱峰为对称形正态分布曲线,曲线有最高点,以此点的横坐标为中心,曲线对称地向两侧快速、单调下降。

不正常色谱峰有两种:拖尾峰及前延峰。

前沿陡峭,后沿拖尾的不对称色谱峰称为拖尾峰(tailing peak),前沿平缓,后沿陡峭的不对称色峰与不正常色谱峰可用对称因子f s(symmetryfactor)或叫拖尾因子来衡量(图20-3)。

对称因子在0.95~1.05之间为对称峰,小于0.95为前延峰,大于1.05为拖尾峰。

f s = W0.05h/2A = (A+B)/2A (2.1)一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示、用于定性)及峰宽(用于衡量柱效)说明。

2.基线在操作条件下,没有组分流出时的流出曲线称为基线。

稳定的基线应是一条平行于横轴的直线。

基线反映仪器(主要是检测器)的噪音随时间的变化。

3.保留值(滞留值) 是色谱定性参数。

(1)保留时间(t R):从进样开始到某个组分的色谱峰顶点的时间间隔称为该组分的保留时间(retention time),即从进样到柱后某组分出现浓度极大时的时间间隔。

图2-2中t R1及t R2分别为组分l及组分2的保留时间。

(2)死时间(t 0):分配系数为零的组分的保留时间称为死时间(dead time)。

通常把空气或甲烷视为此种组分,用来测定死时间。

(3)调整保留时间(R t '):某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间称为调整保留时间(adjusted retention time),又称为校正保留时间。

色谱塔板理论

色谱塔板理论
2013-11-22
• 1、已知某组分峰的峰底宽为40s,保留时间为400s,则此 色谱柱的理论塔板数为( C ) • A、10 B、160 C、1600 D、16000 • 2、已知某组分经色谱柱分离所得峰的峰底宽为40s,保留 时间为400s,而色谱柱长为1.00m,则此色谱柱的理论塔 板高度为(A ) • A、0.0625mm B、0.625mm • C、0.0625m D、0.625m • 3、柱效率用理论塔板高度(h)和理论塔板数(n)表示 ,柱效率越高,则(A) • A、n越大,h越小。B、n越小,h越大
距离)。从公式可以看出,在tR 一定时,如 果色谱峰很窄,则说明n越大,H越小,柱效 能越高。 保留时间包含死时间tM,在死时间内不参与
分配!
2013-11-22
2. 有效塔板数和有效塔板高度
组分在tM时间内不参与柱内分配。需引入有效塔
板数和有效塔板高度:
tR 2 tR 2 n理 5.54( ) 16( ) Y1/ 2 Y
2013-11-22
为简单起见,设色谱柱由5块塔板(n=5,n 为柱子的塔板数)组成,并以r表示塔板编号 ,r=1,2…,n-l;某组分的分配比k=1.
根据上述假定,在色谱分离过程中,该组分
的分布见下表。
4
5
简单地认为:在每一块塔板上,溶
质在两相间很快达到分配平衡,然后随
着流动相按一个一个塔板的方式向前移
n有效
' ' tR 2 tR 2 5.54( ) 16( ) Y1/ 2 Y
H 有效
2013-11-22
L n有效
塔板理论是一种半经验性理论。它用热力学的观点定量说
明了溶质在色谱柱中移动的速率,解释了流出曲线的形状

7 塔板理论

7 塔板理论

C=Cs+Cm
对于填充柱,固定相传质阻力系数Cs为:
0.01k dp Cs 2 (1 k) Dm
2
2
式中k为容量因子。由上式看出,固定相传质阻力 与填充物粒度则的平方成正比、与组分在载气流中的 扩散系数见成反比。因此,采用粒度小的填充物和相 对分子质量小的气体(如氢气)做载气,可它Cs减小 ,提高柱效。
形象地如图
A =σ12 /L = 2λdp
dp:固定相的平均颗粒直径; λ:固定相的填充不均匀 因子。
上式表明,A与填充物的平均直径dp的大小和填 充不规则因子λ有关,与流动相的性质、线速度和组
分性质无关。为了减少涡流扩散,提高柱效,使用细
而均匀的颗粒,并且填充均匀是十分必要的。对于空
心毛细管,不存在涡流扩散,因此A=0。
由 n= σ 2 / l 2
代入
H=L / n
2 2 2 2 L 2 1 2 3 4 H n L L
将上面公式总结,即可得气-液色谱速率板高方程:
2Dm 0.01k 2 dp2 2 k df2 H 2dp [ ]u 2 2 u (1 k) Dm 3 (1 k) Dl
σ2 = σ12 + σ22+σ+32 +σ42 因为H=σ2 /L,所以理论塔板高度H:
2 2 1 2 n H 2 L L L
H是单位柱长的分子的总离散度,是单个分子离散 度的统计概念。我们只要找出影响峰形展宽的各种因素 就能导出具体公式。
① 涡流扩散项 A
在填充色谱柱中, 当组分随流动相向柱出 口迁移时,流动相由于 受到固定相颗粒障碍, 不断改变流动方向,使 组分分子在前进中形成 紊乱的类似“涡流”的 流动,故称涡流扩散,

