商用车驾驶室悬置隔振系统设计
《2024年汽车动力总成悬置系统振动分析及优化设计》范文
![《2024年汽车动力总成悬置系统振动分析及优化设计》范文](https://img.taocdn.com/s3/m/ccc2676686c24028915f804d2b160b4e767f81f5.png)
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能逐渐成为影响汽车乘坐舒适性和驾驶稳定性的关键因素。
本文旨在通过对汽车动力总成悬置系统的振动进行分析,提出有效的优化设计方案,以提高汽车的整体性能。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其作用是减少动力总成振动对车身的影响,保证汽车行驶的平稳性和舒适性。
该系统主要由橡胶悬置、金属部件以及相应的控制系统组成。
三、振动分析1. 振动来源汽车动力总成悬置系统的振动主要来源于发动机的燃烧振动、曲轴转动引起的惯性力振动以及路面不平引起的整车振动等。
这些振动通过动力总成传递到悬置系统,进而影响汽车的乘坐舒适性和驾驶稳定性。
2. 振动传递路径振动在动力总成悬置系统中的传递路径主要包括:发动机振动通过橡胶悬置传递到金属部件,再通过金属部件传递到车身。
此外,控制系统也会对振动传递产生影响。
3. 振动影响过大的振动会导致车身抖动、噪音增大,影响乘坐舒适性;同时,也会对动力总成部件产生损伤,降低汽车的使用寿命。
因此,对动力总成悬置系统的振动进行分析至关重要。
四、优化设计1. 设计原则针对汽车动力总成悬置系统的振动问题,优化设计应遵循以下原则:减小振动传递、提高系统刚度、优化控制系统等。
同时,还需考虑系统的轻量化、可靠性以及制造成本等因素。
2. 优化方案(1)材料选择:选用高弹性模量、高阻尼性能的橡胶材料,提高悬置系统的减振性能。
(2)结构优化:通过有限元分析等方法,对悬置系统的结构进行优化设计,减小振动传递,提高系统刚度。
例如,可以调整橡胶悬置的形状、尺寸以及布置位置等。
(3)控制系统优化:通过引入先进的控制算法和传感器技术,实现动力总成悬置系统的智能控制,提高系统的响应速度和减振效果。
(4)多场耦合分析:综合考虑发动机、变速器等动力总成部件的振动特性以及车身的动态响应,进行多场耦合分析,为优化设计提供依据。
商用车驾驶室全浮式悬置系统开发(二)
![商用车驾驶室全浮式悬置系统开发(二)](https://img.taocdn.com/s3/m/c9afe3c2112de2bd960590c69ec3d5bbfd0ada98.png)
商用车驾驶室全浮式悬置系统开发(二)摘要:本文介绍了一种商用车驾驶室全浮式悬置系统的设计和开发。
该系统采用了先进的电控系统和气压控制技术,通过调节空气弹簧和减震器的气压来实现对驾驶室的自适应悬挂调节,可以有效降低路面颠簸对驾驶员的影响,提升驾驶舒适度和安全性。
在系统实现方面,本文对控制算法、气压调节、悬挂参数设计等方面进行详细说明,并进行了仿真和试验验证。
最终结果表明,该系统能够有效改善商用车的驾驶舒适度和稳定性,有较高的实用价值。
关键词:商用车;驾驶室;全浮式悬置系统;自适应调节;气压控制;安全性;舒适度。
正文:1.引言随着工业化和城市化的快速发展,商用车已经成为现代物流和交通运输中不可或缺的一部分,它们承载着物流和人员运输的重要任务。
然而,由于商用车行驶的路况和工况条件较为复杂,且车身设计和悬挂系统的局限性,导致商用车驾驶舒适度和安全性面临着很大的挑战。
为了提升商用车驾驶舒适度和安全性,设计一种全浮式悬置系统显得尤为重要。
全浮式悬置系统采用气弹簧和液压减震器的组合,实现对车身的全程悬挂调节,从而达到优化车辆稳定性和驾驶舒适度的目的。
目前,国内外一些车辆制造商都已开始研发商用车全浮式悬置系统。
但是,商用车驾驶室悬置系统的特殊性和较高的技术要求,对其悬置系统的设计和开发提出了更高的要求。
本文基于市面上流行的商用车驾驶室结构,结合现有的气压控制技术和电控系统,设计并开发了一种全浮式悬置系统。
该系统通过气压调节实现自适应悬挂调节,可以显著提高商用车驾驶舒适度和安全性,为商用车领域的悬挂系统研究提供了新的思路和实践经验。
2.商用车驾驶室全浮式悬置系统设计2.1 系统基本结构和工作原理商用车驾驶室全浮式悬置系统是由气压调节器、气压传感器、减震器、气弹簧和悬挂控制器等组成。
整个系统分为两部分:电控部分和气控部分。
当车辆行驶时,气控部分的气压传感器将路面信息采集反馈到悬挂控制器,悬挂控制器根据反馈信息自动调节气压调节器,使气压调节器对气弹簧进行调节,从而实现对驾驶室的自适应悬挂调节。
重卡驾驶室悬置
![重卡驾驶室悬置](https://img.taocdn.com/s3/m/28be4fdd5022aaea998f0f0a.png)
随着现代汽车的发展,人们对于汽车的要求也已经不再局限于车辆的外观以及安全上,对于车辆的舒适性也给予了越来越多的要求,车辆的平顺性的好坏对于汽车的舒适性有着重要影响。
在传统的设计中,商用车驾驶室与车架直接相连,车辆在行驶时所受到的路面冲击将直接传递到驾驶室上,因而驾驶室的平顺性较差。
随着人们对汽车乘坐舒适性的要求不断提高,部分商用车使用橡胶垫作为驾驶室和车架的连接件,这种方式起到了一定的隔振效果,但隔振方式已不能满足现有的需要,于是通过采用驾驶室悬置隔振系统来提高车辆的平顺性。
国内为改变驾驶室的平顺性,一些企业开始采用驾驶室悬置隔振系统,利用弹簧阻尼元件构成悬置系统将驾驶室与车架相连。
北汽福田欧曼、东风集团商用车部、一汽集团商用车部、东风日产柴油重卡、陕汽德龙F2000等为代表的国产商用车已经全部采用了驾驶室悬置隔振方式来提高车辆的平顺性。
在对驾驶室平顺性的研究中发现,商用车中包括车辆结构参数、悬置隔振系统性能参数、主悬架性能参数等,这些参数选取的合适与否对于驾驶室的平顺性都有一定影响,因此如何对影响驾驶室平顺性的关键参数进行较好的选择与匹配是改善驾驶室平顺性的重要途径。
在整车设计中,驾驶室悬置系统设计是整车设计的重要组成部分。
目前,国内不少企业将驾驶室悬置隔振技术引入到商用车设计中来提高驾驶室平顺性。
所谓驾驶室悬置是指利用弹簧阻尼元件构成悬置系统,将驾驶室悬置在车架上。
目前驾驶室悬置系统按结构形式分主要包括全浮式驾驶室以及半浮式驾驶室两种。
全浮式驾驶室即驾驶室由前后左右四组弹性元件构成悬置系统将驾驶室悬置于车架之上。
全浮式驾驶室悬置系统由前、后两组悬置系统组成,前悬置结构包括螺旋弹簧、简式减振器、横向稳定杆、拉杆等,后悬置结构包括横梁、螺旋弹簧以及拉杆等。
图2—1及图2—2分别给出了全浮式驾驶室前后悬置结构。
半浮式驾驶室相对于全浮式驾驶室而言,其驾驶室前部两个支承点采用铰接方式与车架相连,后悬置结构也采用弹簧和阻尼元件构成后悬置连接到车架上。
商用车驾驶室全浮式悬置系统开发一
