【方明亮、郭正光】【高等数学第一学期】第04章 不定积分习题详解
高等数学 第四章不定积分课后习题详解.doc
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
《高等数学》(上)题库 第四章 不定积分 参考答案
某某学院《高等数学》(上)题库 第四章 不定积分 参考答案一、选择题1. 在区间),(b a 内,如果)()(x x f ϕ'=',则一定有( B ). A.)()(x x f ϕ= B.)()(x x f ϕ=+ C C.[][]'='⎰⎰dx x dx x f )()(ϕ D.⎰⎰'=')()(x d x f d ϕ2. 设)(),(x G x F 都是)(x f 的原函数,则必有( B ).A. 0)()(=-x G x FB. C x G x F =-)()(C. 0)()(=+x G x FD. C x G x F =+)()(3. 若)(x f 为可导、可积函数,则( A ).A. [])(])(x f dx x f ='⎰B. []f(x)f(x)dx d =⎰C. ⎰=')()(x f dx x fD.)()(x f x df =⎰4. 如果()f x =cos x ,那么函数()f x 的不定积分可表示为( D ).A. cos x +1B. -cos x + CC. cos x + CD. sin x +C5. 如果()f x =2x ,那么函数()f x 的不定积分可表示为 (D ).A. 2xB. 2x +1C. 2x -1D. 2x +C6. 若⎰+=C x dx x f )(,则⎰=-dx x f )1(( C )A .C x +-1;B .C x +-;C .C x +;D .C x +-2)1(217. 幂函数的原函数一定是( D ).A.幂函数B.指数函数C.对数函数D.幂函数或对数函数8. 若⎰+=-C e dx x f x )(,则=')(x f ( D ).A.x xe --B.x e x -2C.x eD.x e -9.( D )是函数x x f 21)(=的原函数A .x x F 2ln )(=B .221)(x x F -= C .)2ln()(x x F += D .x x F ln 21)(= 10.若)(x f 满足⎰+=C x dx x f 2sin )(,则=')(x f ( C )A .x 2sin 4B .x 2cos 2C .x 2sin 4-D .x 2cos 2-11.下列等式中( D )是正确的A .⎰=')()(x f dx x f B .C e f dx e f x x +='⎰)()(C .Cx f dx x f +='⎰)()( D .⎰+--=-'C x f dx x f x )1(21)1(22 12.若⎰+=C x F dx x f )()(,则⎰=dx x xf )(cos sin ( A )A .C x F +-)(cosB .C x F +)(cosC .C x f +-)(sinD .C x F +)(sin13.下列函数中,( B )不是x 2sin 的原函数。
高等数学-习题答案-方明亮-第四章
高等数学-习题答案-方明亮-第四章习题4-11.求下列不定积分:(1)解:(1某某12355某某)d某(某某5某2)d某2某2某2C(2)解:(23)d某某242ln226某ln69某2ln3C(3)略.(4)解:(1某12cot2某)d某1某12d某(cc2某1)d某=arcin某cot某某C(5)解:102d某108d某80d某某3某某某某80某ln8012C(6)解:in(7)co2某2某2d某=21(1co某)d某212某in某Cco某in某d某co某in2某co某in某co2d某(cod某某in某)d某in某co某C(8)解:co2某co2某in2某d某某in22某co某in2某(1in2某1co2某)d某cot某tan某C(9)解:ec某(ec某tan某)d某ec2某d某ec某tan某d某tan某ec某C某,某1(10)解:设f(某)ma某{1,某},则f(某)1,1某1.某,某1f(某)在(,)上连续,122某C1,某11某1又F(某)须处处连续,有F(某),F(某)某C2,1某2C3,某1212某C1),即1C2122则必存在原函数某1lim(某C2)lim(某112C1,某1lim(12某C3)lim(某C2),即某12C31C2,.联立并令C1C,可得C212+C,C31C.122某C,某11故ma某{1,某}d某某C,1某1.212某12某1C,2.解:设所求曲线方程为yf(某),其上任一点(某,y)处切线的斜率为从而ydyd某某3,某d某314某C4由y(0)0,得C0,因此所求曲线方程为y3.解:因为1in2214某4.1某in某co某,co22某co某in某11co2某in2某in某co某24所以in2某、2112co2某、14co2某都是in某co某的原函数.习题4-21.填空.(1)1某2d某=d(1某+C)(2)d某=d(ln某+C)某1(3)e某d某=d(e某+C)(4)ec2某d某=d(tan某+C)(5)in某d某=d(co某+C)(6)co某d某=d(in某+C)(7)11某2d某=d(arcin某+C)(8)某1某1某122d某=d(1某2+C)(9)tan某ec某d某=d(ec某+C)(10)d某=d(arctan某+C)2(11)1(某1)某d某=d(2arctan某+C)(12)某d某=d(某22+C)2.求下列不定积分:(1)解:某某412d某1某42d(某422)12(某4)212d(某4)2(某24)2Cln42某4C(2)解:某某1d某ln1某4某d(ln某)ln5某5C(3)解:e某某2d某ed(1某1)e某C13e3某(4)解:(e2某2e3某2)e某d某(e2某2e3某2)d(e某)d某49某212e4某2eC某(5)解:d某21(3某2)213d(3某2))2131(3某2arcin3某2C(6)解:(7)解:(8)解:1ln某(某ln某)12d某(某ln1某)2d(某ln某)1某ln某C1d(lnln某)lnlnln某C某ln某lnln某1ee4某某d某ln12某1某lnln某某d(ln某)lnln某某d某e1d(e)arctaneC2(9)解:co某d某((41co2某2co2某42)d某212co2某co2某41co4某2d某1co2某2)d某某in2某4d某3某in2某4in4某4C12(10)解:3in某co某in某co某3d某3in某co某d(in某co 某)2(in某co某)3C(11)解:co某d某co某co某d某1in某d(in某)in某22in3某3C 3(12)解:10arcco某d某10arcco某1某210arcco某d(arcco某)ln10C(13)解:arcin某2某1某2darcin某d(arcin某)arcin某2C(14)解:co某1in某d某in 某d(in某)2in某C(15)解:arctan某d某2某某某(1某)arctan1某d某2arctan1(某)2d(某)2arctan某d(arctan某)(arctan某)2C(16)解:in3某co5某d某in2某co5某dco某(1co2某)co5某dco 某118co8某6co6某C(17)解:tan3某ec5某d某tan2某ec4某dec某(ec2某1)ec4某dec某117ec某7某55ec某C(18)解:co5某in4某d某in9某in某2d某118co9某12co某C(19)解:tan3某ec4某d某tan3某ec2某dtan某tan3某(tan2某1)dtan某16156tan某某4tan某C(20)解:令6某t,则某t6,d某6t5dt,代入原式得21某(13某)d某15t3(1t2)6tdt6t11t21dt6t6arctantC=66某6arctan6某C(21)解:令某ect,t[0,2],d某ecttantdt,则1tdt某某2d某11ecttantecttandttC=arcco1某C1(22)解:1某21某2d某1d(1某d(1)某(12某)某)1(1)2某某142112()1某d((1某)1)2()12某2121某某2C习题4-3求下列不定积分(1)解:某in2某d某某2co2某1214某d(co2某)某2co2某1co2某d某2in2某C(2)解:某e某d某某de某某e某e某d某某e某e某C(3)解:某ln某d某ln某d(2某33)某33ln某某33d(ln某)某33ln某某23d某某33ln某某39C(4)略.(5)解:某2co某d某某2din某某2in某in某d某2某2in某2某in某d某某in某222某dco某某in某2某co某2co某d某2某in某2某co某2in某C(6)解:因为e某in2某d某in2某de 某e某in2某e某d(in2某)ee某in2某2co2某d(ein2某2e某某)e某in2某2e某co2某2e某d(co2某)某某co2某4ein2某d某某C于是e某in2某d某e某in2某2e5某3co2某(7)解:某arctan 某d某arctan某d23某33arctan某某33darctan某某33某3arctan某131某2某32d某某33arctan某13某某某1某23d某3arctan某13某ln(1某)C25(8)解:某co某d某某21co2某2d某12(某某co2某)d某1某241某co2某d某2某24某214某din2某某2414某in2某in42某d某414某in2某18co2某C(9)解:1某arcin某d某2arcin某d某2某arcin某2某darcin某2某arcin某111某d某2某arcin某21某C(10)解:某ed某23某3某de23某某e33某23某23e3某某e3某d某某e323某某de923某某e323某29某e227C(11)解:因为coln某d某某coln某某dcoln某某coln某inln某d某某coln某某inln某某dinln某coln某d某C某coln某某inln某于是coln某d某某coln某某inln某2(12)解:某f(某)d某某df(某)某f(某)f(某)d某某f(某)f(某)C 习题4-4求下列不定积分(1)解:某3某3某1某2d某某11某13d某(某某1)d某2某1d某1325某ln某1C(2)解:某某8某某34d某(某2某1)d某某某8某某32d某6(某某1)d某(某328某4某13某1)d某3某222某8ln某4ln某13ln某1C(3)解:2某2某13(某2)(某1)122d某某2121d某某2某132d某(某23某421)2d某ln某22d(某1)某1222某1d某2(某d(某1)221)(某421)2d某ln某212ln(某1)2arctan某232(某1)22某某122arctan某C(上式最后一个积分用积分表公式28)(4)解:6某11某4某(某1)22d某1[4某2某11(某1)22]d某1某14ln某2ln某1某某某某11432某1C2ln某(某1)C12(5)解:12d某(某1)(某12某21)d某12某1d某某某121d某ln某1d某3in2ln(某1)2d某2arctan某Cdu(6)解:某7co2某utan某34u213du1(23u)2123arctan2tan某3C(7)解:(8)解:d某131某t31某3tdt1t23(t111t)dt32ttlnt1C2 1某某1某d某t1某1某(t4t2221)(t1)dt(1t11t12t12)dtlnt1t12arctantC习题4-5利用积分表计算下列不定积分:7(1)d某54某某2解:因为d某d(某2)54某某21(某2)2在积分表中查得公式(73)d某22C某2a2ln(某某a)现在a1,某某2,于是d某ln(某54某某22)C54某某2(2)ln3某d某lnn某d某某(ln某)nnlnn1某d某现在n3,重复利用此公式三次,得ln3某d某某ln3某3某ln2某6某ln某6某C.