功能高分子材料光敏高分子材料

合集下载

功能高分子材料第四章《光敏高分子材料》预习题(一)

功能高分子材料第四章《光敏高分子材料》预习题(一)

1. 哪些结构或基团具有光敏活性?(1)具有光敏活性的结构有:PN 结、羰⾮那烯-2,3-⼆腈⻣架、树脂等;(2)具有光敏活性的基团有:偶氮基、重氮基、叠氮基、烯基、⾁桂酰基、⾁桂叉⼄酰基、苄叉苯⼄酮基、苯⼄烯基吡啶基、α-苯基⻢来酰亚胺基、丙烯酸酯基、卟啉类低聚物(⽐如⾎卟啉、原卟啉、铁卟啉等)、呫吨类染料(⽐如荧光素、曙红、藻红、玫瑰红等)、⼀些特定的醌类化合物(⽐如苝醌类 PQP)等。

2. 光化学反应包括哪些反应?光化学反应范围很⼴,分为化合、分解、氧化、还原等化学反应,主要有光合作⽤和光解作⽤两种,其次还有光交联、光聚合、光氧化还原、光⼆聚、光分解、光异构化反应等。

(1)有机合成中的光化学反应有机合成中常⻅的光化学反应有光氧化反应、光还原反应、光聚合反应和光取代反应等。

①光氧化反应是在光照射、光敏剂作⽤下,有机物分⼦与氧繁盛的加成反应。

②光还原反应是在光催化下,有机物分⼦从供氧体中抽取氢分⼦⽽发⽣的还原反应。

③光聚合反应是单体分⼦借光的引发(或⽤光敏剂)活化成⾃由基⽽进⾏的连锁聚合。

④光取代反应常⻅的是脂肪烃的光滤代制氯代烃。

(2)环境化学中的光化学反应环境化学中的光化学反应主要有光氧化反应、光降解反应和光氧-微⽣物降解反应。

①光氧化降解反应是在光作⽤下,氧化将有机物分⼦如芳醛、芳醇和芳烃氧化为氢过氧化物。

②光氧-微⽣物降解反应需要具有光敏基团或易与微⽣物作⽤的结构。

3. 感光⾼分⼦应具备哪些性能?(1)图像特性:感光度,分光感光度,解像⼒,反差,显影性,S/N ⽐,光照时空⽓的影响;(2)涂层特性:粘着性,膜厚均⼀性,尺⼨稳定性,柔软性,⽓孔,易成膜性,耐药品性,耐电镀性,耐热性,耐⽓候性,耐刷性,印刷油墨粘附性 ;(3)化学特性:保存稳定性,组成均⼀性,不纯物含量,⽓味,安全性,易得性,可加⼯性,经济性⽔分含量,废料处理简单。

功能高分子材料课件第七章光敏高分子材料

功能高分子材料课件第七章光敏高分子材料

力学性能
硬度
光敏高分子材料通常具有一定的硬度 ,能够抵抗外部压力和摩擦力,保持 稳定的性能。
韧性
耐磨性
良好的耐磨性使光敏高分子材料能够 在长期使用中保持表面的光滑度和清 晰度。
光敏高分子材料具有一定的韧性,能 够在承受冲击和弯曲时保持完整性。
电学性能
导电性
部分光敏高分子材料具有导电性,能够传输电荷,在电场作用下 产生电学响应。
目前,研究者们正在研究如何通过合成新型的环境友好型光敏高分子材料,以实现 环保和可持续发展的目标。
THANKS FOR WATCHING
感谢您的观看
电致变色
一些光敏高分子材料在电场作用下能够发生颜色变化,从而实现 电致变色效应。
光导电性
一些光敏高分子材料在光的照射下能够导电,具有光导电性,可 用于光电转换器件。
04 光敏高分子材料的发展趋 势与挑战
新材料开发
新型光敏高分子材料的研发
随着科技的不断进步,新型光敏高分子材料不断涌现,如聚合物分散液晶、聚合 物稳定液晶等,这些新材料具有更高的光敏性能和稳定性,为光敏高分子材料的 应用拓展提供了更多可能性。
高性能光敏高分子材料
高性能光敏高分子材料是指具有 优异性能的光敏高分子材料,如 高感度、高分辨率、快速响应等

这类材料在光电子、生物医学、 信息存储等领域具有广泛的应用
前景。
目前,研究者们正在不断探索新 型的高性能光敏高分子材料,以 提高其性能并拓展其应用领域。
多功能性光敏高分子材料
01
多功能性光敏高分子材料是指具有多种功能的光敏 高分子材料,如光、电、磁等多功能一体化。
生物医学应用
光敏高分子材料在生物医学领域的应用不断拓展。利用光敏高分子材料的感光性质,可以实现光动力治疗、光热 治疗等新型治疗方法,为肿瘤治疗、皮肤病治疗等领域提供新的治疗手段。同时,光敏高分子材料还可以应用于 药物控制释放、生物成像等领域,为生物医学研究提供新的工具和手段。