![商用车驾驶室全浮式悬置系统开发一](https://img.taocdn.com/s3/m/2f3501bafd0a79563c1e72fd.png)
口文/叶福恒许可张延平单勇(中国第一汽车集团公司技术中心)1前言全浮式悬置系统通过适当增大驾驶室在车辆垂直方向的上、下运动行程,使悬置弹簧和减振器得以充分缓冲并衰减车架上端传来的振动。
目前,国外如奔驰、斯堪尼亚、曼等60%以上中重型货车均采用驾驶室全浮式悬置。
2000年以前,国内生产的中重型货车普遍采用橡胶悬置,但是近几年驾驶室全浮式悬置在中重型货车上的使用也逐渐增多。
经过近10年的发展,全浮式悬置巳经成为中重型货车的产品特征之一,并逐渐取代橡胶悬置成为商用车的标准配置。
在驾驶室悬置设计方面,武汉理工大学在2006年运用ADAMS软件中的试验设计技术对某型商用车驾驶室悬置进行了优化改进,取得了比较好的效果。
2008年,由于出口俄罗斯的需要,中国第一汽车集团公司把驾驶室碰撞模拟仿真技术引入到驾驶室悬置改进中,通过分析改进及碰撞模拟试验等手段使最终生产车型完全满足欧洲相关法规要求。
但是,上述所采取的措施都只停留在样车试制完成以后的改进中,缺少在设计之初就采取行之有效的措施对悬置性能进行预测优化。
另外,在设计过程中,对全浮式悬置结构细节的充分分析和详细设计同样影响着悬置隔振性能的发挥。
本文通过对某商用车驾驶室全浮式悬置的开发,总结出一套合理的结构开发思路,为今后的悬置开发提供设计参考。
2全浮式悬置系统定义及主要构成全浮式悬置系统是指驾驶室所有悬置均采用螺旋弹簧、钢板弹簧或空气弹簧作为弹性支撑元件,采用液力减振器作为阻尼元件,能够获得较大行程的悬置系统。
全浮式悬置系统通常由前悬置总成和后悬置总成两部分构成,一般包括弹簧、减振器、导向机构、支撑托架、橡胶衬套或橡胶软垫等,多数前悬置还包括稳定杆。
上述结构构成使全浮式悬置能够充分衰减从路面和发动机传递到驾驶室的振动,并保持驾驶室的正确运动,可为驾驶员和乘员提供舒适的乘坐环境。
3全浮式悬置系统设计全浮式悬置系统的可靠性能及对振动的衰减能力与悬置的结构设计和参数控制密不可分。
商用车悬置系统设计基础培训资料
![商用车悬置系统设计基础培训资料](https://img.taocdn.com/s3/m/9d187357854769eae009581b6bd97f192379bf76.png)
商用车悬置系统设计基础培训资料一、商用车悬置系统概述商用车悬置系统是连接动力总成(发动机、变速器等)与车架的重要部件,其主要作用是支撑动力总成、减少振动传递、控制噪声以及承受动力总成在运行过程中产生的各种力和力矩。
一个良好设计的悬置系统能够显著提高商用车的乘坐舒适性、可靠性和耐久性。
二、悬置系统的组成部分商用车悬置系统通常由悬置软垫、支架、连接件等组成。
悬置软垫是悬置系统中最为关键的部件之一,它一般由橡胶或其他弹性材料制成,具有良好的减振性能。
不同类型的软垫在刚度、阻尼等特性上有所差异,以适应不同的车辆工况和性能要求。
支架则起到固定和支撑悬置软垫的作用,其结构强度和刚度需要经过精心设计,以确保在承受动力总成的重量和各种力的作用下不变形或损坏。
连接件用于将悬置系统与动力总成和车架相连接,其质量和可靠性直接影响悬置系统的性能。
三、悬置系统的设计要求在设计商用车悬置系统时,需要考虑多个方面的要求。
首先是隔振性能。
要有效地隔离动力总成产生的振动,使传递到车架和车身的振动减小到最低程度,从而提高乘坐舒适性。
其次是支撑性能。
悬置系统需要能够可靠地支撑动力总成的重量,并承受发动机工作时产生的各种力和力矩,确保动力总成在车辆运行过程中的位置稳定。
此外,还需要考虑悬置系统的耐久性。
在长期使用过程中,要能够经受住各种恶劣工况的考验,不易出现损坏或失效的情况。
四、悬置系统的布置形式常见的商用车悬置系统布置形式有三点式、四点式和五点式等。
三点式悬置系统结构相对简单,成本较低,但在隔振性能和支撑稳定性方面可能相对较弱。
四点式悬置系统在稳定性和隔振性能上有一定的提升,适用于大多数商用车。
五点式悬置系统则在复杂工况下具有更好的性能表现,但结构较为复杂,成本也相对较高。
在选择悬置系统的布置形式时,需要综合考虑车辆的类型、用途、动力总成的特点以及成本等因素。
五、悬置软垫的特性分析悬置软垫的刚度和阻尼特性对悬置系统的性能有着至关重要的影响。
商用车驾驶室悬置系统隔振特性与优化研究
![商用车驾驶室悬置系统隔振特性与优化研究](https://img.taocdn.com/s3/m/5837b6b7fbb069dc5022aaea998fcc22bcd143f6.png)
商用车驾驶室悬置系统隔振特性与优化研究一、本文概述随着商用车市场的不断发展和技术的进步,商用车驾驶室的舒适性和安全性日益受到人们的关注。
驾驶室悬置系统作为商用车的重要组成部分,其隔振特性对驾驶室的舒适性和整车的稳定性具有重要影响。
因此,对商用车驾驶室悬置系统的隔振特性进行深入研究和优化,对于提高商用车驾驶室的舒适性和整车的性能具有重要意义。
本文旨在研究商用车驾驶室悬置系统的隔振特性,并通过优化方法改善其性能。
对商用车驾驶室悬置系统的基本结构和工作原理进行介绍,明确研究对象和范围。
分析商用车驾驶室悬置系统的隔振特性,包括振动传递特性、隔振效率等方面,为后续的优化研究提供理论基础。
接着,采用先进的仿真分析方法和实验手段,对商用车驾驶室悬置系统的隔振特性进行定量评估,揭示其存在的问题和不足。
基于仿真分析和实验结果,提出商用车驾驶室悬置系统的优化方案,并通过实验验证优化效果,为商用车驾驶室悬置系统的设计和改进提供指导。
本文的研究不仅有助于深入理解商用车驾驶室悬置系统的隔振特性,而且可以为商用车的设计和制造提供理论依据和技术支持,对于推动商用车行业的进步和发展具有重要意义。
二、商用车驾驶室悬置系统隔振理论基础商用车驾驶室悬置系统的隔振特性对于提高驾驶员的舒适性和减少车辆振动对驾驶室内部构件的影响至关重要。
为了深入了解商用车驾驶室悬置系统的隔振特性,并对其进行优化研究,首先需要建立其隔振理论基础。
隔振理论的核心在于通过合适的悬置系统设计和参数调整,减少或隔离来自车辆底盘的振动传递至驾驶室。
商用车驾驶室悬置系统通常由橡胶悬置、液压悬置或空气悬置等构成,这些悬置元件具有良好的弹性和阻尼特性,能够在一定程度上吸收和衰减振动能量。
在隔振理论中,传递函数是一个关键概念,它描述了振动从输入端到输出端的传递关系。
对于商用车驾驶室悬置系统,传递函数可以通过建立系统的力学模型,结合振动分析方法来求解。
通过分析传递函数的频率响应特性,可以了解悬置系统在不同频率下的隔振效果,从而指导悬置系统的设计和优化。
商用车驾驶室悬置系统试验及参数优化
![商用车驾驶室悬置系统试验及参数优化](https://img.taocdn.com/s3/m/5bab46c2370cba1aa8114431b90d6c85ec3a88a3.png)