塔板理论

塔板理论
(5)K受流动相的组成(液相色谱)、柱温的影响、故也会影响
△V1/2的值; 式(2.51)以流动相流出体积表示流出峰的区域宽度,而实际及理
论上更为重要的还是要用到组分在色谱柱内的区域半宽度△X1/2, 可定义柱内物质A的平均移动速度为v=L/tR,将tR=VR/uqk代入可得物 质在柱内移动的平均速度为:
7、物质的分配系数不随其浓度变化,即在确定 的温度下k为常数;
二、基本关系式——色谱流出曲线方程的推导
设样品全部施加在第0号塔板上。在此,我们要计算当流动相 通过体积V之后,于第n号塔板上发现某个样品分子的概率。 在塔板上,考虑某一个分子出现在流动相内的概率(Pm), 应等于在该塔板上流动相中物质分子的个数与整个塔板上物 质分子个数之比。由于分子个数与浓度成正比,故有
九、塔板理论的优缺点
塔板理论是一种半经验理论,它初步揭示了色谱
分离过程。其意义在于
塔板理论简单、易懂,能说明一定问题; 可以推导出色谱图流出曲线的数学表达式,高斯 峰分布与色谱流出曲线基本相符; 利用表达式可表征色谱柱分离能力,计算理论塔
板数,塔板数作为衡量柱效指标是有效的;
峰高Cmax与W 、H、VR的关系符合实验结果
的原因。 求解根据色谱拄内组分移动的实际情况列出相应的偏微分方 程,然后求解这些偏微分方程组而获得描述色谱流出曲线状态方 程又十分困难,因此色谱工作者不得不采用较简便的模拟方法来
研究色谱动力学过程。
Martin和Synge在平衡色谱理论的的基础上,提出了塔板理 论.该理论为广大色谱工作者所接受。
塔板理论
成的影响,故可利用此特性通过改变流动相的组成,在液
固色谱仪上完成许多困难的分离工作。
四、色谱流出曲线方程的连续函数形式

塔板理论

塔板理论

塔板理论编辑词条该词条缺少摘要图、基本信息栏、词条分类,补充相关内容帮助词条更加完善!立刻编辑>>塔板理论是色谱学的基础理论,塔板理论将色谱柱看作一个分馏塔,待分离组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流动相之间形成平衡,随着流动相的流动,组分分子不断从一个塔板移动到下一个塔板,并不断形成新的平衡。

一个色谱柱的塔板数越多,则其分离效果就越好。

快速导航目录∙简介∙基本假设∙结论1塔板理论马丁(Martin)和欣革(Synge)最早提出塔板理论,将色谱柱比作蒸馏塔,把一根连续的色谱柱设想成由许多小段组成。

在每一小段内,一部分空间为固定相占据,另一部分空间充满流动相。

组分随流动相进入色谱柱后,就在两相间进行分配。

并假定在每一小段内组分可以很快地在两相中达到分配平衡,这样一个小段称作一个理论塔板(theoretical plate),一个理论塔板的长度称为理论塔板高度(theoretical plate height)H。

经过多次分配平衡,分配系数小的组分,先离开蒸馏塔,分配系数大的组分后离开蒸馏塔。

由于色谱柱内的塔板数相当多,因此即使组分分配系数只有微小差异,仍然可以获得好的分离效果。

根据塔板理论,待分离组分流出色谱柱时的浓度沿时间呈现二项式分布,当色谱柱的塔板数很高的时候,二项式分布趋于正态分布。

则流出曲线上组分浓度与时间的关系可以表示为:c_t=c_0/(σ*√(2π))*e^(-(t-t_R)^2/(2*σ^2))这一方程称作流出曲线方程,式中c_t为t时刻的组分浓度;c_0为组分总浓度,即峰面积;σ为半峰宽,即正态分布的标准差;t_R为组分的保留时间。