浅谈:功能高分子材料分类与性能应用

浅谈:功能高分子材料分类与性能应用

浅谈:功能高分子材料分类与性能应用功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

通常,人们对特种和功能高分子的划分普遍采用按其性质、功能或实际用途划分的方法,可以将其分为八种类型。

1、反应性高分子材料包括高分子试剂、高分子催化剂、高分子染料,特别是高分子固相合成试剂和固定化酶试剂等。

2、光敏性高分子材料包括各种光稳定剂、光刻胶、感光材料、非线性光学材料、光电材料及光致变色材料等。

3、电性能高分子材料包括导电聚合物、能量转换型聚合物、电致发光和电致变色材料及其他电敏感性材料。

4、高分子分离材料包括各种分离膜、缓释膜和其他半透明膜材料、离子交换树脂、高分子絮凝剂、高分子螯合剂等。

5、高分子吸附材料包括高分子吸附树脂、吸水性高分子等。

6、高分子智能材料包括高分子记忆材料、信息存储材料和光、磁、pH值、压力感应材料等。

7、医用高分子材料包括医用高分子材料、药用高分子材料和医用辅助材料等。

8、高性能工程材料如高分子液晶材料、耐高温高分子材料、高强度高模量高分子材料、阻燃性高分子材料、生物可降解高分子和功能纤维材料等。

常见的几种功能高分子材料离子交换树脂它是最早工业化的功能高分子材料。

经过各种官能化的聚苯乙烯树脂,含有H 离子结构,能交换各种阳离子的称为阳离子交换树脂,含有OH-离子结构能交换各种阴离子的称为阴离子交换树脂。

它们主要用于水的处理。

离子交换膜还可以用于饮用水处理、海水炎化、废水处理、甘露醇、柠檬酸糖液的钝化、牛奶和酱油的脱盐、酸的回收以及作为电解隔膜和电池隔膜。

高分子催化剂催化生物体内多种化学反应的生物酶属于高分子催化剂。

它具有魔法般的催化性能,反应在常温、常压下进行,催化活性极高,几乎不产生副产物。

近十年来,国内外多有研究用人工合成的方法模拟酶,将金属化合物结合在高分子配体上,开发高活性、高选择性的高效催化剂,这种高分子催化剂称为高分子金属催化剂。

功能高分子化学-16(光敏高分子-2)

功能高分子化学-16(光敏高分子-2)

二、光致变色储存信息及可逆光调节作用的基本原理 光致变色储存信息基本原理: 理想光致变色物质作为存储介质需具有两个光吸收带,
1 状 态 1 状 态 2 2

正光致变色:λ 2> λ1 负光致变色:λ1> λ2
三、主要光致变色高分子 制备光致变色高分子的途径: • 将光致变色结构单元连接到高分子主链或侧链上 • 小分子光致变色材料与聚合物共混 1、含硫卡巴腙结构型
一、光致变色基本原理
光致变色
polymer)
光 化 学 过 程 变 色 :顺 反 异 构 反 应 、 氧 化 还 原 反 应 、 离解反应、环化反应、氢转移互变异构化反应。
photochromism
光物理过程变色:某些处于三线态的物质允许进行三线态-三线态的跃 迁,此时伴随有特征吸收光谱的变化而导致变色
N H
H 2O
N CH2
*
OCHCH2
n
*
柔性良好的聚环氧丙烷咔唑
Z N
Z=0, R =0,
R:
H , -C H M e E t, -N O 2 , -S O 3 -O (C H 2 ) 8
R
Z : -(C H 2 ) n ,
功能分离多层结构形式:
载流子传输层
载流子发生层 载流子阻挡层 铝基材
激光打印机中使用的光导材料:
偶氮类(酞菁类)化合物+ 聚合物
邻氯双偶氮颜料
光导聚合物的应用-图像传感器
图像传感器是利用利用光导电特性实现图像信息的接受与 处理。 工作原理:
光导材料: MEH-PPV与C60衍生物的复合体,聚3-辛氧基噻吩C60衍 生物的复合体等。
6、含噻嗪结构型 氧化态通常为蓝色, 还原态无色

光敏高分子材料

光敏高分子材料

光敏高分子材料1. 概述光敏高分子材料是一种特殊的高分子材料,它具有对光的敏感性,能够在受到光的照射后发生一系列化学或物理变化。

这种材料具有广泛的应用潜力,在光学、光电子学、生物医学等领域得到了广泛的关注和研究。

2. 光敏高分子材料的分类根据光敏高分子材料的结构和机理,可以将其分为以下几类:2.1 光致变色材料光致变色材料能够在受到光照后改变其颜色,这种变色效应是由于材料内部的化学或物理结构发生了改变所致。