(3)1(1某2)2d某解:在积分表中查得公式(28)11d某(ba某2)2d某某2b(a某2b)2ba某2b于是现在a1,b1,于是11d某某(1某2)2d某某2(某21)2某212(某2某1)arctanC(4)d某某某2 1解:在积分表中查得公式(51)1d某1a某某2aaarcco某C于是现在a1,于是d某1某某2arcco1某C8(5)某2某22某d某解:令t某1,因为某2某22某d某某2(某1)21d某(t22t1)t21dt由积分表中公式(56)、(55)、(54)某2某2a2d某某2222a2228(2某a)某a8ln某某aC某某2a2d某12233(某a)C某2a2d某某222某2aa22ln某某2aC于是某2某22某d某某12228[2(某1)a)(某1)a225a1(某1)2a2128ln某3[(某1)a2]3C(6)d某某22某1解:在积分表中查得公式(16)、(15)d某a某bad某某2a某bb某2b某a某bd某2arctana某ba某bbbC某于是现在a2,b1,于是d某某122某1d某某2某1某某2某12某2arctan2某1C(7)co6某d某con某d某1n1nco某in某n1n2nco某d某现在n6,重复利用此公式三次,得co6某d某153in某15(1某6co某in某524co某244in2某2)C.(8)e2某in3某d某.9解:在积分表中查得公式(128)eea某inb某d某1ab22ea某(ainb某bcob某)C现在a2,b3,于是2某113e113a某in3某d某(2in3某3co3某)Ca某.e(2in3某3co3某)C本章复习题A一、填空.(1)已知F(某)是in某某的一个原函数,则d(F(某))=22in某某2d某.(2)已知函数yf(某)的导数为y2某,且某1时y2,则此函数为y某1.2(3)如果f(某)d某某ln某C,则f(某)=ln某1.(4)已知f(某)d某in某某C,则e某f(e某1)d某=in(e某1)e某1C.(5)如果f(in某)co某d某in2某C,则f(某)=2某.二、求下列不定积分.1co2(1)解:某1co2某d某12co1co22某某1d某121coco22某某d某(1ec2某)d某某tan某Ce某(2)解:d某1e某1ed某某d(e某1)某1eln(e1)C某3某2()某某某某223523某145Cd某2()d某5()d某(3)解:某42ln3ln4ln24(4)解:(arcin某)2d某某arcin2某2arcin某某1某2d 某10某arcin2某2arcin某d1某2某arcin2某21某2arcin某21某2darcin某某arcin2某21某2arcin某2某C(5)解:令t某1,则某t21,于是d某2tdt2dt1)dtlnt1某某1(t21)tt21(1t1t1t1C3(6)解:某某(1某2)2d某[某某1某2(1某2)2]d某1某2d某某(1某2)2d某1ln(1某2)122(1某2)C(7)解:d某1C(arcin某)21某2(arcin某)2d(arcin某)arcin某(8)解:1某某1d某d某94某2d94某2某94某23132d(2某)114某2)1(223894某2d(93某)12arcin2某13494某2C(9)解:tan5某ec4某d某tan4某ec3某dec某(ec2某1)2ec3某dec某86(ec7某2ec5某ec3某)dec某ec某8ec某ec4某34C(10)解:令某int,t(π2,π2),于是d某cotdt1dtd(t11某21cot1cot1cotdtt1cott2)co2t211ttant22inCarcin某2co2t2tinint2Carcin某1t21某某某22C(11)解:某3e某d某1某de2某22212某21某ee某d某21某e21e某2C22222(12)解:lnln某某d某lnln某dln某lnln某C1,某0三、设f(某)某1,0某1,求f(某)d某.2某,某1解:f(某)在(,)上连续,则必存在原函数F(某),使得某C1,某0F(某)12某2某C2,0某1,某1某2C3,又F(某)须处处连续,有lim1(某C1)lim某2某C,即C某00(某22)1C2,lim某2Clim12C3某1(3)(某某某122),即1C32C2联立并令C11C,可得C22+C,C31C.某C,.某0故f(某)d某12某2某C,0某1.某1某212C,四、若Intann某d某,n2,3,,证明:I1n1nn1tan某In2.证明:因为12Intantan1n某d某某ec2tann2某tan2某d某tann2某(ec2某1)d 某n2某d某tann2某d某tann2某dtan某tann2某d某n1tann1某In2故In1n1tann1某In2.本章复习题B一、填空.(1)12e某1某;(2)某213某c;(3)34155某2433某2c1某c2(4)(2某21)e某c二、求下列不定积分.arctanee2某某(1)d某解:arctanee2某某d某12arctanede某2某=[e2某arctane某2111(e)某e2某1e2某d某]=[e212某arctane某(1e某e某2某1e)d某]=12(e2某arctanee某某arctane)C某。
高等数学(上册)第四章
t
3). 有根式设根式 u,有ex设ex u
第二节 换元积分法
例
求
sin 2
dx x cos2
. x
解
原式
sin2 sin
F (x)称为 f (x)的原函数.
原函数的性质:1) F (x)是偶函数 f (x) 是奇函数
[F(x)] F(x) f (x), 而[F(x)] F(x) f (x)
2) F (x) 是奇函数 f (x) 是偶函数
[F(x)] F(x) f (x), 而[F(x)] F(x) f (x)
2
2
cos cos 2 cos cos
2
2
cos cos 2sin sin
2
2
第二节 换元积分法
求不定积分的方法 1.观察法(即凑微分法):
f [(x)](x)dx f [(x)]d(x)
2.换元法
例求
例求
解
1 a2
dx 解
1
(
x a
)
2
令u x ,则du 1 d x
a
a
1 a
1 duu
2
1 arctan u C a
dx
a
1
(
x a
)
2
d
(
x a
)
1
(
x a
)
2
《高等数学》第四章 不定积分(电子讲稿)
140 第四章 不定积分一般来说,在数学中一种运算的出现都伴随着它的逆运算.在第二章中,我们学习了导数与微分,导数与微分运算是否有逆运算?即已知函数()f x 的导数或微分,能否求出()f x ?这是我们这一章要讨论的问题.第一节 不定积分的概念与性质一、原函数与不定积分的概念如果在区间I 上,可导函数()F x 的导数为()f x ,即对任意x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =,则称()F x 为()f x 在区间I 上的原函数.例如,因为,x R ∀∈(sin )cosx x '=,所以sin x 是cos x 的一个原函数;(1,1)x ∀∈-,(arcsin )x '=arcsin x(1,1)-内的一个原函数.由此可见,微分学的逆问题是:已知导函数()F x ',求原函数()F x .事实上,研究原函数需要解决下面两个问题:(1)满足何种条件的函数存在原函数?(2)如果原函数存在,它是否唯一?关于第一个问题,我们用原函数存在定理回答.(原函数存在定理) 如果函数()f x 在区间I 上连续,则()f x 在区间I 上一定有原函数,即存在区间I 上的可导函数()F x ,使得对任一x ∈I ,有()()F x f x '=.将在第五章给出此定理的证明.这个定理简单地说就是:连续函数一定有原函数. 关于第二个问题的答案是如果原函数存在则不唯一.设()F x 是函数()f x 的一个原函数,即()()F x f x '=,则[()]()F x C f x '+=,其中C 是任意常数.这就是说,原函数存在的话,则有无穷多个.不妨假设()F x 与()G x 是函数()f x 的任意两个原函数, 则有()()F x f x '=,()()G x f x '=.从而有(()())0F x G x '-=,即()()F x G x C -=.因此,()f x 的任意两个原函数之间只相差一个常数.换句话说()f x 的原函数的全体可表示为()F x C +,其中C 为任意常数.据此,我们给出下述定义.在区间I 上,()f x 的带有任意常数项的原函数,称为()f x 在区间I 上的不定积分,记作()d f x x ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.由不定积分的定义,如果()F x 为()f x 的一个原函数,则()d ()f x x F x C =+⎰ (C 为任意常数).●●例1 因为 32()3x x '=,所以233d x x x C =+⎰.141●●例2 因为当0x >时,1(ln )x x '=;当0x <时,11[ln()]()x x x x ''-=-=-,所以1(ln ||)x x'=,因此有1d ln ||x x C x=+⎰.●●例3 设曲线过点2(e ,3),且其上任一点处的斜率等于该点横坐标的倒数,求此曲线 的方程.解 设所求曲线方程为()y f x =,其上任一点(,)x y 处切线的斜率为d 1d y x x=,从而 1d ln ||y x x C x==+⎰,由2(e )3f =,得1C =,因此所求曲线方程为ln ||1y x =+.在直角坐标系中,()f x 的任意一个原函数()F x 的图形我们称为()f x 的一条积分曲线,不定积分()d f x x ⎰在几何上表示一簇积分曲线,这些积分曲线可由某一条积分曲线沿y 轴方向平移得到,它们在横坐标相同点处的切线有相同的斜率,因而切线相互平行.●●例4 一物体由静止开始作直线运动,t 秒末的速度是23t (m /s ),问:(1)在3s 末,物体与出发点之间的距离是多少?(2)物体走完216m 需多少时间?解 设物体的位置函数为()s s t =,则d ()d s v t t =,即2d 3d st t=,从而23d s t t =⎰=3t C +,由(0)0s =,得0C =,于是有3s t =.当3t =时,物体与出发点之间的距离3(3)27s t ==(m); 当216s =时,6t =(s).