摘要由于政策导向和互联网经济爆发,国内陆上物流业蓬勃发展,重型商用车成为公路运输的主力军。
长途运输中,商用车驾驶员长期处于恶劣的振动环境下,对乘员的身心健康造成不良影响,且产生的驾驶疲劳会招致发生交通事故的隐患。
商用车驾驶室悬置系统能够有效衰减传递到驾驶室的振动能量,提升整车平顺性,并能为整车动力性和经济性等性能的发挥提供良好的保障。
因此,对商用车驾驶室悬置进行研究,于客户于制造商,都大有裨益。
首先,本文详细介绍了驾驶室悬置系统的发展历程、基本结构和功能,进行了整车道路平顺性试验,对试验采集的加速度数据按照国标要求处理后,分别以悬置振动衰减率和座椅加速度乘坐值作为评价指标,对悬置隔振性能以及整车的平顺性进行了客观评价。
试验中,悬置下方的加速度传感器采集了车架端的振动信号,作为本文理论模型的振动输入。
其次,给出了驾驶室相关参数,对弹性元件和横向稳定杆等特殊元件作了特殊处理,介绍了参数线性化的理论依据及方法。
对实际模型进行简化后,按照实际参数在ADAMS软件中建立了驾驶室悬置仿真模型,并以实测的悬下振动激励作为输入进行了振动仿真,验证了模型的精准度。
再次,根据响应面试验设计方法,对设计变量制定了多组仿真方案,根据仿真采集的数据,拟合了驾驶室地板垂向加速度和质心纵向角加速度这两个振动响应量的响应面方程,并用方差分析和统计计算方法验证了方程的显著性和有效性。
最后,根据多目标优化问题基本原理对振动响应量进行优化,对拟合的响应面方程用自适应粒子群算法进行了寻优,优化后的方案经ADAMS仿真验证,最常用车速下响应量功率谱密度峰值分别下降16%和17.3%,对应加速度均方值分别下降9.4%和8%,仿真结果的目标函数最优值与粒子群算法对方程的寻优值误差为2%,其余车速下响应量功率谱密度峰值均有明显下降,说明本文的优化工作有一定效果并且优化方法可行。
关键词:重型商用车;驾驶室悬置;ADAMS;响应面设计;粒子群算法AbstractDue to the policy guidance and the outbreak of Internet economy, the domestic highway logistics industry is booming and heavy commercial vehicles are acting as the main force of road haulage. During the process of line-haul, drivers of commercial vehicles are exposed to harsh vibrations for a long time, the resulting driving fatigue brings hidden dangers of traffic accidents and both the physical and mental health of drivers can be badly damaged. The commercial vehicle cab suspension system can effectively attenuate the vibration energy transmitted to the cab, improve the ride comfort that ensure both the acceleration performance and economic performance. Therefore, to research on the commercial cab suspension system is of great benefits to both customers and manufactures.Firstly, the development history and basic structure as well as function of cab suspension were presented in detail. Ride comfort tests were carried out,and the acceleration data was calculated according to the national standard requirements, with the vibration attenuation rate and the seat acceleration respectively used as evaluation indicators, the vibration isolation performance of cab suspension and the ride comfort were evaluated objectively. In the tests, the acceleration signal collected by the sensors underneath the suspension was transmitted from frame and used as the vibration input of the theoretical model.Secondly, the relevant parameters of the cab were given. Specialized processing for special components such as elastic components and transverse stabilizers was described detailed, after which the theory and method of parameter linearization were introduced. With several simplification of the actual model, a simulation model of cab suspension was established in the ADAMS software based on actual parameters, and several vibration simulations were carried out with the collected vibration excitation as input to verify the accuracy of the ADAMS model.Then, based on response surface methodology, multiple sets of simulation were developed for the design variables. Using the result data of the