光致变色材料有着广泛的应用,如液晶显示屏、光学存储介质等。

2.2 光敏聚合物光敏聚合物能够在受到光照后发生聚合反应,从而改变其物理或化学性质。

这种材料常用于光刻工艺、光刻胶、光纤光缆等领域。

2.3 光敏降解材料光敏降解材料可以在光照下发生分解反应,从而改变物质的性质或失去其功能。

这种材料常用于药物递送系统、可降解材料等领域。

2.4 光敏流变材料光敏流变材料在受到光照后会发生形态变化,从而改变其流变特性。

这种材料常用于可调谐光学器件、人工肌肉等领域。

3. 光敏高分子材料的制备方法光敏高分子材料的制备方法多种多样,以下是几种常见的方法:3.1 光化学方法光化学方法是通过光照下进行化学反应来制备光敏高分子材料。

这种方法可以控制反应的位置、速率和产物,具有较高的选择性和灵活性。

3.2 光修饰方法光修饰方法是将已有的高分子材料用光敏分子进行修饰,从而赋予材料光敏性。

这种方法无需从头合成材料,节省了制备成本。

3.3 模板聚合方法模板聚合方法是在模板分子的作用下进行聚合反应,制备具有特定结构和功能的光敏高分子材料。

这种方法可以控制材料的形貌和性能。

4. 光敏高分子材料的应用领域光敏高分子材料具有广泛的应用潜力,以下是几个典型的应用领域:4.1 光刻工艺光敏高分子材料可用于光刻工艺中的光刻胶,用于制备微电子器件。

其优点是可调谐性好、制备成本低,能够满足不同工艺需求。

4.2 光学存储介质光敏高分子材料可用于制备光学存储介质,实现信息的写入和读出。

功能高分子材料知识点

功能高分子材料知识点

功能高分子材料知识点功能高分子材料是一类具有特定功能或应用价值的高分子材料。

它们在现代科技、工程和生活中扮演着重要角色。

本文将介绍功能高分子材料的定义、分类以及常见的知识点。

一、定义功能高分子材料是指那些具有特殊功能或特定应用价值的高分子材料。

传统的高分子材料主要用于作为结构材料,具有良好的力学性能和化学稳定性。

而功能高分子材料则在此基础上引入了其他特殊功能,如光、电、热、磁、生物等功能,以满足不同领域的需求。

二、分类功能高分子材料可以根据其特殊功能和应用领域进行分类。

以下是常见的功能高分子材料分类:1. 光功能高分子材料:如荧光材料、光存储材料、光敏高分子材料等。

这些材料在光学器件、显示器件和光催化等方面具有重要应用。

2. 电功能高分子材料:如导电高分子材料、电致变色材料、电解质材料等。

这些材料可用于电子器件、储能装置和可穿戴设备等领域。

3. 热功能高分子材料:如热敏高分子材料、热稳定材料等。

这些材料在火焰阻燃、温度传感和热能转化等方面具有重要应用。

4. 磁功能高分子材料:如磁性高分子材料、磁性流体材料等。

这些材料在信息存储、医学诊断和磁性传感等方面有广泛应用。

5. 生物功能高分子材料:如生物降解材料、生物传感材料等。

这些材料在医学领域、环境保护和食品包装等方面具有重要应用。

三、知识点功能高分子材料的研究领域非常广泛,以下是其中一些常见的知识点:1. 结构与性能关系:功能高分子材料的特殊功能与其结构密切相关。

研究材料的分子结构和宏观性能之间的关系,可以指导材料的合成和应用。

2. 合成方法:功能高分子材料的合成涉及到多种方法,如化学合成、物理改性和生物合成等。

不同的合成方法会对材料的性能产生不同影响。

3. 表征技术:了解功能高分子材料的结构和性能需要借助于各种表征技术,如光谱分析、热分析和电子显微镜等。

掌握这些表征技术对于研究功能高分子材料至关重要。

4. 应用领域:功能高分子材料在各个领域都有广泛应用。

功能高分子材料课件第七章光敏高分子材料

功能高分子材料课件第七章光敏高分子材料

2019/9/18
材料
19
能 量
2019/9/18
A
成键轨道

=
2
A
-

B
B

=
1
A
+

B
A A-B
B
(孤立原子)(分子) (孤立原子)
轨道能量和形状示意图
材料
( * ) 2
( ) 1
2 (* ) 1 ( )
20
下面仅举甲醛分子的例子来说明各种化学键。 O
HC H
第七章 光敏高分子材料
2019/9/18
材料
1
7.1 概述
光敏性高分子(photosensitive polymer,
light-sensitive polymer)又称感光性高分子,
是指在吸收了光能后,能在分子内或分子间产生
化学、物理变化的一类功能高分子材料。而且这
种变化发生后,材料将输出其特有的功能。从广
2019/9/18
材料
7
感光性高分子作为功能高分子材料的一个重要分支, 自从1954年由美国柯达公司的Minsk等人开发的聚乙烯 醇肉桂酸酯成功应用于印刷制版以后,在理论研究和推 广应用方面都取得了很大的进展,应用领域已从电子、 印刷、精细化工等领域扩大到塑料、纤维、医疗、生化 和农业等方面。
2019/9/18
移动 宽
>10-6s(长) 10-3s(短)
π →π* 180nm(短)
>1000 给电子基团使吸收波长向红移
动 窄 10-7~10-9s(短) 10-1~10s(长)
2019/9/18
材料
31
根据这些性质上的差别,可帮助我们推测化学 反应的机理。例如,甲醛分子的模式结构图为:

功能高分子材料

功能高分子材料

第一章绪论性能:材料对外部作用的抵抗特性。

高性能高分子材料:对外部作用有特别强的抵抗能力的高分子材料。

功能高分子材料:是指当有外部刺激时,能通过化学或物理的方法做出响应的高分子材料。

(具有特殊物理化学性质的的材料)通用(常规)高分子材料:应用面广、量大,价格较低。

eg:纤维、塑料、橡胶、涂料、粘合剂。

特种高分子材料:功能高分子材料属于特种高分子材料最早的功能高分子是合成的酚醛型离子交换树脂。

一般采用按其性质、功能或实际用途对功能高分子材料进行分类:1. 反应型高分子材料(包括高分子试剂、高分子催化剂等;)2. 光敏型高分子(包括光稳定剂、光刻胶、光致变色材料等。

)3. 电性能高分子材料(包括导电聚合物、能量转换型聚合物、电致发光和电致变色材料以及其他电敏感性材料等。

)4. 高分子分离材料(包括各种分离膜、缓释膜和其他半透性,膜材料、离子交换树脂、高分子螯合剂、高分子絮凝剂等。

)5. 高分子吸附材料(高分子吸附性树脂、高吸水性高分子、高吸油性高分子等。

)6. 高分子智能材料(高分子记忆材料、信息存储材料和光、磁、pH、压力感应材料等。

)7. 医药用高分子材料(医用高分子材料、药用高分子材料和医药用辅助材料等。

)8. 高性能工程材料(高分子液晶材料,耐高温高分子材料、高强高模量高分子材料、阻燃性高分子材料和功能纤维材料、生物降解高分子等。

)!!!功能高分子材料的制备策略功能型小分子材料的高分子化、已有高分子材料的功能化、多功能材料的复合。

功能型小分子材料的高分子化的实现途径:①化学键连接的化学方法,如共聚、均聚等(举例1:丙烯酸,可用于制备离子交换树脂、高吸水性树脂等。

举例2:含双键的环氧丙烯酸酯,广泛用于制备功能性粘合剂。

)②物理方法,如共混、吸附、包埋等。

(维生素C微胶囊)(1)带有功能型基团可聚合单体的聚合法——包括两步骤。

(a)在功能性小分子中引入可聚合基团,或在含有可聚合基团单体中引入功能性基团;(b)进行均聚或共聚反应生成功能聚合物。

光敏高分子材料

光敏高分子材料

二、光敏涂料的组成与性能关系
• 光敏涂料的组成不涂层的性能关系密切,主要成份包括预聚物、光引 发剂、交联剂、热阻聚剂和光敏剂等。涂料的性能包括流平性、力学 性能、化学稳定性、光泽、黏结力和固化速度等。

1、流平性能
– 指涂料被涂刷后,其表面在张力作用下迅速平整光滑的过程。
– 影响因素:黏度、表面张力、润湿度 (取决于涂料的化学组成)
• 2、光引发剂不光敏剂
– 选择依据:光源的波长和涂料的种类
• 3、环境条件的影响
– 空气中的氧气有阻聚作用,在惰性气氛中有利于固化反应; – 环境气氛对光源的吸收作用,特别是采用紫外光时; – 温度
四、光敏胶
• 光敏胶也称为感光胶黏剂,是一种光能固化的胶黏剂,其作 用原理不光敏涂料相同。 • 优点:使用溶剂少,对环境污染小;
一、高分子光物理和光化学基本原 理
• 包括高分子在内的许多物质吸收光子以后,可以从 基态跃迁到激发态,处在激发态的分子容易发生各 种变化 • 光聚合反应或者光降解反应——光化学 • 光致发光或者光导电现象——光物理学
一、高分子光物理和光化学基本原理
光吸收和分子的激发态 • 光具有波粒二象性,同时光有具有能量,其能量 表达式为:
二、正性光致抗蚀剂
• 正性光致抗蚀剂的作用原理,主要发生光降解反应 或其他类型的光化学反应,反应的结果是光的溶解 性能提升或溶解属性发生改变,从而使曝光部分在 随后的显影过程中被除去。 • 酸催化酚醛树脂(油溶性——水溶性) • 深紫外光致抗蚀剂(键断裂)——甲基丙烯酸甲酯
优点:光刻精度大大提高
• 电子束和X射线光刻胶
应 用
• 光加工工艺是指在被加工材料表面涂覆保护用光刻胶,根据加
工要求,对保护用光刻胶进行选择性光化学处理,是部分区域