由原函数与不定积分的概念可得:d()d ()d f x x f x x =⎰或 d ()d ()d f x x f x x =⎰; ()d ()F x x F x C '=+⎰ 或 d ()()F x F x C =+⎰.由此可见,微分运算与不定积分运算互为逆运算,对函数()f x 先积分再微分,作用互相抵消;对函数()F x 先微分再积分,其结果只差一个常数.二、基本积分表因为不定积分运算是导数运算的逆运算,所以不难从导数公式得到相应的积分公式.现将一些基本积分公式罗列如下,通常称之为基本积分公式表.(1) d k x kx C =+⎰ (k 为常数),(2) 1d 1x x x C μμμ+=++⎰ (1μ≠-), (3) d ln ||xx C x =+⎰, (4) 2d arctan 1xx C x =++⎰,(5) arcsin x C =+, (6) cos d sin x x x C =+⎰, (7) sin d cos x x x C =-+⎰, (8) 22d sec d tan cos x x x x C x ==+⎰⎰, (9) 22d csc d cot sin xx x x C x==-+⎰⎰, (10)sec tan d sec x x x x C =+⎰,142 (11) csc cot d csc x x x x C =-+⎰, (12)e d e x x x C =+⎰, (13) d ln xxa a x C a=+⎰,(14)sh d ch x x x C =+⎰,(15) ch d sh x x x C =+⎰.以上公式可以联系求导公式记忆,且要求能够灵活运用.三、不定积分的性质根据不定积分的定义,可以得到下列性质. 性质1 设函数()f x 及()g x 的原函数存在,则[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰.证 因为([()()]d )()()f x g x x f x g x '±=±⎰,[()d ()d ]f x x g x x '±=⎰⎰[()d ][()d ]f x x g x x ''±⎰⎰=()()f x g x ±.由不定积分及原函数的定义,性质1得证.性质1可以推广到有限个函数的情形.性质2 设函数()f x 的原函数存在,k 为非零常数,则()d ()d kf x x k f x x =⎰⎰. 证 与性质1的证明类似,从略.利用基本积分表和不定积分的两个性质,通过对被积函数作恒等变形,可以求出一些简单的不定积分,这种求积分的方法通常叫直接积分法.●●例5求解4133d 3x x xC C --=-+=+⎰.●●例6求5)d x x .解3225)d (5)d x x x x x =-⎰322d 5d x x x x =-⎰⎰532123x x C =-+3123x x C =-. 检验积分结果是否正确,只要对结果求导,看它的导数是否等于被积函数,相等时结果是正确的,否则结果是错误的.●●例7 求32(1)d x x x +⎰. 解 33222(1)331d d x x x x x x x x ++++=⎰⎰2313d x x x x ⎛⎫=+++ ⎪⎝⎭⎰ 211d 3d 3d d x x x x x x x=+++⎰⎰⎰⎰21133ln ||2x x x C x =++-+. ●●例8 求221d (1)x x x x x -++⎰.143解 22221(1)d d (1)(1)x x x x x x x x x x -++-=++⎰⎰211d d 1x x x x =-+⎰⎰ln||arctan x x C =-+. ●●例9 求23e d x x x ⎰.解 23e d xxx =⎰9e d xxx ⎰(9e)d xx =⎰(9e)ln(9e)x C =+23e 12ln3x xC =++. ●●例10 求2cot d x x ⎰.解 22cot d (csc 1)d x x x x =-⎰⎰2csc d d x x x =-⎰⎰cot x x C =--+.●●例11 求2cos d 2xx ⎰.解 2cos d 2x x ⎰1cos d 2x x +=⎰11d cos d 22x x x =+⎰⎰1(sin )2x x C =++.●●例12 设 1,1,()1,2,x x f x x x +≤⎧=⎨>⎩求()d f x x ⎰.解 因为当1x ≤时,()1f x x =+,即21()d ;2x f x x x C =++⎰当1x >时,()2f x x =,此时22()d f x x x C =+⎰.又因为()f x 的原函数在(,)-∞+∞上每一点都连续,所以211lim 2x x x C -→⎛⎫++= ⎪⎝⎭221lim()x x C +→+ 从而有121112C C ++=+,即1212C C +=.记1C C =,则 22,1,2()d 1, 1.2x x C x f x x x C x ⎧++≤⎪⎪=⎨⎪++>⎪⎩⎰由例12可知,当被积函数是一个分段连续函数时,它的原函数必定为连续函数,可以先分别求出各区间段上的不定积分,再由原函数的连续性确定各积分常数之间的关系,注意不定积分中只含有一个任意的常数.习 题 4-11.求下列不定积分:(1) 5d x -⎰; (2) 2(23)d x x x +⎰;(3) 221d (1)x x x x x +++⎰;(4) 2cot d x x ⎛⎫⎪⎭⎰;(5) 3102d x x x ⎰;(6) 2sin d 2xx ⎰;144 (7) cos2d cos sin xx x x+⎰;(8) 22cos2d cos sin xx x x⎰;(9) sec (sec tan )d x x x x -⎰; (10){}max ||,1d x x ⎰. 2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.第二节 换元积分法应用不定积分的性质和基本积分公式只能计算出一些简单的函数的不定积分,对计算较复杂的函数的不定积分,根据函数的不同形式,需要一定的计算技巧.本节与下节所讲的换元积分法和分部积分法是计算不定积分最基本、最常用的两种方法.一、第一类换元积分法设函数()F u 为函数()f u 的原函数,即()()F u f u '=或()d ()f u u F u C =+⎰.如果()u x ϕ=,且()x ϕ可微,则d[()]()()()()[()]()d F x F u x f u x f x x xϕϕϕϕϕ''''===. 即[()]F x ϕ为[()]()f x x ϕϕ'的原函数,从而()()[()]()d [()][()][()d ]u x u x f x x x F x C F u C f u u ϕϕϕϕϕ=='=+=+=⎰⎰.因此有如下定理:设()f u 存在原函数,()u x ϕ=可微,则()[()]()d [()d ]u x f x x x f u u ϕϕϕ='=⎰⎰ (1) 公式(1)称为第一类换元积分公式.由此定理可见,被积表达式中的d x 也可以当作变量x 的微分来看待.如何应用公式(1)来求不定积分呢?为了求不定积分()d g x x ⎰,把它凑成如下的形式[()]()d f x x x ϕϕ'⎰,作代换()u x ϕ=,于是得()d f u u ⎰,若()d f u u ⎰=()F u C +,再代回原来的变量x ,就求得积分()d [()]g x x F x C ϕ=+⎰.由于在积分过程中,将()x ϕ'与d x 凑成d ()x ϕ,所以第一类换元积分法也叫凑微分法.●●例1 求2sin 2d x x ⎰. 解 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+.●●例2 求1d 12x x-⎰.145解 11111d (2)d (12)d 12212212x x x x x x x '=--=-----⎰⎰⎰11d(12)212x x=---⎰, 令12u x =-,得1d 12x x =-⎰111d ln ||22u u C u -=-+⎰1ln |12|2x C --+=. ●●例3求x . 解x =2)d x x '--2)x =-- 令21u x =-,则xu =-1122d 2u u u C -=-=-+=-⎰1222(1)x C -+. 对换元法熟练后,可直接凑微分,省去换元、还原中间变量步骤. ●●例4 求22e d x x x ⎰.解 22e d x x x ⎰=22e ()d x x x '⎰222e d()e x x x C ==+⎰. ●●例5 求tan d x x ⎰.解 tan d x x ⎰=sin 1d d(cos )ln |cos |cos cos x x x x C x x=-=-+⎰⎰. 类似可求得cot d x x =⎰ln |sin |x C +. ●●例6 求221d (0)x a a x ≠+⎰.解 22222111111d d d arctan 11x x x x C a x a a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.类似地可求得arcsin xC a =+ (0)a >. ●●例7 求221d (0)x a x a ≠-⎰. 解 221111d d 2x x x a a x a x a ⎛⎫=- ⎪--+⎝⎭⎰⎰111[d()d()]2x a x a a x a x a=--+-+⎰⎰ 1[ln ||ln ||]2x a x a C a =--++ 1ln ||x a C x a -=++. ●●例8求x . 解xx =⎰2=⎰C =-.●●例9 求x .146 解xarcsin x x =⎰21arcsin d(arcsin )(arcsin )2x x x C ==+⎰.●●例10求x .解x1221d (arctan )d(arctan )1x x x x ==+⎰322(arctan )3x C =+. ●●例11 求2ed 1e x xx +⎰. 解 2e d 1exx x +⎰21e d 1e xx x =⋅+⎰21d(e )1(e )x x =+⎰arctan(e )x C =+. ●●例12 求1d ln x x x ⎰.解 1d ln x x x ⎰111d d(ln )ln |ln |ln ln x x x C x x x=⋅==+⎰⎰.下面积分的过程中,往往要用到一些三角恒等式.●●例13 求csc d x x ⎰.解 11csc d d d sin 2sin cos 22x x x x x x x ==⎰⎰⎰=21d 2tan cos 22x x x ⎰1d tan 2tan 2x x ⎛⎫= ⎪⎝⎭⎰=ln |tan |2x C +,因为tan 2x =2sin 2sin 1cos 22csc cot sin sin cos 2x x x x x x x -===-,所以 csc d x x =⎰ln |csc cot |x x C -+.●●例14 求sec d x x ⎰.