根据流出曲线方程人们定义色谱柱的理论塔板高度为单位柱长度的色谱峰方差:H=\frac{\sigma^2}理论塔板高度越低,在单位长度色谱柱中就有越高的塔板数,则分离效分配示意图果就越好。

决定理论塔板高度的因素有:固定相的材质、色谱柱的均匀程度、流动相的理化性质以及流动相的流速等。

色谱塔板理论

色谱塔板理论

动。对于一根长为L的色谱柱,溶质平
衡的次数应为:
n=L/H
n称为理论塔板数。与精馏塔一样,
色谱柱的柱效随理论塔板数n的增加而
增加,随板高H的增大而减小。
理论塔板数与色谱参数之间的关系为:
n理论
tR 2 tR 2 5.54( ) 16( ) Y1/ 2 Y
式中tR 与Y1/理论内容 2. 有效塔板数和有效塔板高度 3. 特点与不足
1. 塔板理论(plate theory)
塔板理论把气液色谱柱当作一个精馏塔,将 色谱分离过程比作精馏过程,沿用精馏塔中 塔板的概念描述溶质在两相间的分配行为, 将连续的色谱分离过程分割成多次的平衡过 程的重复(类似于精馏塔的塔板上的平衡过 程);并引入理论塔板数N和理论塔板高度 H作为衡量柱效的指标。
9
3. 塔板理论的特点和不足
(1)当色谱柱长度一定时,塔板数n越大,被测组分在柱内被 分配的次数越多,柱效能则越高,所得色谱峰越窄。 (2)一般情况下,不同物质在同一色谱柱上的分配系数不同, 用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应 指明测定物质。 (3)柱效不能表示被分离组分的实际分离效果,当两组分的分 配系数K相同时,无论该色谱柱的塔板数n多大,该两组分都 无法分离。 (4)塔板理论无法解释同一色谱柱在不同的载气流速下柱效不 同的实验结果,也无法指出影响柱效的因素及提高柱效的途 径。
2013-11-22
为简单起见,设色谱柱由5块塔板(n=5,n 为柱子的塔板数)组成,并以r表示塔板编号 ,r=1,2…,n-l;某组分的分配比k=1.
根据上述假定,在色谱分离过程中,该组分
的分布见下表。
4
5
简单地认为:在每一块塔板上,溶
质在两相间很快达到分配平衡,然后随
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色谱法分类
一.按两相状态分类
气体为流动相的色谱称为气相色谱(GC),根据固定相是固 体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物 液体),又可分为气固色谱(GSC)和气液色谱(GLC).
液体为流动相的色谱称液相色谱(LC)。同理,液相色谱亦可 分为液固色谱(LSC)和液液色谱LLC).
因为这种物质不被固定相吸附或溶解,故 其流动速度将与流动相的流动速度相近.测 定流动相平均线速ū时,可用柱长L与tM的 比值计算。
u L tm
2.保留时间tR 试样从进样开始到柱后出现峰极大点
时所经历的时间,称为保留时间,如图 2-1 O′B.它相应于样品到达柱末端的 检测器所需的时间.
图2-1 色谱流出曲线
3.调整保留时间tR′
某组份的保留时间扣除死时间后称为该 组份的调整保留时间,即
tR′ = tR-tM
由于组份在色谱柱中的保留时间tR包含了组份随 流动相通过柱子所需的时间和组份在固定相中滞留 所留的需总的时时间间.,保所留以时tR′间实可际用上时是间组单份位在(固如定s相)中或停距 离单位(如cm)表示。
VM = tM·F0
5.保留体积 VR
指从进样开始到被测组份在柱后出现浓度 极大点时所通过的流动相体积。保留体积与 保留时间t。的关系如下:
VR = tR·F0
6.调整保留体积VR′
某组份的保留体积扣除死体积后,称该组 份的调整保留体积,即
VR′ = VR- VM
7.相对保留值γ2.1
某组份2的调整保留值与组份1的调整 保留值之比,称为相对保留值:
固定相装于柱内的色谱法,称为柱色谱。 固定相呈平板状的色谱法,称为平板色谱,它又可 分为薄层色谱和纸色谱。
根据以上所述,将色谱法的分类总结于表2-l中。
2-1
2-2 色谱流出曲线及有关术语
一.流出曲线和色谱峰
2-1