功能高分子光敏高分子材料

功能高分子光敏高分子材料

功能高分子光敏高分子材料功能高分子光敏材料是一类具有独特光学性能的高分子材料。

它们能够根据光的激发而表现出特定的物理和化学性质,可应用于激光技术、光电子器件、光学存储器、光纤通信等领域。

下面将介绍几种常见的功能高分子光敏材料及其应用。

第一种是光聚合型高分子光敏材料。

这类材料能够通过紫外线或可见光的照射而发生链式聚合反应,形成高分子聚合物。

它们具有良好的溶解性、可塑性和光学性能,能够在光敏体中形成图案,并通过光聚合反应实现微纳米结构的制备。

这种材料常被应用于微电子器件、微透镜、微流控芯片等领域。

第二种是内照射型高分子光敏材料。

这类材料在紫外光的照射下能够产生具有活性的能量器件,从而引发光致反应。

它们通常用于光纤通信、光学存储器、激光印刷等领域。

内照射型高分子材料具有响应速度快、能耗低、可重复使用等优点,使得其在信息存储与处理、光学传感等领域具有广阔的应用前景。

第三种是光捕捉型高分子光敏材料。

这类材料可以吸收光能并将其转化为化学能或电能。

例如,光电池材料能够通过吸收可见光或太阳光的能量,将其转化为电能。

这种材料在可再生能源和光化学催化等领域有着广泛的应用。

第四种是光控制型高分子光敏材料。

这类材料能够在光的刺激下发生可逆光学响应,实现形状、光学性能以及自组装行为的可逆调控。

它们常被应用于光学器件、光学存储器以及可编程光子学等领域。

这种材料的可调控性和可重复性使其具有广阔的应用前景。

除了以上提到的几种功能高分子光敏材料外,还存在许多其他类型的高分子光敏材料,如光致变色型、光敏粒子型、光敏纳米材料等。

每种材料具有不同的特点和应用领域,但它们共同具有光敏性,能够在光的刺激下发生特定的物理或化学变化。

综上所述,功能高分子光敏材料是一类具有光敏性能,能够在光的照射下产生特定物理或化学变化的高分子材料。

它们在激光技术、光电子器件、光学存储器、光纤通信等领域具有广泛的应用前景。

随着科技的不断发展,功能高分子光敏材料的研究和应用将会得到更加广泛的关注和应用。

光敏高分子

光敏高分子

❖㈠光交联型
❖ 采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键 被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起 到抗蚀作用,这是一种典型的负性光刻胶。柯达公司的产品KPR胶即属
此类。
❖负性光刻胶
❖ 树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲 苯;感光剂是一种经过曝光后释放出氮气的光敏剂, 产生的自由基在橡胶分子间形成交联。从而变得不 溶于显影液。负性光刻胶在曝光区由溶剂引起泡涨; 曝光时光刻胶容易与氮气反应而抑制交联。
5)粘结力:涂层和低物的粘结力 影响:相容性,界面接触程度,涂层表面张力,固化条件。
三. 感光高分子体系的设计与构成 从高分子设计角度考虑,首先引入感光性化合物(基团),形式如下:
1)将感光性化合物加入到高分子中:
线性高分子 小分子感光化合物
物理混合
感光高分子
线性高分子:含有活泼氢的线性高分子 含有双键的不饱和高分子
例如:光二聚交联抗蚀剂
❖ 聚肉桂酸酯类光刻胶。在之外光线下发生光 交联反应,常加入5-硝基厄、芳香酮作增感 剂,是良好的负性光刻胶。
再如:环化橡胶抗蚀剂
❖ 环化橡胶双叠氮体系光刻胶,也是一种负性 光刻胶。是利用芳香族双叠氮化合物作为环 化橡胶的交联剂,属于聚合物加感光化合物 型光刻胶。
❖ 叠氮类化合物在紫外光照射下发生分解,析 出N2,并产生氮烯(nitrenen,RN:),它 有很强的反应能力,可向不饱和键加成,还 可插入C-H和进行偶合。
光敏高分子的分类:
(1)光敏涂料: 当聚合物在光照射下可以发生光聚合或光交联反应,有快速光 固化性能。
(2)光成像材料(光刻胶photoresist——印刷线路板、印刷板) 在光的作用下可以发生光化学反应(光交联或降解),反应后溶 解性能发生显著变化的聚合材料,具有光加工性能,可以作为成 像体系的光敏材料。