解 sec d x x ⎰ππcsc()d()22x x =++⎰ππln csc()cot()22x x C =+-++ln |sec tan |x x C =++.●●例15 求5cos d x x ⎰.解 5cos d x x ⎰=4cos cos d x x x ⋅=⎰4cos d(sin )x x =⎰22(1sin )d(sin )x x -⎰=24(12sin sin )d(sin )x x x -+⎰=3521sin sin sin 35x x x C -++.●●例16 求33tan sec d x x x ⎰.解 33tan sec d x x x ⎰22tan sec tan sec d x x x x x =⋅⎰22tan sec d(sec )x x x =⎰22(sec 1)sec d(sec )x x x =-⎰42(sec sec )d(sec )x x x =-⎰5311sec sec 53x x C =-+.147●●例17 求2cos d x x ⎰.解 21cos21cos d d [d cos2d ]22x x x x x x x +==+⎰⎰⎰⎰ 11cos2d(2)sin 22424x x x x x C =+=++⎰. ●●例18 求4sec d x x ⎰. 解 4sec d x x ⎰=2222sec sec d sec d(tan )(tan 1)d(tan )x x x x x x x ⋅==+⎰⎰⎰31tan tan 3x x C =++. ●●例19 求24tan sec d x x x ⎰.解 24tan sec d x x x ⎰=222tan sec sec d x x x x ⋅⎰22tan sec d(tan )x x x =⎰22tan (tan 1)d(tan )x x x =+⎰42(tan tan )d(tan )x x x =+⎰5311tan tan 53x x C =++. ●●例20 求sin sin3d x x x ⎰.解 利用积化和差公式:1sin sin [cos()cos()]2αβαβαβ=-+--,sin sin3d x x x ⎰1[cos4cos(2)]d 2x x x =---⎰11cos4d cos2d 22x x x x =-+⎰⎰ 11cos4d(4)cos2d(2)84x x x x =-+⎰⎰ 11sin 4sin 284x x C =-++. 二、第二类换元积分法有些积分采用前面所学的积分方法来计算很困难甚至无法计算,而要采用下面将要介绍的所谓第二类换元积分法来求积分.设()x t ϕ=是单调的可导函数,且()0t ϕ'≠.又设[()]()f t t ϕϕ'具有原函数,则有换元公式()d f x x ⎰1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰, (2) 其中1()t x ϕ-=为()x t ϕ=的反函数.证 设[()]()f t t ϕϕ'的原函数为()t Φ,记1[()]()x F x ϕ-Φ=,利用复合函数及反函数的求导法则,得d d ()d d tF x t xΦ'=⋅=1[()]()()f t t t ϕϕϕ'⋅'[()]()f t f x ϕ==, 即()F x 是()f x 的一个原函数.所以有()d ()f x x F x C =+=⎰1[()]x C ϕ-Φ+1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰公式(2)称为第二类换元积分公式. ●●例21求x (0)a >.148 解 令sin x a t =,ππ()22t -<<cos a t =,d cos d x a t t =,因此有cos cos d x a t a t t =⎰22cos d a t t =⎰21cos2d 2t a t +=⎰22sin 224a a t t C =++22sin cos 22a a t t t C =++ . 因为sin x a t =,ππ()22t -<<,所以sin x t a=,arcsin ,xt a =cos t =于是x21arcsin 22a x C a =+.●●例22求 (0)a >.解 令tan x a t =,ππ22t -<<sec a t =,2d sec d x a t t =,因此有2111sec d sec d sec ln |sec tan |a t t t t a txt t C C a===++=+⎰⎰ln |x C =+其中1ln C C a =-.为了把新变量t 还原为x 的函数,可以根据tan xt a=作辅助三角形,俗称小三角形还原法,如图4-1所示.●●例23求(0a >).解 被积函数的定义域为x a >和x a <-两个区间,故在两个区间分别求不定积分.(1) 当x a >时,设πsec (0)2x a t t =<<,则tan a t ,且d sec tan d x a t t t =.故sec tan d sec d tan a t tt t ta t==⎰⎰ln(sec tan ).t t C =++为了把sec t 及tan t 换成x 的函数,依据sec xt a=作辅助三角形(图4-2),得tan t =,所以,1ln x C a ⎛=+ ⎝⎭ln(,x C =+其中1ln .C C a =- (2)当x a <-时,令x u =-,那么u a >,由以上分析有(1ln u C=-=-++1ln(x C=--+1C=+(ln x C=-+,其中12ln.C C a=-综合以上(1)与(2)两种分析情况,把以上两个结果合起来,可写成ln|x C=+.sinx a t=去根号;当被积时,作代换secx a t=换tanx a t=去根号.时,为了去根号,还可用公式22ch sh1t t-=,采用双曲代换sh,chx a t x a t==来去根号.如例22中,可设shx a t=,==cha t,即可去根号.有些积分的计算可采用所谓的倒代换.●●例24求.解设1,xt=那么21d dx tt=-,于是21d t-==-(arcsin)t C=-±+1arcsin||Cx=-+.在本节的几个例题中,有几个积分是以后经常会遇到的,所以它们也常被当作公式来使用,现罗列如下:(16)tan d ln|cos|x x x C=-+⎰, (17)cot d ln|sin|x x x C=+⎰, (18)sec d ln|sec tan|x x x x C=++⎰, (19)csc d ln|csc cot|x x x x C=-+⎰,(20)22d1arctanx xCa x a a=++⎰, (21)22d1ln2x x aCx a a x a-=+-+⎰, (22)arcsinxCa=+, (23)ln(x C=++, (24)ln x C=+.●●例25 求2d23xx x++⎰.解22d1d23212xxx x x x=+++++⎰⎰1)x=+,利用公式(20)便得2d23xCx x=++⎰.149150 ●●例26求解==利用公式(23)便得ln(1x C =+++ln(1x C =++.●●例27求解1d x ⎛⎫- ⎪=利用公式(22)便得21arcsin 3x C -=+. 习 题 4-21.填空:(1) 21d d()x x=;(2) 1d d()x x=;(3) e d d()x x =; (4) 2sec d d()x x =; (5) sin d d()x x =;(6) cos d d()x x =;d()x =;d()x =; (9) tan sec d d()x x x =;(10) 21d d()1x x =+;d()x =;(12) d d()x x =.2.求下列不定积分:(1) x ; (2)4ln d x x x⎰;(3) 12ed xx x ⎰;(4)23(e 2e 2)e d x x x x ++⎰;(5) ;(6)21ln d (ln )xx x x +⎰;(7) 1d ln lnln x x x x ⎰;(8)1d e ex xx -+⎰;(9) x ; (10) 32d 3x x x+⎰;151(11) x ;(12) 21d 2x x x --⎰;(13) 2sin ()d t t ωϕ+⎰;(14) x ;(15) ln cot d sin 2xx x⎰;(16) x ;(17) 4cos d x x ⎰;(18)x ; (19)3cos d x x ⎰(20)arccos xx ;(21)x(22)x ; (23)35sin cos d x x x ⎰ (24)35tan sec d x x x ⎰; (25)cos5sin 4d x x x ⎰; (26)34tan sec d x x x ⎰;(27)x; (28)x(29);(30)x ;(31)2x ; (32)21d 323x x x ++⎰(33)x ;(34)x第三节 分部积分法前面一节我们利用复合函数的求导法则得到了换元积分法,利用它可以求出一些函数的积分,但是对于形如e d x x x ⎰、ln d x x x ⎰、sin d x x x ⎰等的积分,用直接积分法或换元积分法都无法计算. 这些积分的被积函数都有共同的特点,即都是两种不同类型函数的乘积,这就启发我们把两个函数乘积的微分法则反过来用于求这类不定积分,这就是另一个基本的积分方法:分部积分法.设函数()u u x =、()v v x =具有连续导数,则有[()()]()()()()u x v x u x v x u x v x '''=+, 两端求不定积分,得()()()()d ()()d u x v x u x v x x u x v x x ''=+⎰⎰,移项得 ()()d ()()()()d u x v x x u x v x u x v x x ''=-⎰⎰, 或()d ()()()()d ()u x v x u x v x v x u x =-⎰⎰,152 为方便起见,简记为d d u v x u v vu x ''=-⎰⎰ (1) 或d d u v u v v u =-⎰⎰ (2) 公式(1)或(2)称为不定积分的分部积分公式.当()()d u x v x x '⎰不容易积分,但()()d u x v x x '⎰容易积分时,我们就可以用分部积分把不容易积分的()()d u x v x x '⎰计算出来. ●●例1 求sin d x x x ⎰.解 令u x =,sin (cos )v x x ''==-,代入分部积分公式得sin d d(cos )x x x x x =-⎰⎰cos cos d x x x x =---⎰cos sin x x x C =-++.值得注意,如在例1中,若是令sin u x =,22x v x '⎛⎫'== ⎪⎝⎭,代入分部积分公式得2sin d sin d()2x x x x x =⎰⎰22sin d(sin )22x x x x =-⎰22sin cos d 22x x x x x =-⎰.上式最后一个积分比原来的积分还复杂,由此可知,若u v 、的选取不当,可能使积分计算很复杂甚至计算不出来. ●●例2 求2e d x x x ⎰.