simulations, two response surface equations of the vibration responses including the vertical acceleration on cab floor and the pitch acceleration at cab centroid were fitted and used. Variance analysis and statistical calculation methods were applied to verify thesignificance and validity of the equations.Finally, the vibration responses were to be optimized based on the basic theory of multi-objective optimization. The fitted response surface equations were optimized by adaptive particle swarm optimization algorithm. The optimized scheme of parameters was verified by ADAMS simulation, in which the maximum power spectrum density of two responses at 60km/h decreased by 16%.and 17.3% and acceleration decreased by 9.4% and 8% respectively. And the maximum PSD of two responses decreased significantly at the rest speed. The optimization was indicated to have certain effects and the optimization procedure was proved to be feasible with a deviation of 2% between the optimized value coming from ADAMS simulation and the one coming from PSO algorithm as indicator.Key words: Heavy commercial vehicle; Cab suspension; ADAMS; Response surface methodology; Particle swarm optimization目录摘要 (I)Abstract (III)目录 (V)第1章绪论 (1)1.1 研究背景及意义 (1)1.2 驾驶室悬置系统概述 (3)1.3 驾驶室悬置国内外研究现状 (7)1.3.1 驾驶室悬置研究现状 (7)1.3.2 研究现状评述 (9)1.4 本文主要研究内容和方法 (10)1.4.1 研究内容及方法 (10)1.4.2 技术路线 (11)第2章ADAMS多体动力学及驾驶室悬置振动的相关理论 (12)2.1 ADAMS多体动力学基本理论 (12)2.1.1 多体动力学系统的模型组成 (13)2.1.2 ADAMS多体动力学的建模理论和求解方法 (13)2.2 驾驶室悬置振动模型简化及振动原理 (18)2.3 人体对振动的反应及平顺性评价 (25)2.3.1 人体对振动的反应和基本评价方法 (25)2.3.2 商用车平顺性评价方法 (27)2.4 本章小结 (29)第3章驾驶室悬置平顺性试验 (30)3.1 本文驾驶室悬置结构简介 (30)3.2 实车平顺性试验和数据采集 (31)3.2.1 试验方法及规定 (31)3.2.2 试验设备 (32)3.3 数据处理及平顺性评价 (36)3.4 本章小结 (40)第4章驾驶室悬置结构理论分析及建模 (41)4.1 ADAMS建模方法简述 (41)4.2 建立驾驶室悬置仿真模型 (42)4.2.1 模型参数介绍 (43)4.2.2 模型简化处理 (49)4.2.3 悬置模型的最终建立 (50)4.3 振动仿真及模型验证 (53)4.3.1 模型静态验证 (53)4.3.2 振动仿真设置 (54)4.3.3 仿真结果与试验结果精度验证 (56)4.4 本章小结 (59)第5章驾驶室悬置仿真试验设计 (60)5.1 试验设计原理及意义简述 (60)5.2 试验设计优化方法概述 (61)5.2.1 常用试验优化方法简述 (61)5.2.2 试验数据统计分析原理 (64)5.3 驾驶室悬置模型的响应面试验分析 (68)5.3.1 响应面试验设计 (68)5.3.2 进行仿真试验及数据后处理 (70)5.3.3 模型拟合及显著性检验 (73)5.4 本章小结 (76)第6 章驾驶室悬置系统参数优化 (77)6.1 悬置系统的多目标优化问题描述 (77)6.2 粒子群算法原理简述 (80)6.3 优化效果验证 (83)6.4 本章小结 (89)第7 章结论 (90)7.1 全文总结 (90)7.2 研究展望 (91)致谢 (92)参考文献 (94)攻读学位期间获得的科研成果 (98)附录A:各车速下模型准确度验证 (99)附录B:本文粒子群算法MATLAB程序 (101)第1章绪论商用车驾驶室悬置系统与乘员的乘坐安全性、舒适性以及车载货物的完整性息息相关,性能良好的驾驶室悬置系统能够使得乘员和货物的安全得到保障并提供更舒适的乘坐感受,因此,对商用车驾驶室悬置系统进行研究具有足够的实际意义。
《2024年汽车动力总成悬置系统振动分析及优化设计》范文
![《2024年汽车动力总成悬置系统振动分析及优化设计》范文](https://img.taocdn.com/s3/m/23153414ff4733687e21af45b307e87101f6f837.png)
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车的性能和舒适性要求越来越高。
其中,汽车动力总成悬置系统的振动问题直接影响着汽车的乘坐舒适性和驾驶稳定性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计,成为当前汽车工程领域的研究热点。
本文将就汽车动力总成悬置系统的振动问题展开分析,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机和车架的重要部件,其主要作用是减少发动机振动对汽车乘坐空间的影响,提高汽车的乘坐舒适性和驾驶稳定性。
该系统通常由发动机悬置、橡胶支座、减震器等组成。
三、汽车动力总成悬置系统振动分析1. 振动来源分析汽车动力总成悬置系统的振动主要来源于发动机的运转和道路的不平。