功能高分子材料有哪些

功能高分子材料有哪些

功能高分子材料有哪些
功能高分子材料是一类性能优异、具有特定功能的高分子材料,它们在各个领域都有着重要的应用价值。

下面将介绍一些常见的功能高分子材料及其特点。

首先,我们来谈谈功能高分子材料中的一种——聚合物凝胶材料。

聚合物凝胶材料是一种具有三维网状结构的高分子材料,其特点是具有大量的孔隙结构,表面积大、吸附性能好、机械性能优异。

由于其孔隙结构的特殊性质,聚合物凝胶材料在吸附分离、催化剂载体、药物控释等方面有着广泛的应用。

其次,功能高分子材料中的另一种常见类型是形状记忆高分子材料。

形状记忆高分子材料是一种具有形状记忆性能的高分子材料,其特点是可以在外界刺激下发生形状变化,并且在去除外界刺激后能够恢复原来的形状。

这种材料在医疗器械、纺织品、航空航天等领域有着广泛的应用前景。

另外,还有一种功能高分子材料——导电高分子材料。

导电高分子材料是一类具有导电性能的高分子材料,其特点是具有良好的导电性能、柔韧性和加工性能。

这种材料在电子器件、光伏领域、传感器等方面有着广泛的应用。

此外,功能高分子材料中还包括生物可降解高分子材料、光敏高分子材料、自修复高分子材料等多种类型。

这些材料在环保、医疗、光学等领域都有着重要的应用价值。

综上所述,功能高分子材料具有多种类型和广泛的应用领域,它们在材料科学领域发挥着重要作用。

随着科学技术的不断发展,功能高分子材料的研究和应用将会更加广泛,为人类社会的发展做出更大的贡献。

什么是功能高分子材料

什么是功能高分子材料

什么是功能高分子材料功能高分子材料是一类具有特殊功能和性能的高分子材料,它们在各个领域都有着广泛的应用。

功能高分子材料通常具有特定的结构和性能,可以通过调整其分子结构和组成来实现特定的功能。

在材料科学领域,功能高分子材料已经成为一个研究热点,其在能源、医药、电子、环保等领域的应用也越来越广泛。

首先,功能高分子材料在能源领域具有重要的应用价值。

例如,聚合物电解质是一种重要的功能高分子材料,它被广泛应用于锂离子电池和燃料电池中,可以提高电池的性能和安全性。

另外,光敏高分子材料在太阳能电池中也有着重要的应用,可以将太阳能高效地转化为电能。

其次,功能高分子材料在医药领域也具有重要的应用前景。

例如,生物可降解高分子材料可以用于制备缝合线和修复材料,可以在人体内逐渐降解,避免二次手术。

另外,聚合物药物传递系统也是功能高分子材料的重要应用之一,可以实现药物的缓释和靶向输送,提高药物的疗效并减少副作用。

此外,功能高分子材料在电子领域也有着重要的应用。

例如,导电高分子材料可以用于制备柔性电子产品,如柔性显示屏、柔性电路板等,可以实现电子产品的轻薄化和柔性化。

另外,光电功能高分子材料也可以用于制备光电器件,如光电传感器、光电开关等,可以实现光信号的转换和控制。

最后,功能高分子材料在环保领域也有着重要的应用。

例如,吸附高分子材料可以用于水处理和废气治理,可以有效去除水中的有机污染物和废气中的有害气体。

另外,生物降解高分子材料也可以用于替代传统塑料制品,减少对环境的污染。

总的来说,功能高分子材料具有多样的结构和性能,可以通过合理设计和调控来实现特定的功能。

它们在能源、医药、电子、环保等领域都有着重要的应用价值,对于推动科技进步和改善人类生活质量起着重要作用。

随着材料科学的不断发展,相信功能高分子材料的应用前景会更加广阔。

功能高分子材料

功能高分子材料

功能高分子材料的分类按照性质和功能分为7种:反应型高分子材料:包括高分子试剂、高分子催化剂和高分子染料,特别是高分子固相合成试剂和固定化酶试剂等。

光敏型高分子:包括各种光稳定剂、光刻胶,感光材料、非线性光学材料、光导材料和光致变色材料等。

电活性高分子材料:包括导电聚合物、能量转换型聚合物、电致发光和电致变色材料以及其他电敏感性材料等。

膜型高分子材料:包括各种分离膜、缓释膜和其他半透性膜材料、离子交换树脂、高分子螯合剂、高分子絮凝剂等。

吸附型高分子材料:包括高分子吸附性树脂、高吸水性高分子、高吸油性高分子等。

高分子智能材料:包括高分子记忆材料、信息存储材料和光、磁、pH、压力感应材料等。

高性能工程材料:如高分子液晶材料,耐高温高分子材料、高强高模量高分子材料、阻燃性高分子材料和功能纤维材料、生物降解高分子等按用途分类:医药用高分子材料、分离用过高分子材料、高分子化学反应试剂、高分子染料。