解 22222e d d(e )e e d()e 2e d x x x x x x x x x x x x x x ==-=-⎰⎰⎰⎰22e 2de e 2(e e d )x x x x x x x x x x =-=--⎰⎰2e 2e 2e .x x x x x C =-++从例1和例2可以看出,当被积函数是幂函数与正弦(余弦)函数乘积或是幂函数与指数函数乘积,分部积分时,取幂函数为u ,其余部分凑为d v . ●●例3 求ln d x x x ⎰.解 22211ln d ln d()ln d(ln )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰()22222111ln d ln 22211ln .24x x x x x x x C x x x C ⎛⎫=-=-+ ⎪⎝⎭=-+⎰ ●●例4 求arctan d x x x ⎰.解 22211arctan d arctan d()arctan d(arctan )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰ 222221arctan d 2111arctan 1d 21x x x x x x x x x ⎛⎫=- ⎪+⎝⎭⎡⎤⎛⎫=-- ⎪⎢⎥+⎝⎭⎣⎦⎰⎰153()21arctan arctan 2x x x x C =-++. 从例3和例4可以看出,当被积函数是幂函数与对数函数乘积或是幂函数与反三角函数函数乘积,分部积分时,取对数函数或反三角函数为u ,其余部分凑为d v . ●●例5 求arcsin d x x ⎰.解 arcsin d x x ⎰arcsin d(arcsin )x x x x =-⎰arcsin x x x =-21arcsin )2x x x =+-arcsin x x C =.●●例6 求ln d x x ⎰.解 ln d x x ⎰ln d(ln )x x x x =-⎰1ln d x x x x x=-⋅⎰ln d x x x =-⎰ln x x x C =-+.从例5和例6可以看出,当某些被积函数(如对数函数、反三角函数)是单个函数时,可选v x =直接用分部积分法求积分. ●●例7 求e sin d x x x ⎰.解 e sin d sin de e sin e d(sin )x x x x x x x x x ==-⎰⎰⎰e sin e cos d e sin cos d(e )e sin [e cos e d(cos )]e sin e cos e sin d ,x x x x xxxx x x x x x x x x x x x x x x =-=-=--=--⎰⎰⎰⎰因此得 1e sin d e (sin cos )2x x x x x x C =-+⎰.●●例8 求3sec d x x ⎰.解 3sec d sec d tan sec tan tan d(sec )x x x x x x x x ==-⎰⎰⎰2233s e c t a n t a n s e c d s e c t a n (s e c 1)s e c d s e c t a n s e c ds e c ds e c t a n l n |s e ct a n |s e cd ,x x x x x x x x x x x x x x x x x x x x x x =-=--=-+=++-⎰⎰⎰⎰⎰因此得()31sec d sec tan ln |sec tan |2x x x x x x C =+++⎰ ●●例9 求22d ()n nxI x a =+⎰(n 为正整数).解 用分部积分法,当1n >时,有154 222122122d 2(1)d ()()()n n n x x x n x x a x a x a --=+-+++⎰⎰22212212212(1)d ()()()n n n x a n x x a x a x a --⎛⎫=+-- ⎪+++⎝⎭⎰, 即2112212(1)()()n n n n xI n I a I x a ---=+--+, 于是122211(23)2(1)()n n n xI n I a n x a --⎡⎤=+-⎢⎥-+⎣⎦. 以此作递推公式,并由11arctan xI C a a=+,即可得n I .在积分过程中,有时分部积分法与其他方法结合使用,会更加容易积分. ●●例10求x ⎰.解 令t =,则 2x t =,d 2d x t t =,因此e 2d 2e d 2de 2(e e )t t t t t x t t t t t t C ====-+⎰⎰⎰⎰1)C =+.习 题 4-3求下列积分: (1) sin 2d x x x ⎰; (2) e d x x x -⎰; (3) 2ln d x x x ⎰; (4) arccos d x x ⎰; (5) 2cos d x x x ⎰; (6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰; (9)x ;(10)23e d x x x ⎰; (11)cosln d x x ⎰;(12)()d xf x x ''⎰.第四节 几种特殊类型函数的积分我们已知道,任何一个初等函数的导数仍为初等函数,而相当多的初等函数虽然也存在原函数,但它们的原函数却不是初等函数,也就是通常说的“这个不定积分积不出来”.例如,sin d x x x ⎰, 2sin d x x ⎰,2e d x x -⎰.这些不定积分都积不出来.下面再举几个著名的积不出来的不定积分:x ,2d (1sin )x k x +⎰(01)k <<.155分别称为第一、二、三种椭圆积分.它们是在计算椭圆弧长时碰到的,故由此而得名.法国数学家刘维尔(Liouville)曾证明了它们的积分不能用初等函数表示,故积不出来.下面介绍几类特殊类型函数的不定积分.一、有理函数的积分形如10111011()()n n n nm m m ma x a x a x a P x Q xb x b x b x b ----++++=++++ (1)的函数称为有理函数.其中012,,,,n a a a a 及012,,,,m b b b b 为常数,且00a ≠,00b ≠.如果(1)式中多项式()P x 的次数n 小于多项式()Q x 的次数m ,则称此分式为真分式;如果多项式()P x 的次数n 大于或等于多项式()Q x 的次数m ,称分式为假分式.利用综合除法(带余除法)可得,任意一个假分式可转化为多项式与真分式之和.例如:422212111x x x x x x +++=-+++, 因此,我们只需研究真分式的积分.根据多项式理论,任一多项式()Q x 在实数范围内能分解为一次质因式和二次质因式的乘积,即220()()()()()Q x b x a x b x px q x rx s αβλμ=--++++(2)其中2240,,40p q r s -<-<.如果(1)的分母多项式分解为(2)式,则(1)式可分解为如下部分分式之和:121211()()()()()()()()B A A A B B P x Q x x a x a x a x b x b x b βαααββ--=+++++++++------11222212()()()M x N M x N M x N x p x q x p x q x p x qλλλλ-++++++++++++++ 11222212()()()R x S R x S R x S x rx s x rx s x rx s μμμμ-+++++++++++++(3)其中,,,,,i i i i i A B M N ,R 及i S 均为常数.例如 22221(1)(1)(1)x x x x x ++++1A x =+21A x +32(1)A x +++1121M x N x ++2221M x N x x ++++3322(1)M x N x x ++++. 把真分式写成部分分式的代数和时,每个k 重因子(一次或二次)一定要有k 项;每个一次因子所对应的部分分式分子是常数,每个二次质因式所对应的分式的分子是一次因式,含两个常数,分式中的常数可以用“待定系数法”或“赋值法”来确定.我们用具体例子来说明.●●例1 将真分式232(1)(2)x x x ++-分解为最简分式.解 设 231213232(1)(2)1(1)(1)2A A AB x x x x x x x +=++++-+++-,通分整理后,有156 ********(2)(1)(2)(1)(2)(1)x A x A x x A x x B x +=-++-++-++(4)3211213211()(3)(33)A B x A B x A A A B x =++++--+3211(222)A A A B +---+比较两端同类项系数,得方程组1121321132110313302222A B A B A A A B A A A B +=⎧⎪+=⎪⎨--+=⎪⎪---+=⎩解得 129A =-, 213A =, 31A =-, 129B =.或者在(4)式中应用赋值法,更简单些. 令1x =-,得 333A =-,31A =-.令2x =, 得 1627B =,129B =.令0x =, 得 32112222A A A B =---+.(5) 令1x =, 得 32113248A A A B =---+.(6)联立(5)与(6)式, 得129A =-,213A =,于是232322112(1)(2)9(1)3(1)(1)9(2)x x x x x x x +=-+-++-+++-.●●例2 求22d 23x x x x -++⎰.解 由于分母已为二次质因式,而且分子可写为12(22)32x x -=+-21(23)32x x '=++-,于是22222221(22)322d d 23231(23)d d 3223231d(23) 3223x x x xx x x x x x xx x x x x x x x x +--=++++'++=-++++++=-++⎰⎰⎰⎰⎰21ln(23)2x x C =+++. ●●例3 求44d 1x x -⎰.解 因为4241121111x x x x =----++,所以 424112d d 1111x x x x x x =----++⎰⎰2112d d d 111x x x x x x=---++⎰⎰⎰1572112d(1)d(1)d 111x x x x x x=--+--++⎰⎰⎰1ln 2arctan 1x x C x -=-++. 由上面的例子可知,把真分式分解为部分分式的代数和,并用待定系数法或赋值法求出分解式中的常数后,求有理函数的不定积分,可归结为求下列部分分式的不定积分A x a -,()kA x a -,2()k Mx N x px q +++ 前两类函数的不定积分我们都能求.关键是第三类函数的不定积分,下面讨论它的计算.