发动机的运转会产生周期性的激励力,使得发动机本身和整个动力总成产生振动。
而道路的不平则会使汽车产生颠簸,进一步传递到动力总成悬置系统,引起振动。
2. 振动传递路径分析振动通过发动机悬置、橡胶支座等传递到车架,再通过车架传递到车身。
在这个过程中,各个部件的刚度和阻尼特性对振动的传递和衰减起着重要作用。
3. 振动对汽车性能的影响振动会影响汽车的乘坐舒适性和驾驶稳定性。
长时间的振动会使乘客感到不适,甚至影响驾驶安全。
此外,振动还会对汽车的悬挂系统、转向系统等产生影响,降低汽车的整体性能。
四、汽车动力总成悬置系统优化设计1. 材料选择与结构优化在材料选择方面,可以采用高强度、轻量化的材料,如铝合金、复合材料等,以降低整个动力总成的重量,减少振动。
在结构方面,可以通过优化发动机悬置的结构、增加橡胶支座的刚度和阻尼等措施,提高整个系统的减振性能。
2. 动态性能分析通过建立动力总成悬置系统的有限元模型,进行动态性能分析。
根据分析结果,调整各部件的参数,如刚度、阻尼等,以优化系统的减振性能。
同时,还需考虑系统的频率响应特性,确保在各种工况下都能保持良好的减振效果。
商用车悬置系统设计基础培训资料
![商用车悬置系统设计基础培训资料](https://img.taocdn.com/s3/m/fd6a94836037ee06eff9aef8941ea76e58fa4afb.png)
商用车悬置系统设计基础培训资料1.悬置系统的定义和作用:悬置系统是商用车辆中的一个重要部件,用于支撑和控制车辆底盘和车身之间的连接。
它的主要作用是减震和保证车辆在行驶过程中的稳定性和舒适性。
2.悬置系统的组成部分:-弹簧:弹簧是悬置系统的关键部件,负责承受车辆重量和减小车辆震动。
常见的悬挂弹簧有螺旋弹簧、气弹簧和液压弹簧等。
-阻尼器:阻尼器是控制车辆弹簧回弹速度和减小车辆震动的装置。
常见的阻尼器有液压阻尼器和气动阻尼器等。
-支撑装置:支撑装置是悬置系统的一个重要组成部分,用于稳定车身和底盘之间的连接。
常见的支撑装置有悬挂臂、悬挂杆和扭力杆等。
-连接件:连接件是各个悬挂部件之间的连接元件,包括螺栓、螺母和销轴等。
3.悬置系统的设计原则:-载荷适应性:悬置系统需要根据车辆的不同载荷情况进行调整,保证车辆在不同负荷下的稳定性和舒适性。
-减震效果:悬置系统需要具备良好的减震效果,减小车辆在行驶过程中的震动,提高乘坐舒适性。
-频率匹配:悬置系统的弹簧和阻尼器需要在设计时考虑车辆悬挂部件的自然频率,以达到最佳的悬挂效果。
-独立性和互相影响:悬置系统的各个组成部分需要具备一定的独立性,在其中一个部分出现问题时,可以独立进行维修或更换。
4.悬置系统的常见问题及解决方法:-过硬或过软的弹簧:过硬的弹簧会导致车辆在行驶中颠簸和不舒适,过软的弹簧会导致车辆在行驶中容易下沉。
解决方法是根据实际情况选择合适的弹簧刚度。
-阻尼器失效:阻尼器的失效会导致车辆在行驶中出现弹跳和晃动。
解决方法是定期检查和维护阻尼器,并及时更换损坏的部件。
-支撑装置松动:支撑装置的松动会导致车辆底盘和车身之间的连接不稳定,影响车辆的操控性和安全性。
解决方法是定期检查和紧固支撑装置。
5.悬置系统设计的未来发展趋势:-轻量化设计:随着环保意识的增强,悬置系统的轻量化设计将成为未来的发展方向,以减少车辆的能耗和碳排放。
-智能化控制:悬置系统的智能化控制将使车辆能够根据道路和载荷情况自动调整悬挂刚度和阻尼效果,提高乘坐舒适性和操控性。
商用车驾驶室悬置隔振系统设计
![商用车驾驶室悬置隔振系统设计](https://img.taocdn.com/s3/m/b99a332c941ea76e59fa0432.png)
商用车驾驶室悬置隔振系统设计作者:曾超翔来源:《汽车世界·车辆工程技术(中)》2020年第05期摘要:随着社会的进步和发展,商用车在人们的生活中发挥着重要的作用,便利了人们的出行,而商用车的舒适度也成为人民关注的重点。
商用车驾驶室悬置装置将驾驶室与商用车的车架固定在一起,对驾驶室起到了支撑性的作用,商用车驾驶室悬置隔振系统的主要起到了保护驾驶室的平稳运行与衰减震动的功能,商用车驾驶室悬置隔振系统还可以改善驾驶室乘坐的舒适性,延长了驾驶室主体结构的使用寿命,也保障了商用车在驾驶时驾驶室中乘客的安全性。
因此,对商用车驾驶室悬置隔振系统设计进行研究具有深远的意义。
关键词:商用车;驾驶室悬置隔振系统;隔振设计时代不断进步,经济社会快速发展提升了人们的生活质量和水平,商用车的轿车化理念不断深入人心,人们对商用车舒适度的要求也更加严格,也使商用车驾驶室悬置隔振系统设计越来越复杂化。
本文从商用车驾驶室悬置隔振系统的国内外研究现状出发,对商用车驾驶室悬置隔振系统的结构进行研究,提出改善与优化商用车驾驶室悬置隔振系统检修方法的措施。
1 商用车驾驶室悬置隔振系统的国内外研究现状近年来,科技不断进步,设备与系统自动化进度不断加快,因此商用车驾驶室悬置隔振系统的精准度也在不断地提高,在外国,应用了高科技的控制方法与信息技术对商用车驾驶室悬置隔振系统进行设计,技术发展非常成熟,系统的重点在自动化、智能化的方向进行发展。
在国内,商用车驾驶室悬置隔振系统也有着不小的进步,在自动化和智能化方向仍有欠缺,但也有着不小的进步,但是在悬置系统刚度与阻尼的最佳匹配设计上还与国外有着一定的差距,为了解决商用车驾驶室悬置隔振系统现存的问题,提高了系统的可靠性、准确性,同时降低了成本,对商用车驾驶室悬置隔振系统进行更加优化的设计[1]。
2 商用车驾驶室悬置隔振系统设计2.1 系统参数分析对商用车驾驶室悬置隔振系统进行设计首先应该进行系统的参数分析,系统参数分析主要依靠各种类型的商用车驾驶室懸置的功能特征,具体特征见下表1。
重型商用车驾驶室悬置系统匹配设计
![重型商用车驾驶室悬置系统匹配设计](https://img.taocdn.com/s3/m/a5911be2db38376baf1ffc4ffe4733687f21fc71.png)
重型商用车驾驶室悬置系统匹配设计摘要:本文研究了重型商用车驾驶室悬置系统的匹配设计问题。
首先,介绍了驾驶室悬置系统的工作原理和功能;其次,根据汽车的结构特点和运行要求,对驾驶室悬置系统的各项参数进行了分析,并进行了系统的设计;最后,通过数学模拟和实际测试,验证了该驾驶室悬置系统的优越性。
关键词:重型商用车;驾驶室悬置系统;参数分析;匹配设计;数学模拟;实际测试正文:重型商用车作为现代交通运输的重要组成部分,其结构的设计和装备的选择直接影响着其行驶安全和舒适性。
其中,驾驶室悬置系统是重要的装备之一,其作用是通过减震、降噪、抗震等措施,保证驾驶室内的人员不会因为路面的颠簸而产生不适和安全隐患。
为了满足重型商用车的运营需求和各种路况下的安全性和舒适性要求,本文设计了一种驾驶室悬置系统匹配方案。
具体参数设计如下:1. 悬挂形式:选取气弹簧+橡胶支座的方案,可有效降低震动幅度,提高行驶舒适度。