反应型高分子材料高分子试剂:氧化还原型试剂,卤代试剂,酰化试剂,烷基化试剂,亲核试剂,亲电试剂,固相合成试剂。

高分子反应试剂——小分子试剂经高分子化,在某些聚合物骨架上引入反应活性基团,得到具有化学试剂功能的高分子化合物。

特点:在反应体系中不溶解,易除去;立体选择性好;稳定性好;特殊应用,固相反应载体。

高分子催化剂——将小分子催化剂通过一定的方法与高分子骨架结合,得到的具有催化活性的高分子物质。

反应型高分子试剂优点:不溶性;多孔性;高选择性;化学稳定性;可回收再利用。

催化反应按反应体系的外观特征分为两类:①均相催化反应:催化剂完全溶解在反应介质中,反应体系成为均匀的单相。

②多相催化反应:与均相催化反应相反,在多相催化中催化剂自成一相,反应过后通过简单过滤即可将催化剂分离回收。

高分子催化剂种类:高分子酸碱催化剂;高分子金属络合物;高分子相转移催化剂;固定化酶。

固相反应生物活性大分子一般合成很慢,Merrifield利用固相合成大大缩短合成时间。

光敏高分子

光敏高分子

2)不饱和聚酯unsaturated polyester: 为了引入双键,以不饱和羧酸衍生物与二元醇缩合生成酯类。
3)聚醚(polyether)\聚酯(polyester): 由环氧化合物与多元醇缩聚而成,游离羟基为光交联点,粘度低, 价格低。
二. 光敏涂料的组成与性能关系
光敏涂料的组成与涂层的性能关系密切。
1)流平性:涂料被涂刷之后,其表面在张力作用下迅速平整光滑 的过程。
影响:涂料粘度,表面张力,润湿度
稀释 剂
表面活 性剂
2)机械性能:包括形成涂料膜的硬度、韧性、耐冲击力、柔顺性。 影响:树脂种类,光交联度(聚合度)
3)化学稳定性:涂膜的耐化学品、抗老化能力。 影响:化学组成
4)涂层光泽:低光、哑光、高光
2)在高分子主链或侧链引入感光基团:这一方法应用前景看好, 稳定性好,感光性能佳。
3)由多种组分构成的光聚合体系:
① 将下列光敏基团引入各种单体或预聚体中: 乙烯基vinyl、丙烯酰基acryloyl、烯醛olefine aldehyde、 缩水甘油(酯)基glycidyl ester等。
② 再加入光引发剂、光敏剂、抗氧剂、偶联剂等各种组分配 成。配方可根据应用进行调整,特别适于光敏涂料、光敏 粘合剂、光敏油墨。
(7)光致变色材料photochromic material: 在光的作用下其吸收波长发生明显变化,从而材料外观颜色 发生变化的高分子材料。
光刻胶
❖ 一.光刻胶的定义(photoresist)

光刻胶(英语:photoresist),亦称
为光阻或光阻剂,是指通过紫外光、深紫外
光、电子束、离子束、X射线等光照或辐射,
其溶解度发生变化的耐蚀刻薄膜材料,是光

功能高分子化学-15(光敏高分子-1)

功能高分子化学-15(光敏高分子-1)