把分母中的二次质因式配方,得22224p p x px q x q ⎛⎫++=++- ⎪⎝⎭,令2p x t +=,则d d x t =,并记222x px q t a ++=+,Mx N Mt b +=+,其中224p a q =-,2Mpb N =-,于是有 22222d d d ()()()n n n Mx N Mt t b tx x px q t a t a +=+++++⎰⎰⎰,当1n =时,有222222d d d 2ln()arctan .2Mx N Mt t b tx xpx q t a t a px M bx px q C aa +=++++++=++++⎰⎰⎰ 当1n >时,有222122d d ()2(1)()()n n n Mx N M tx b x px q n t a t a -+=-+++-++⎰⎰, 上式最后一个积分的求法见本章第三节例9.总之,有理函数的积分,理论上总可以积出来,它的原函数是初等函数,即有理函数的积分是初等函数.●●例4 求2221d (22)x x x x +-+⎰. 解 在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为2222221(22)(21)(22)(22)x x x x x x x x +-++-=-+-+222121.22(22)x x x x x -=+-+-+ 现分别计算部分分式的不定积分如下:122d d(1)arctan(1).22(1)1x x x C x x x -==-+-+-+⎰⎰158222221(22)1d d (22)(22)x x x x x x x x --+=-+-+⎰⎰222d(22)(22)x x x x -+=+-+⎰22d(1)(1)1x x -⎡⎤-+⎣⎦⎰2221d(1)22(1)1x x x x --=+-+⎡⎤-+⎣⎦⎰, 令1x t -=, 由递推公式,求得22d(1)(1)1x x -=⎡⎤-+⎣⎦⎰2222d 1d (1)2(1)21t t t t t t =++++⎰⎰ 2211arctan(1).2(22)2x x C x x -=+-+-+ 于是得到2222133d arctan(1)(22)2(22)2x x x x C x x x x +-=+-+-+-+⎰,其中12C C C =+. 二、可化为有理函数的积分举例由函数()u x 、()v x 及常数经过有限次四则运算所得的函数称为关于()u x 、()v x 的有理式,并用((),())R u x v x 来表示. 例如,(sin ,cos )d R x x x ⎰是关于sin x 、cos x 的有理式的不定积分.通过代换tan 2xu =(ππx -<<),可把这种类型的积分化为以u 为变量的有理函数的积分,因为22222sin cos 2tan2222sin 2sin cos ,221sin cos 1tan 222x x x x x u x x x x u ====+++ 2222222222cos sin 1tan 1222cos cos sin ,221sin cos 1tan 222x x x x x u x u ---=-===+++22d d(2arctan )d 1x u u u==+. 所以 2222212d (sin ,cos )d (,)111u u uR x x x R u u u -=+++⎰⎰. ●●例5 求1sin d sin (1cos )xx x x ++⎰. 解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+,159因此得22222211sin 2111d d (2)d sin (1cos )1221111ux u x u u u x x uu u u u u +++=⋅=++++⎛⎫-+ ⎪++⎝⎭⎰⎰⎰ 21(2ln ||)22u u u C =+++211tan tan ln |tan |42222x x xC =+++.●●例6 求cot d sin cos 1xx x x ++⎰.解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+, 因此得2221cot 22d d 21sin cos 11111u x u x u u u x x u u u -=⋅-+++++++⎰⎰1111d (d d )(ln ||)222u u u u u u C u u -==-=-+⎰⎰⎰1(ln tan tan )222x xC =-+. 一些简单的无理函数的积分可以通过变量代换化为有理函数的积分. ●●例7求解u =,得 32x u =-,2d 3d x u u =,代入得2223111d 3d 31d 111 3(ln |1|)2u u u u u u u u u uu u C-+⎛⎫===-+ ⎪+++⎝⎭=-+++⎰⎰⎰3ln |1C =+. ●●例8 求.解令16t x =,得5d 6d x t t =,代入得2563226d 1116d 6d ()1t t t t t tt t t t t t ⋅⎛⎫===-⎪+++⎝⎭⎰⎰⎰6[ln ln(1)]ln 1)t t C x C =-++=-+.●●例9 求x .解 t =,则2211t x t-=+,224d d (1)t x t t -=+;代入得160 x 2224d (1)(1)t t t t -=-+⎰2222d 11t t t ⎛⎫=+ ⎪-+⎝⎭⎰1ln2arctan 1t t C t -=+++C =+.例8、例9式为u ,这样的变换具有反函数,且反函数为有理函数,从而可将原积分化为有理函数的积分.习 题 4-4求下列不定积分:(1)3d 1x x x -⎰;(2)5438d x x x x x +--⎰; (3)2222213d (2)(1)x x x x x ++-+⎰; (4)226114d (1)x x x x x -+-⎰; (5)32d 1xx x x x -+-⎰; (6)2dx⎰;(7)x ; (8)x . 第五节 积分表的使用通过前面的讨论可以看出,积分的计算要比导数的计算显得更加灵活、复杂,我们会遇到更多不同类型的不定积分的计算问题,为了应用上的方便,把常用的积分公式汇集成表,这种表叫做积分表.积分表是按照被积函数的类型来排列的,求积分时,可根据被积函数的类型直接或经过简单的变形后,在表内查得所需的结果. 本书末附录4是一份简单的积分表,可供查阅.●●例1 求2d (1)xx x +⎰. 解 被积函数含有a bx +,在积分表(二)中查得公式(4)()221d ln x a x a bx C b a bxa bx ⎛⎫=+++ ⎪+⎝⎭+⎰, 现在1a =,1b =,于是21d ln 1(1)1x x x C x x =+++++⎰.●●例2求.解这个积分不能在表中直接查到,需要先进行变量代换.令2x u=2ux=,dd2ux=,于是1d2u==⎰34)1Ca=-+,现在2a=,x相当于u,于是有12C=-,再把2u x=代入,最后得到12C=.●●例3 求4sin d x x⎰.解在积分表(八)中查到公式(50)12sin cos1sin d sin dnn nx x nx x x xn n---=-+⎰⎰,现在4n=,于是有342sin cos3sin d sin d44x xx x x x=-+⎰⎰,对积分2sin d x x⎰,利用公式(48),得21sin d sin224xx x x C=-+⎰,从而所求积分为34sin cos31sin d sin24424x x xx x x C⎛⎫=-+-+⎪⎝⎭⎰.一般说来,查积分表可以节省计算积分的时间,但只有掌握了前面学习过的基本积分公式才能灵活地使用积分表,而且对一些比较简单的积分,应用基本积分法来计算比查表更快些,例如23sin cos dx x x⎰,用变换sinu x=很快就可得到结果,所以求积分时,究竟是直接计算,还是查表,或两者结合使用,应该具体问题具体分析,从而选择一个更快捷的方式.习题4-5利用积分表计算下列不定积分:(1);(2)3ln d x x⎰;(3)221d(1)xx+⎰;(4);161162 (5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.第六节 数学模型●●例 (石油的消耗量)近年来,世界范围内每年的石油消耗率呈指数增长,增长指数大约为0.07. 1970年初,消耗率大约为每年161亿桶.设()R t 表示从1970年起第t 年的石油消耗率,则0.07()161e t R t =(亿桶).试用此式估算从1970年到1990年间石油消耗的总量.解 设()T t 表示从1970年起(0t =)直到第t 年的石油消耗总量.我们要求从1970年到1990间石油消耗的总量,即求(20)T .由于()T t 是石油消耗的总量,所以()T t '就是石油消耗率()R t ,即()()T t R t '=,那么()T t 就是()R t 的一个原函数.0.070.070.07161()()d 161e d e 2 300e 0.07t tt T t R t t t C C ===+=+⎰⎰. 因为 (0)0T =,所以, 2 300C =-,得 0.07() 2 300(e 1)t T t =-.从1970年到1990年间石油的消耗总量为:0.0720(20) 2 300(e 1)7 027T ⨯=-≈(亿桶).第七节 数学实验利用Matlab 软件中的函数int 可以对不定积分进行符号计算,其调用格式和功能如下说明:在初等函数范围内,不定积分有时是不存在的,也就是说,即使()f x 是初等函数,但是不定积分()d f x x ⎰却不一定是初等函数.例如,2e x -,sin xx ,e x x,1log a x 是初等函数,而2ed x x -⎰,sin d x x x ⎰,e d xx x⎰,1d log a x x ⎰却不能用初等函数表示出来.比如,输入程序: >> syms x>> F=int(sin(x)/x) 运行后屏幕显示:F =sinint(x)其中sinint(x)是非初等函数,称作积分正弦函数.在使用int 函数求不定积分时,读者要注意这种情况.●●例1 求2sin dx x x⎰.解用符号积分命令int计算此积分,Matlab程序为>> syms x;>> int(x^2*sin(x))结果为ans =-x^2*cos(x)+2*cos(x)+2*x*sin(x) 如果用微分命令diff验证积分正确性,Matlab程序为>> diff(-x^2*cos(x)+2*cos(x)+2*x*sin(x))结果为ans =x^2*sin(x)●●例2 求下列函数的一个原函数:(1);(2)sec(sec tan)x x x-;(3)11cos2x+;(4(5)2arctanx x;(6)223310xx x++-解(1)相应的Matlab程序为>> clear all;>> syms x;>> f=x*sqrt(x);>> int(f,x)结果为ans =2/5*x^(5/2);(2)相应的Matlab程序为>> clear all>> syms x;>> f=sec(x)*(sec(x)-tan(x));>> int(f,x)结果为ans =sin(x)/cos(x)-1/cos(x);(3)相应的Matlab程序为>> clear all>> syms x;>> f=1/(1+cos(2*x));>> int(f,x)结果为ans =1/2*tan(x);(4)相应的Matlab程序为>> clear all>> syms x;>> f=log(x+1)/sqrt(x+1);>> int(f,x)结果为ans =2*log(x+1)*(x+1)^(1/2)-4*(x+1)^(1/2);(5)相应的Matlab程序为163164 >> clear all >> syms x ;>> f=x^2*atan(x); >> int(f,x)结果为ans =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1);(6)相应的Matlab 程序为 >> clear all >> syms x ;>> f=(2*x+3)/(x^2+3*x-10); >> int(f,x)结果为ans =log(x^2+3*x-10).