2. 支承式样:采用三点支撑,保证驾驶室受力均衡,避免出现摆荡、倾斜等情况。
3. 悬挂自由长度:根据实际测试结果进行调整,调节悬挂长度以适应不同路况下的震动。
4. 悬挂刚度:根据负载和工作环境的不同,选取各种不同的悬挂刚度。
5. 阻尼器:选用高阻尼的氛围阻尼器,可消除驾驶室内的震动和噪声,提高舒适度和安全性。
为了验证该驾驶室悬置系统匹配方案的有效性,本文进行了数学模拟和实际测试。
通过数学模拟,我们验证了该方案的各项参数设计的合理性和合适性,可以满足各种路况下的工作需求。
同时,实际测试也证明了该方案的优越性,其舒适性和安全性都得到了有效保障。
综上所述,本文的研究为重型商用车驾驶室悬挂系统的匹配设计提供了一种有效的方案,可以提高其工作效率和舒适性,为现代交通运输事业做出积极贡献。
此外,在驾驶室悬挂系统的匹配设计中,还需要考虑车辆的负载情况。
重型商用车吨位较大,装载物品的重量也较大,因此需要在设计中充分考虑到负载的影响。
根据车辆的载重能力和配重分配情况,我们可以调整驾驶室悬挂系统的参数,从而使其适应不同的负载情况。
商用车全浮式驾驶室悬置系统优化设计
![商用车全浮式驾驶室悬置系统优化设计](https://img.taocdn.com/s3/m/41f3212d0722192e4536f6ea.png)
摘 要: 研究商用车全浮式驾驶室悬置隔振优化设计问题 , A A 在 D MS中建立基于整车的驾驶室悬置系统和底盘 主悬置 系统匹配的优化设计模型, 并进行优化设计 。在此基础上 , 针对 A A S不能以非线性悬架刚度阻尼参数为优 DM 化变量 的问题 , 提出对线性参数优化结果进行非线性化处理的方法 , 大大地提高优化结果 的适应性 。 关键词 : 振动与波 ;全浮式驾驶室 ; 优化
匹配要 求 , 因此本 文 研 究 了 驾驶 室悬 置 系 统 和 主悬
尺寸参数和连接位置等几何参数。由于用 A A S DM 进行仿 真只需 保证 仿真 模 型 的运 动学 和动 力学参 数
与 真实 车辆相 同即 可 , 因此 描 述车 辆 外形 的几 何 参 数就 显得 不是 很重 要 , 以进 行相 应 的简化 , 可 只要 保
证模 型具 有 良好 的可视 化效 果 即可 。
通过 简 化 和 参 数 化 处 理 , 共 设 立 参 数 变 量 总
2 3个 , 中 几何 参 数 18个 , 理 参 数 16个 , 9 其 2 物 2 力
置 系统 的优 化设 计 问题 , 立 了优化 设计 模型 , 建 并在 AA D MS中对典 型 车 辆 进行 了优 化 设 计 。由 于 A - D
A MS只能 以线 性参 数 为优 化 变 量 , 因此提 出 了在进
学参 数 3 。建 立 的基 于整 车 的驾 驶 室悬 置 系统 9个 参数 化仿 真模 型如 图 1所 示 , 整 各 种参 数 可 以获 调 得各 种不 同的车辆 模型 。
5
行优化 设计后 , 线 性 优化 结 果 进 行 非 线 性 化处 理 对
《2024年汽车动力总成悬置系统振动分析及优化设计》范文
![《2024年汽车动力总成悬置系统振动分析及优化设计》范文](https://img.taocdn.com/s3/m/8174c34311a6f524ccbff121dd36a32d7375c7ab.png)
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。
动力总成悬置系统的主要功能是支撑和固定发动机、变速器等重要部件,同时通过减震和隔振技术来降低系统振动对整车的影响。
本文旨在分析汽车动力总成悬置系统的振动问题,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机悬置、变速器悬置等组成,其结构形式和性能直接影响整车的舒适性和稳定性。
在汽车行驶过程中,由于道路不平、发动机运转等因素,动力总成会产生振动和噪声,这些振动和噪声会通过悬置系统传递到车身,影响整车的舒适性和稳定性。
三、汽车动力总成悬置系统振动分析(一)振动来源及传递路径汽车动力总成的振动主要来源于发动机运转、道路不平等因素。
这些振动会通过发动机悬置、变速器悬置等传递到车身,进而影响整车的舒适性和稳定性。
(二)振动问题分析在汽车动力总成悬置系统中,由于设计、制造和装配等因素,可能会产生以下振动问题:1. 悬置系统刚度不足,导致系统在受到外力作用时产生过大变形;2. 悬置系统阻尼不足,导致振动衰减缓慢,影响整车的舒适性;3. 悬置系统与发动机、变速器等部件的连接不紧密,导致振动传递到车身。
四、优化设计方案(一)提高悬置系统刚度为了提高悬置系统的刚度,可以采用高强度材料制作悬置元件,同时优化悬置系统的结构形式,使其能够更好地承受外力作用。
此外,还可以通过增加悬置系统的支撑点数量来提高其整体刚度。
(二)增加悬置系统阻尼为了增加悬置系统的阻尼,可以在系统中加入液压减震器等装置。
这些装置能够有效地吸收和消耗振动能量,从而降低整车的振动和噪声。
(三)优化连接方式为了确保悬置系统与发动机、变速器等部件的连接紧密可靠,可以采用先进的连接方式和技术。
例如,可以采用高强度螺栓、焊接等方式来确保连接部位的牢固性和密封性。
此外,还可以在连接部位设置减震垫等装置,以降低振动传递到车身的幅度。
红岩金刚车全浮式驾驶室悬置设计分析
![红岩金刚车全浮式驾驶室悬置设计分析](https://img.taocdn.com/s3/m/6570ec1152d380eb62946d1b.png)
北京汽车图3驾驶室前悬置装配位置文章编号:1002-4581(2010)04-0012-05红岩金刚车全浮式驾驶室悬置设计分析张兰1,曾佳2Zhang Lan 1,Zeng Jia 2(1.重庆交通大学,重庆400074;2.上汽依维柯红岩商用车有限公司,重庆401122)摘要:针对红岩金刚车全浮式驾驶室悬置系统的损坏和隔振差情况,对该车型进行道路试验,测试驾驶室的平顺性,并分析驾驶室悬置的隔振性能,最后通过对悬置的力学计算分析提出整改方案,建立三维模型进行装配可行性分析,并最终在整车上试装成功。
此测试、分析、计算方法可供重型车驾驶室悬置工程师参考。
关键词:驾驶室悬置;平顺性;隔振;计算分析中图分类号:U463.83:U469.2文献标识码:A引言汽车平顺性的问题日益受到重视,驾驶室乘坐舒适性是汽车的一个重要性能指标。
其中,载货汽车驾驶室悬置系统的结构和参数是决定乘坐舒适性的主要因素。
目前,国内外对驾驶室悬置的研究主要集中在以下3个方面:驾驶室的安全性、驾驶室的疲劳可靠性、驾驶室的振动与噪声问题。
车辆在路面上行驶时,乘客振动舒适性主要受以下两方面因素的影响:一方面由发动机传动系统的振动引起,其振动频率较高,对人体舒适性影响较小;另一方面由于路面的不平整等因素引起的振动,其频率大多集中在l ~20Hz 。
上述两种激励最终均是通过驾驶室地板传递至人体。