概述-高分子光物理和光化学原理
1. 光吸收和分子的激发态
E h hc

I :投射光强
光吸收的程度: I01 0
cl
或 lg
I0 I
Io : 入 射 光 强
cl
:摩尔消光系数
c :分子摩尔浓度 l:光 程 长 度
分子吸收光的性质取决于分子的结构. 激发光量子效率:生成激发态的数量与物质吸收光子 的数目之比。
四、其他感光性化合物+高分子
• 有机卤化物
• 芳香族硝基化合物
*
CH2
CH
n
*
O C O C H -C H C 6H 5
hr
C 6H 5C H -C H C O O
*
CH2
CH
n
*
肉桂酰氯也可与其他含羟基的高分子化合物(酚醛树脂、环氧树 脂、聚甲基丙烯酸羟乙酯、苯乙烯)制备感光性高分子
在反应过程中能产生感光基团的结构。
*
CH2
CH
n
*
+
CHO R
*
CH2
CH
*
O C H 2 -C H
* * n
C H 2 - O -C -C H = C H O
主链型感光高分子
O HO CH=CH C O
*
OH
+ C lO 2 S
S O 2C l
O
C H=CH
C
O
SO2
SO2
n
*
光敏高分子材料-光敏化合物+高分子化合物
由感光性化合物与高分子化合物混合而成。 一、重铬酸盐+亲水性高分子
将发色基团引入高分子链中 制备光降解高分子的方法 将自由基引发剂混入聚合物中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学键 C-H H-H O-H C=C
键能 /(kJ/mol)
413.4 436.0 462.8 607
2020/2/10
材料
13
2 光的吸收 发生光化学反应必然涉及到光的吸收。光的吸
收一般用透光率来表示,记作T,定义为入射到体 系的光强I0与透射出体系的光强I之比:
T I Io
(7-3)
如果吸收光的体系厚度为l,浓度为c,则有:
2020/2/10
材料
5
光刻胶是微电子技术中细微图形加工的关键材 料之一。特别是近年来大规模和超大规模集成电路 的发展,更是大大促进了光刻胶的研究和应用。
2020/2/10
材料
6
感光性粘合剂、油墨、涂料是近年来发展较快 的精细化工产品。与普通粘合剂、油墨和涂料等相 比,前者具有固化速度快、涂膜强度高、不易剥 落、印迹清晰等特点,适合于大规模快速生产。尤 其对用其他方法难以操作的场合,感光性粘合剂、 油墨和涂料更有其独特的优点。例如牙齿修补粘合 剂,用光固化方法操作,既安全又卫生,而且快速 便捷,深受患者与医务工作者欢迎。
E h h c
(7-1)
其中,h为普朗克常数(6.62×10-34 J·s)。 在光化学中有用的量是每摩尔分子所吸收的能
量。假设每个分子只吸收一个光量子,则每摩尔分 子吸收的能量称为一个爱因斯坦(Einstein),实 用单位为千焦尔(kJ)或电子伏特(eV)。
2020/2/10
材料
2020/2/10
材料
7
感光性高分子作为功能高分子材料的一个重要分支, 自从1954年由美国柯达公司的Minsk等人开发的聚乙烯 醇肉桂酸酯成功应用于印刷制版以后,在理论研究和推 广应用方面都取得了很大的进展,应用领域已从电子、 印刷、精细化工等领域扩大到塑料、纤维、医疗、生化 和农业等方面。
2020/2/10
材料
8
一、光化学反应的基础知识
1. 光的性质和光的能量 物理学的知识告诉我们,光是一种电磁波。在
一定波长和频率范围内,它能引起人们的视觉,这 部分光称为可见光。广义的光还包括不能为人的肉 眼所看见的微波、红外线、紫外线、X 射线和γ射 线等。
2020/2/10
材料
9
在光化学反应中,光是以光量子为单位被吸收 的。一个光量子的能量由下式表示:
2020/2/10
材料
16
光化学第二定律: ( Stark—Einstein定律) 一个分子只有在吸收了一个光量子之后,才能
发生光化学反应。(吸收一个光量子的能量,只可 活化一个分子,使之成为激发态)
2020/2/10
材料
17
4 分子的光活化过程 从光化学定律可知,光化学反应的本质是分子
吸收光能后的活化。当分子吸收光能后,只要有足 够的能量,分子就能被活化。
lg T lg I Io lc (7-4)
2020/2/10
材料
14
其中,ε称为摩尔消光系数。它是吸收光的物 质的特征常数,也是光学的重要特征值,仅与化合 物的性质和光的波长有关。
一个概念: 发色团:在分子结构中能够吸收紫外和可见光的基团
2020/2/10
材料
15
3 光化学定律 光化学第一定律(Gtotthus-Draper定律): 只有被吸收的光才能有效地引起化学反应。
分子的活化有两种途径,一是分子中的电子受 光照后能级发生变化而活化,二是分子被另一光活 化的分子传递来的能量而活化,即分子间的能量传 递。下面我们讨论这两种光活化过程。
600
201
X射线
10-1
106
500
239
γ射线
10-3
108
2020/2/10
材料
12
表7-2化学键键能
化学 键
键能 /(kJ/mol)
化学 键
O-O
138.9
C-Cl
N-N
160.7
C-C
C-S
259.4
C-O
C-N
291.6
N-H
键能 /(kJ/mol)
328.4 347.7 351.5 390.8
义上讲,按其输出功能,感光性高分子包括光导
电材料、光电转换材料、光能储存材料、光记录
材料、光致变色材料和光致抗蚀材料等。
2020/2/10
材料
2
例如:
光交联:光敏涂料、光敏油墨、负性光刻胶 光照下发生结构异构(顺式-反式):光致变色 材料 ………………
2020/2/10
材料
3
其中开发比较成熟并有实用价值的感光性高分 子材料主要有光致抗蚀材料和光致诱蚀材料,产 品包括光刻胶、光固化粘合剂、感光油墨、感光涂 料等。
第七章 光敏高分子材料
2020/2/10
材料
1
7.1 概述
光敏性高分子(photosensitive polymer,
light-sensitive polymer)又称感光性高分子,
是指在吸收了光能后,能在分子内或分子间产生
化学、物理变化的一类功能高分子材料。而且这
种变化发生后,材料将输出其特有的功能。从广
10
1Einstein Nhv Nhc /
1.197 10 5 kJ 1.24 10 3 (eV)
(nm)
(nm)
(7-2)
其中,N为阿伏加德罗常数(6.023×1023)。 用公式(7-2)可计算出各种不同波长的光的能 量 (表7-1)。作为比较,表7-2中给出了各种化学 键的键能。由表中数据可见,λ=200~800nm的紫 外光和可见光的能量足以使大部分化学键断裂。
2020/2/10
材料
11
表7-1 各种波长的能量
光线名称 波长 /nm 能量 /kJ 光线名称
微 波 106~107 10Байду номын сангаас1~10-2
红外线 103~106 10-1~102 紫外线
可见光
800
147
波长 /nm 400 300 200
能量 /kJ 299 399 599
700
171
100
1197
本章中主要介绍 光致抗蚀材料、光致诱蚀材料 光敏涂料
2020/2/10
材料
4
光致抗蚀,是指高分子材料经过光照后,分子结 构从线型可溶性转变为网状不可溶性,从而产生了 对溶剂的抗蚀能力。而光致诱蚀正相反,当高分子 材料受光照辐射后,感光部分发生光分解反应,从 而变为可溶性。目前广泛使用的预涂感光版,就是 将感光材料树脂预先涂敷在亲水性的基材上制成的。 晒印时,树脂若发生光交联反应,则溶剂显像时未 曝光的树脂被溶解,感光部分树脂保留了下来。反 之,晒印时若发生光分解反应,则曝光部分的树脂 分解成可溶解性物质而溶解。
相关文档
最新文档