●●例3 设曲线通过点(1,2),且其切线的斜率为2329x x +-,求此曲线的方程并绘制其图像.解 设所求的曲线方程为()y f x =,根据题意,2329y x x '=+-,所以2d (329)d y y x x x x '==+-⎰⎰相应的Matlab 程序为 >> syms x C ;>> f=3*x^2+2*x-9; >> F=int(f)+C ; >> y=simple(F)结果为y =x^3+x^2-9*x+C.即斜率为2329x x +-的曲线方程为329y x x x C =+-+.又因为曲线通过点(1,2),代入曲线方程,得9C =.于是,所求曲线方程为3299y x x x =+-+. 作曲线图,输入程序 >> clear>> x=-5:0.1:5; f=3*x.^2+2*x-9;y=x.^2+x.^3-9*x+9; >> x0=1;y0=2;>> plot(x0,y0,'ro',x,f,'g*',x,y,'b-') >> grid>> legend('点(1,2)','函数f=3x^2+2x-9的曲线','函数f=3x^2+2x-9过点(1,2)的积分曲线')运行结果如图4-3.函数2329f x x =+-过点(1,2)的积分曲线图4-3165本章复习题A一、填空1. 已知()F x 是sin xx的一个原函数,则2d[()]F x = . 2. 已知函数()y f x =的导数为2y x '=,且1x =时2y =,则此函数为 . 3. 如果()d ln f x x x x C =+⎰,则()f x = .4.已知()d sin f x x x x C =++⎰,则e (e 1)d xxf x +⎰= . 5.如果 2(sin )cos d sin f x x x x C =+⎰,则()f x = .二、求下列不定积分1. 21cos d 1cos2x x x ++⎰;2.d 1e xx+⎰; 3.2352d 4x xx x ⋅-⋅⎰;4.2(arcsin )d x x ⎰;5.;6.322d (1)x x x +⎰;7.8.x ; 9.54tan sec d x x x ⎰;10.;11.23e d x x x ⎰;12.ln ln d x x x⎰.三、设 1,0,()1,01,1,2,x f x x x x x <⎧⎪=+≤≤⎨⎪>⎩求()d f x x ⎰.四、若I tan d ,n n x x =⎰,,3,2 =n 证明121I tan I 1n n n x n --=--. 本章复习题B一、填空1.已知()F x 是2e x -= . 2.若22(sin )cos f x x '=,则()f x = .3.设()f x '=,则(1)d f x x -⎰= .4.已知()f x 的一个原函数是2e x -,则()d xf x x '⎰= . 二、求下列不定积分1.2arctan e d e xxx ⎰;2.d sin 22sin xx x+⎰;。
《高等数学》不定积分课后习题详解
《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。
2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。
4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。
二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。
(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。
(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。
高等数学(上)第四章不定积分
第四章 不定积分内容:不定积分的概念和性质、换元积分法、分部积分法、几种特殊类型函数的积分、简单无理函数的积分、积分表的使用。
要求:理解不定积分的概念和性质,掌握不定积分的基本公式、换积分法和分部积分法,理解有理函数的积分,了解简单无理函数的积分重点:不定积分的概念和性质;不定积分的基本公式;换元积分法、分部积分法、 难点:凑微分、三角代换法、分部积分法到目前为止,我们已经学会了对函数作如下运算:四则、复合、求导. 在四则运算中, 加减法互为逆运算, 积商也互为逆运算; 我们能将简单函数复合, 也能将复合函数分解. 于是, 我们自然会想到这点: 既然我们能求得任一函数的导数, 我们当然也想知道谁的导数是一个任意给定的函数呢? 即研究求导的逆运算.例: 对于变速直线运动, 若已知位移函数)(t s s =, 则即时速度)(t s v '=, 反之, 若已知)(t v v =, 能否求得位移函数?§1. 不定积分的概念与性质一、原函数与不定积分的概念1. 原函数定义: 设)(),(x F x f 在区间I 上有定义, 若∀x ∈I, 有)()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f 在I 上的原函数.例: -sinx 是cosx 的原函数, x ln 是x1的原函数. 我们自然会提出三个问题:(1) 是不是任一函数都有有原函数. (2) 一个函数的原函数是否唯一.(3) 若不唯一, 不同的原函数间的关系. 逐一回答:(1) 定理: 若)(x f 在I 上连续, 则存在)(x F , 使得)()(x f x F ='. (2) 常数的导数为0. 若)()(x f x F =', 则())()(x f C x F ='+. (3) 若)()()(x G x f x F '==', 则()0)()(='-x F x G . 回忆中值定理得到的重要结果, 可得:Cx F x G Cx F x G +==-)()()()(综合(2), (3), 得出结论: 若)(x F 是)(x f 的一个原函数, 则 1°所有的)(x F +C 也是)(x f 的原函数. 2°)(x f 的任一原函数也写成)(x F +C.即})({C x F +(C 为任意常数)是)(x f 的所有原函数的集合. 命名之. 2. 不定积分定义: 函数)(x f 的全体原函数称为)(x f 的不定积分, 记作⎰dx x f )(.若)()(x f x F =', 则⎰dx x f )(=)(x F +C.⎰: 积分符号; )(x f 被积函数; dx x f )(被积表达式;x : 积分变量; C: 积分常量. 例1.C x xdx C x dx x +=+=⎰⎰sin cos ,4143例2. 证明:C x dx x +=⎰ln 1.证一: ⎩⎨⎧<->=0)ln(0ln ln x x x xx()⎪⎪⎩⎪⎪⎨⎧<-->='0101ln x xx x x证二: 2ln ln x x =为简便, 记C x dx +=⎰ln 1.(曲线族中任意一条曲线都可由另一条曲线经过上下平移而得到, 表现在图形上, 即: 所有平行于y 轴的虚线被相同的两条积分曲线所截得的长度都相同.)3. 不定积分与导数、微分的关系()()Cx F x dF C x F dx x F dxx f dx x f dx f dx x f +=+='=='⎰⎰⎰⎰)()(,)()()2()()(),()()1(不定积分与导数、微分互为逆运算. 注2: 导数是一个函数, 不定积分是一族函数.二、基本积分公式由导数公式,可直接得出积分公式Caa dx a C e dx e C x xdx x C x xdx x C x xdx dx x C x xdx dx x Cx xdx C x xdx Cx dx x Cx dx x Cx dx x C x dx x C kx kdx xxx x +=+=+-=⋅+=⋅+-==+==+-=+=+=-+=++=-≠++=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+ln )13()12(csc cot csc )11(sec tan sec )10(cot csc sin 1)9(tan sec cos 1)8(cos sin )7(sin cos )6(arcsin 11)5(arctan 11)4(ln 1)3()1(11)2()1(2222221μμμμ三、不定积分的运算法则[]⎰⎰⎰⎰⎰⎰±±±=±±±=dxx f dx x f dx x f dx x f x f x f dxx f k dx x kf n n )()()()()()()2()()()1(2121.例1.⎰⎰+--+dxx x xdxx e x )213114()2()cos 52()1(2 例2.()⎰⎰-=dx x xdx 1sec tan22例3. ⎰⎰+-+=+dt t t dt t t 22221111例4. ⎰⎰+=dt xx x x dt x x 222222cos sin cos sin cos sin 1§2. 换元积分法积分的许多方法都是来源于求导(微分)公式,凑微分法来源于复合函数求导公式,或者说是一阶微分形式不变性.一、第一类换元法(凑微分法)(){}()⎰⎰⎰=='=='⇒'=⋅'=+='⇒'⋅='⋅='⋅'='duu f dx x x f du u F dx x F x F d C x F dx x x f x x f u u f u u F x F x u x x u f u F xx u x)()()]([)()]([)]([)]([()()]([)()]([)()()]([)()()()(ϕϕϕϕϕϕϕϕϕϕϕϕ定理 设)(u f 有原函数,)(x u ϕ=可导,则)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='此定理的实质是将对变量x 的积分转化为对x 的函数)(x ϕ的积分.1. b ax x +=)(ϕ例1.