而驾驶室悬置是振动传递到驾驶室内人体上的主要路径,所以驾驶室悬置的结构和相关参数的设计对驾驶室的舒适性起着至关重要的作用。
1驾驶室悬置隔振性能测试1.1测试说明(1)试验是在上汽依维柯红岩商用车有限公司江北厂区外面的试车公路进行的,测量了30km/h 、40km/h 、50km/h 、60km/h 车速下的振动;(2)测试车速以汽车车速表为准,尽量保持匀速,但是试验路段干扰较大,车速一致性不是很好;(3)测量了驾驶室前后悬置左侧上下连接处图1红岩金刚车驾驶室后悬图2红岩金刚车北京汽车的三轴向振动,但实际分析结果表明,悬置只对悬置上下连接处的垂直振动有影响。
商用车驾驶室全浮式悬置系统开发(一)
![商用车驾驶室全浮式悬置系统开发(一)](https://img.taocdn.com/s3/m/9b10a8eb8ad63186bceb19e8b8f67c1cfbd6ee55.png)
商用车驾驶室全浮式悬置系统开发(一)摘要:商用车驾驶室全浮式悬置系统是一种可以使车辆在行驶过程中减少震动和提高舒适性的技术。
本文介绍了该系统的各种组成部分,并探讨了其在增加驾驶员舒适性和减少疲劳方面的优势。
在该技术的开发中,还需要解决技术上的一些挑战,如系统的设计、控制和测试等。
我们希望该技术能够在商用车辆中得到广泛应用。
关键词:全浮式悬置系统;商用车辆;舒适性;疲劳;技术挑战正文:1. 引言商用车驾驶室的舒适性和减少疲劳是一个受到广泛关注的话题。
随着科技的发展和创新,全浮式悬置系统被广泛运用于商用车辆,以减少震动和提高舒适性。
2. 全浮式悬置系统的组成部分全浮式悬置系统包含四个部分:悬架、支座、气囊和控制系统。
2.1 悬架悬架是全浮式悬置系统的核心组成部分,用于支撑车体、减少震动和提供舒适性。
悬架可以分为主动和被动两种类型,其中主动悬架根据路况自动调整,而被动悬架则需要由驾驶员手动调整。
2.2 支座支座用于固定悬架,减少震动和保持车体稳定性。
支座一般分为机械和液压两种类型,其中液压支座可以根据路况和驾驶习惯进行调整,从而降低车辆的震动和噪音。
2.3 气囊气囊是全浮式悬置系统另一个重要的组成部分,用于支持悬架和调节车身高度。
气囊一般由弹性材料制成,能够在固定、变形和挤压之间进行变化。
2.4 控制系统控制系统是全浮式悬置系统的关键组成部分,用于控制悬架的运动和调整。
控制系统主要包括传感器、计算机和电子控制单元(ECU)。
传感器用于检测车辆的动态变化,计算机用于对传感器数据进行处理,而ECU则用于控制悬架的运动和调整。
3. 全浮式悬置系统的优点全浮式悬置系统具有以下优点:3.1 提高驾驶员舒适性全浮式悬置系统可以降低车辆的震动和噪音,提高驾驶员的舒适性。
3.2 减少驾驶员疲劳全浮式悬置系统可以使驾驶员减少长时间驾驶过程中的疲劳。
3.3 保护道路全浮式悬置系统可以降低车辆对道路的破坏,从而减少道路维修成本。
商用车驾驶室全浮式悬置系统开发(二)
![商用车驾驶室全浮式悬置系统开发(二)](https://img.taocdn.com/s3/m/c4e56f1486c24028915f804d2b160b4e767f81de.png)
商用车驾驶室全浮式悬置系统开发(二)摘要:本文介绍了一种商用车驾驶室全浮式悬置系统的开发。
该系统采用了基于传感器反馈的控制算法,可以适应各种路况,提供更为平稳的行驶体验,同时还能减少驾驶员的疲劳感和车辆的损耗。
文章详细介绍了该系统的结构设计和控制原理,并进行了仿真和实验验证。
结果表明,该系统可以有效地降低驾驶室的振动幅度和加速度,提高了驾驶舒适性和安全性。
关键词:商用车,驾驶室,全浮式悬置系统,传感器反馈,控制算法,仿真,实验正文:一、绪论商用车行驶过程中,车身受到颠簸、震动等多种不同的外力干扰,这些干扰不仅会影响车辆的行驶安全性,还会给驾驶员带来疲劳感和不适感。
为了解决这些问题,一些高端商用车开始采用了全浮式悬置系统,该系统通过将驾驶室与车身隔离,可以减轻驾驶员的疲劳感,同时还能有效降低车辆的损耗。
但这种系统也存在一些问题,比如缺乏对路面的自适应性、易受到控制器干扰等。
因此,本文提出了一种商用车驾驶室全浮式悬置系统的开发方案。
该系统采用了基于传感器反馈的控制算法,可以自动适应不同的路况,提供更为平稳的行驶体验,同时还可以显著减轻驾驶员的疲劳感和车辆的损耗。
二、设计方案1.系统结构本系统采用三自由度结构,包括前后平移和垂直摇晃。
驾驶室底部安装了四个气弹簧,分别与四个悬挂点相连。
其中两个悬挂点位于前部,两个位于后部。
气弹簧通过传感器反馈,控制气压大小以实现对驾驶室的悬挂控制。
此外,还配备了一台集成式控制器,通过与车辆电子系统的通信接口,控制悬挂系统的运行。
2.控制算法为了提高系统的自适应性和控制精度,本文采用了基于传感器反馈的自适应控制算法。
该算法可以根据传感器反馈参数,自动调整气弹簧的刚度和阻尼系数,以适应不同的路况。
此外,还采用了模糊控制算法,可以更好地解决控制器干扰等问题。
三、仿真与实验在理论设计完成之后,本文进行了仿真和实验验证。
仿真结果表明,该系统在不同路况下均能提供更为平稳的行驶体验,并有效减少驾驶舒适性和安全性的影响。
商用车驾驶室悬置隔振系统设计开发
![商用车驾驶室悬置隔振系统设计开发](https://img.taocdn.com/s3/m/c1718f0279563c1ec5da71d7.png)
Hz)或 悬 架 弹 簧 下 质 量 共 振 频 悬架弹簧上质量系统的共振频
率 率
范 范
车 载
适 速 货
合多 行驶 汽车
数 的
路 中
面 高
条 档
件 中
、 、
各种 重型
结构相对复杂,价格适中
在相同的载荷作用下, 可以得到比螺旋弹簧或钢板弹簧低得多的振动频率 (一般为
空气 弹簧式
0.8~1.5Hz),从 而 提 高 车 辆 行 驶 平 顺 性 ; 空气弹簧具有变刚度特性,其固有频率可以根据需要而适当地改变; 通过高度调节装置可以保持驾驶室相对位置不变;
对标分析
产品定义
结构研究
总成隔振分析计算
CAE分 析
悬置参数计算分析; 悬置参数优化分析; 弹性元件计算
重要零部件及系统有限元分析; 驾驶室翻转分析; ECER29 法 规 分 析
改进设计
试验
试制
工程设计
悬置总成系统参数计算结果见表 2 所列。
表 2 悬置初步分析计算结果
参数
数值
驾 驶 室 质 量 /kg
表 4 不同因素的水平值
因素 K1 /
K2 /
C1c /
C1e /
C2c /
C2e /
N·mm-1 N·mm-1 N·m·s-1 N·m·s-1 N·m·s-1 N·m·s-1
商用车驾驶室的驾驶室悬置形式及主要功能
![商用车驾驶室的驾驶室悬置形式及主要功能](https://img.taocdn.com/s3/m/0536a6fe5727a5e9846a613e.png)
第 5 页 共 13 页
三.驾驶室悬置系统主要功能