基线(Baseline) 、基线噪声(Baseline noise) 基线漂移(Baseline drift) 死时间(Dead time)、死体积(Dead volume) 保留值(Retention value): Retention time &
二、基线
柱中仅有流动相通过时,检测器响应讯号 的记录值,即图2-1中O—t线.理想的基线 应该是一条水平直线。基线噪声,基线漂移
三、峰高
色谱峰顶点与基 线之间的垂直距离, 以h表示,如图2-1 中B′A
2-1
四、保留值
1.死时间tM
不被固定相吸附或溶解的物质进入色谱柱 时,从进样到出现峰极大值所需的时间称为 死时间,如图2-1中 O′A′。
Retention volume 调整保留值(Adjusted retention value):Adjusted
retention time & Adjusted retention volume 相对保留值(Relative retention value) 区域宽度(Peak width) 标准偏差(Standard deviation) 半峰宽度(Peak width at half-height) 峰底宽度(Peak width at peak base) 峰高(Peak height)
保留时间是色谱法定性的基本依据,但同一组份 的保留时间常受到流动相流速的影响,因此色谱工 作者有时用保留体积等参数进行定性检定.
4.死体积 VM
指色谱柱在填充后,柱管内固定相颗粒间 所剩留的空间、色谱仪中管路和连接头间 的空间以及检测器的空间的总和.当后两 项很小而可忽略不计时,死体积可由死时 间与流动相体积流速F0(L/min)计算:
➢利用组分在离子交换剂(固定相)上的亲和力大小不同而达到 分离的方法,称为离子交换色谱法。
➢利用大小不同的分子在多孔固定相中的选择渗透而达到分离的 方法,称为凝胶色谱法或排阻色谱法。
➢利用不同组分与固定相(固定化分子)的高专属性亲和力进行 分离的技术称为亲和色谱法,常用于蛋白质的分离。
三.按固定相的外形分类
第二章 色谱法原理
(Principles of Chromatography)
2-1 概述
色谱法早在1903年由俄国植物学家M.Tswett(茨维特) 提出,成为十分重要的分离分析手段。 实验:叶绿素分离:石油醚浸提叶片——碳酸钙填充拄——纯 净石油醚淋洗———叶绿素分离(a,b,叶黄素,胡萝卜素)
色谱法共同的基本特点是具备两个相:不动的一相,称为固 定相;另一相是携带样品流过固定相的流动体,称为流动相。 当流动相中样品混合物经过固定相时,就会与固定相发生作 用,由于各组分在性质和结构上的差异,与固定相相互作用 的类型、强弱也有差异,因此在同一推动力的作用下,不同 组分在固定相滞留时间长短不同,从而按先后不同的次序从 固定相中流出(洗脱)。
超临界流体为流动相的色谱称为超临界流体色谱(SFC)。
通过化学反应将固定液键合到载体表面,这种化学键合固定相 的色谱又称化学键合相色谱(CBPC)。
二.按分离机理分类
➢利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分 离的方法,称为吸附色谱法。
➢利用组分在固定液(固定相)中溶解度不同而达到分离的方法 称为分配色谱法。
2.1
t
R
2
t
R1
VR2 VR1
由于相对保留值只与柱温及固定相的性质有关,而与 柱径、柱长、填充情况及流动相流速无关,因此,它是色 谱法中,特别是气相色谱法中,广泛使用的定性数据.
必须注意,相对保留值绝对不是两个组份保留分析中,通常固定一个色谱峰作为标准 (s),然后再求其它峰(i)对这个峰的相对保 留值.在多元混合物分析中,通常选择一对最难 分离的物质对,将它们的相对保留值作为重要参 数.在这种特殊情况下,可用符号α表示:
tR2 t R1
这时式α中总tR是2′大为于后1出的峰。的调整保留时间,所以
五、区域宽度
色谱峰的区域宽度是组份在色谱柱中谱 带扩张的函数,它反映了色谱操作条件的动 力学因素.度量色谱峰区域宽度通常有三种
方法: 1. 标准偏差σ
即0.607倍峰高处色谱峰宽的一半,如 图2-1中EF距离的一半。
2. 半峰宽Y1/2 即峰高一半处对应的峰宽,如图2-1中
相关文档
最新文档