四.常用悬置元件的介绍
常用于驾驶室悬置系统的元件主要有一些几种: 1. 螺旋弹簧悬置
当今商用车用大多数悬架系统的弹性元件都采用螺 旋弹簧。它具备结构简单、制造容易、成本低廉、可靠 耐用等优点。螺旋弹簧是使用的最早的弹簧元件,其加 工和制造的工艺相较其他的弹性元件已经非常成熟了, 制造成本较低且性能稳定,在设计制造过程中可根据实 际需要改变其刚度和结构尺寸,但是螺旋弹簧的载荷只 图 4-1 后悬置螺旋弹簧 能在垂直方向上承受,因此在使用螺旋弹簧时须要结合运动副一起来控制构件的运 动轨迹,图 4-1 为某商用车后悬置螺旋弹簧。此外,为了减轻振动,还要在悬置系 统上设置阻尼器,通常在设计时将螺旋弹簧与筒式减振器结合使用。
第 7 页 共 13 页
四.常用悬置元件的介绍
2. 空气弹簧悬置 因为空气弹簧自身的一些优点,随着技术的发展空气弹簧也被越来越广泛的
应用到驾驶室悬置系统中,图 4-2 驾驶室后置空气弹簧,不过在布置方式上和螺 旋弹簧相比并没有太大的不同,空气弹簧的布置如图 4-3 所示。
图 4-2 驾驶室后置空气弹簧
橡胶都属于超弹性材料,内层橡胶和外层橡胶都起密封作
用,除了密封外,外层橡胶具有保护的作用。帘布层是帘 图 4-4 膜式空气弹簧
线橡胶复合型的材料,属于各向异性材料,用于承受囊体
剖面图
的载荷,对空气弹簧的承载能力和耐久性起着决定性作用。这就可以获得在大位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( S c h o o l o f Me c h a n i c a l E n g i n e e r i n g ,B e i j i n g I n s t i t u t e o f T e c h n o l o g y , B e i j i n g 1 0 0 0 8 1 ,C h i n a )
A B A Q U S ,a c q u i r i n g i t s n a t u r a l r f e q u e n c y a n d mo d e s h a p e s .A c c o r d i n g t o t h e l a y o u t p r i n c i p l e o f t h e
b e n c h,a n d t h e t r a n s mi s s i b i l i t y o f t he s y s t e m i s c a l c u l a t e d f r o m t he e x p e r i me n t d a t a i n MATLB. T he r e s u l t s s ho w t h a t t h e s y s t e m h a s a g o o d i s o l a t i o n e f f e c t .
Abs t r a c t :S o me f r e e mo d a l p a r a me t e r s o f t h e c a b s u s p e ns i o n f o r o n e c o mme r c i a l v e h i c l e a r e a n a l y z e d i n
尼 ;对隔振系统进 行了隔振率 台架 实验 ,通过 MA T L A B软件处 理实 验数据 得到 隔振系统 的隔振率 .结 果显示 ,
隔 振 系 统 的 隔 振 效 果 良好 .
关键词 :驾驶室悬置 ;隔振 系统 ;隔振率
中 图分 类 号 :U 4 6 3 . 3 3 文 献标 识码 :A
小 传递 给设备 的 运 动 而 采 取 的隔 振 称 为 “ 消 极 隔
收 稿 日期 :2 0 1 3一O l一1 5 . 作 者 简 介 :刘 鹏 ( 1 9 8 7一) ,男 ,硕 士 研 究 生
刘 鹏, 张振 华
( 北京 理工 大学 机 械与车辆学 院,北京 1 0 0 0 8 1 )
摘
要 :利用 A B A Q U S软件对驾驶室进行 了自由模 态分析 ,得到 了驾驶 室的 固有 频率和振 型 ;结合 隔振器 布置
原则 确定 了隔振器 的支撑方式 和布置位置 ;建立 了驾驶室 的双层隔振 系统数学模 型 ;设 计 了该 系统 的刚度 和阻
mo d e l or f t h e c a b s u s p e n s i o n i s e s t a b l i s h e d wi t h a d o u b l e — l a y e r v i b r a t i o n i s o l a t i o n c o n s t r u c t i o n,a n d t h e s t i f f n e s s a n d d a mp i n g o f t h e i s o l a t o r a r e d e s i g n e d .T h e e f f e c t i v e n e s s o f t h e s y s t e m i s e v a l u a t e d o n a t e s t
Ke y wo r d s:Ca b s u s p e n s i o n;Vi br a t i o n i s o l a t i o n s y s t e m ;Tr a n s mi s s i b i l i t y
振” ,其 传递 率是指 被 隔振 物体 的振 动 幅值 和 基 础 振 动 的幅值之 比.
2 0 1 3年 第 4期
车 辆 与 动 力 技 术
Ve hi c l e& P o we r Te c h no l o g y
第 1 6 8 7 ( 2 0 1 3 ) 0 4— 0 0 4 8— 0 5
商用 车 驾 驶 室悬 置 隔振 系统 设 计
v i b r a t i o n i s o l a t o r,b o t h i t s s u p po r t i n g me t h o d a n d t h e mo u n t i n g po s i t a o n a r e d e t e r mi n e d.A ma t h e ma t i c a l
De s i g n o f Vi b r a t i o n I s o l a t i o n S y s t e m f o r Ca b S u s pe n s i o n o f Co mm e r c i a l Ve h i c l e
LI U P e n g, Z HANG Zh e n ・ h u a
隔振 系统设 计 的基 础
2 隔振 系统 的设 计
当设备本身为振源时,安装 隔振器的 目的是为 了减 小 传 递 至 基 础 的力 ,这 样 的 隔振 称 为 “ 积 极 隔振” ,其传递率是指传递到基础的力 的幅值 与初 始 的激励 力 的幅值 之 比 ;当基 础是 振源 时 ,为 了减