⎰xdx 2sin 2不能对⎰xdx 2sin 直接积分, 但若令u=2x, 则可对⎰udu sin 直接积分, 只需将原积分中的“dx ”转化为“du ”即“d(2x)”.Cx C u udu x xd xdx xu +-=+-===⎰⎰⎰=2cos cos sin )2(2sin 2sin 22 熟练后可省略例2. []⎰⎰⋅++=+21)12()12sin()12sin(x d x dx x 例3. ⎰-dx x 100)45(, ⎰-dx x 23)45(若是二或三次方, 或许可以考虑二项展开, 但对于100次或是非正整数次方显然不适用.例4.⎰⎰+→+dx x dx x a 222111例5.⎰⎰-→-dx xdx xa 222111一般地, ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f . 2.b ax x +=2)(ϕ例6. ⎰dx xe x 22 例7.⎰-dx x a x2一般地,⎰⎰++=+)()(21)(222b ax d b ax f adx b ax xf . 利用1111+++=μμμμdx x dx x , 我们常用的凑微分法有: ⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅xd f dx x fxd f dx x f dx f dx f x 2131232例8.⎰dx x x 1tan 122例9.⎰dx xe x33. 其它类型例10. ⎰⎰=dx xxxdx cos sin tan , ⎰xdx cot 例11.⎰+dx x x 21arctan把对x 积分转化为对)(x ϕ积分,即)()(x d f dx f x ϕϕ⋅→⋅',这实际上也是一个积分过程,只是这个积分较为直接明了,因此,所有积分公式都可以被考虑用于凑微分.如:⎰⎰⋅=⋅x d f dx f x ln 14. 综合性凑微分(先变形, 再凑) ① 代数变形例12. ⎰-dx x x2例13. C ax ax a dx x a C a x ax a dx a x +-+=-++-=-⎰⎰ln 211,ln 2112222例14.⎰⎰++=++dx x dx x x 2)3(1116122例15.⎰⎰-+=--dx x x dx x x )1)(3(12312总之: ⎰⎪⎩⎪⎨⎧→→→++arctanln12不可分解因式可分解因式dx c bx ax 例16.⎰⎰+-=--dx x dx xx 22)1(21211例17.⎰⎰+=dx x xdx 212cos cos 2例18. C x x x dx x xdx +++=⎪⎭⎫ ⎝⎛+=⎰⎰832sin 414sin 321212cos cos 24例19. ⎰⎰--=x d x xdx cos )cos 1(sin 23例20. ⎰⎰--=x xd x xdx x cos cos )cos 1(cos sin2223例21.⎰⎰+=dx xx xdx x 22sin 8sin 3cos 5sin总结之:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222例22.⎰xdx csc()Cx x xx C x x C x x C x x x d x dx xx dx x xdx ++-=+-=+-+-=+-+-=++-=--===⎰⎰⎰⎰)cot ln(csc sin cos 1ln cos 1cos 1ln 21cos 1cos 1ln 211cos 1cos ln 21cos cos 11sin sin sin 1csc 2222 Cx x xdx C x x xdx ++-=++=⎰⎰)cot ln(csc csc )tan ln(sec sec 总结: 三角函数微分、积分公式记忆: (1) 弦函数↔ 弦函数; 切函数↔ 割函数 (2) 正函数→ 正号; 余函数→ 负号例23.⎰⎰⎰-=--=+dx x xdx x x dx x 22cos sin 1sin 1sin 1sin 11在积分过程中, 分母中的正减号是积分的障碍.二、第二类换元法(变量置换法)定理 设)(t x ψ=是单调且可导的函数,0)(≠'t ψ. 又设)()]([)(t t f t g ψψ'=有原函数, 则[]⎰⎰-='=)(1)()]([)(x t dt t t f dx x f ψψψ.事实上:[]C t G dt t g dt t t f t d t f dxx f x t t x +=='=⋅=⎰⎰⎰⎰-==)()(1)()()()]([)]([)]([)(ψψψψψψ第二类换元的实质是将f (x )复杂式变简单或将明显不可积变为可积. 1. 三角代换例1.⎰+dx x 112Ct t tdt t t d t dxx t x ++=⋅==+⎰⎰⎰=)tan ln(sec sec sec 1)(tan sec 1112tan 2不定积分是被积变量的函数, 故需写成x 的函数. 而用反函数代入的方法显然很繁琐.1tan tan x t t x =⇒=, 即在直角三角形中, t 是一个锐角, x 是其对边, 1是其邻边.⎰⎰+++=++++=++==C x a x dx a x C x x dx x x t t )ln(1)1ln(1111cos 1sec 2222222例2.⎰-dx ax 221xCa x x C aa x a x C t t tdtt t t a d t a dxax xa t ta x +-+=+-+=++=⋅==-==⎰⎰⎰)ln()ln()tan ln(sec tan sec tan 1)sec (tan 12222cos sec 22积分公式:⎰++±=±C x a x dx a x )ln(12222例3.⎰-dx x a 2C ax a a x a x a C t t t a dt t a tdtat td adx x a ax t t a x +-⋅+=++=+===-⎰⎰⎰⎰==)(arcsin 2)cos sin (2)2cos 1(2cossin cos 22222222sin sin 2三角代换的实质:用六角形公式消去根式(或分母)中平方和、平方差.2. 根式代换例4.⎰++dx x 1211Cx x C t t dt t t t d t dxx t x t x +++-+=++-=+-+=-+=++⎰⎰⎰=+-=)121ln(12)1ln(11121111211212212例5.⎰+xx dx)1(322a x -xCt t dt t t dt t t xx t x tx +-=+-+=+=+⎰⎰⎰==arctan 661116)1(1)1(22632366例3.dx xx⎰-+11 (选讲、习题课) 法一:()dt t t t td t xxt t x ⎰⎰+=+-==-++-=2222111114)121(22 法二:()⎰⎰⎰⎰⎰+=--=-=--=--==dt t dt tt dt t t dx x x dx x x t x )sin 1(sin 1sin 1sin 1cos 111122sin 222法三:()()⎰⎰⎰⎰-+-=-+=-+=2222221121111111x d x dx xdx xx dx x x§3.分部积分法由导数的乘法公式:())()()()()()(x g x f x g x f x g x f '+'=',可知)()(x g x f 是)()()()(x g x f x g x f '+'的一个原函数,即[])()()()()()()()()()()()()()()()()()(x df x g x g x f x dg x f dx x g x f x g x f dx x g x f C x g x f dx x g x f x g x f ⎰⎰⎰⎰⎰-=⇔'-='⇒+='+' 其实质是将被积函数看作两个函数的乘积,将其中一个函数先凑到d 的后面(做一部分积分),从而变形为求另一个函数的积分.简言之,将被积表达式写成d 前面一部分,d 后面一部分,再交换前后两部分的位置.分部积分公式:⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u 例1.⎰xdx x sinx,sinx 都可以放到d 的后面去,但是,变形后的结果截然不同:前者变形为求⎰xdx xsin 2,后者变形为求⎰xdx cos ,显然选择后者.注: 选择u,v(d 前函数,d 后函数)的原则: (1)v 明显可求(2)简单比v u u v ''(即新得到的积分比原积分简单) 例2.⎰dx xe x例3. ⎰dx e x x 2例4.⎰xdx x ln 2例5. ⎰xdx ln , ⎰xdx 2ln例6. ⎰xdx arcsin例7. ⎰xdx e xsin例8. ⎰=xdx x I sec tan 2(选讲)⎰⎰⎰⎰⎰⎰⎰--=+-=-=-==⋅==xdxI x x xdx x x x xdx x x x xd x x xxd xdx x x xdxx I sec sec tan sec )1(tan sec tan sec sec tan tan sec sec tan sec tan sec tan tan sec tan 232 注2.分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx x ax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e ax ax ax ax cos sin sin cos cos sin cos sin )3(\例9.⎰dx ex例10. dx xexdx e xx⎰⎰-=22cos 1sin 2例11. dx xe dx x e xx ⎰⎰=22sin cos sin 例12. ()dx x x xdx x ⎰⎰-=1sec tan 22 例13. ⎰=dx x I )sin(ln例14.⎰+++dx xx x 221)11ln(不定积分小结一积分公式(分类分组) 1.幂函数类⎪⎩⎪⎨⎧-≠⎰⎰dx xdx x 11(μμ ⎪⎪⎩⎪⎪⎨⎧-+⎰⎰dx ax dx ax 222211⎪⎪⎩⎪⎪⎨⎧±-⎰⎰dx a x dx x a 222211 2.指数函数类⎪⎩⎪⎨⎧⎰⎰dx a dxe xx3.三角函数类⎪⎩⎪⎨⎧⎰⎰xdx xdx cos sin⎪⎩⎪⎨⎧⎰⎰x d x x d x s e c t a n⎪⎩⎪⎨⎧⎰⎰x d x x d x c s c c o t⎪⎩⎪⎨⎧⎰⎰xdx xdx 22csc sec⎪⎩⎪⎨⎧⎰⎰x d x x x d x x c s c c o t s e c t a n 二、凑微分法)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='常用的凑微分法有:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅⋅=⋅+⋅=⋅xd f dx x fx d f dx x f dx f dx f x dx f dx xf b ax d f a dx f 213121)(12322⎰⎰⎰⎰⎰⎰⋅=⋅⋅⋅-=⋅⋅⋅=⋅xxdef dx f e x d f dx f x x d f dx xfcos sin ln 二、变量置换法[])()(1)()]([)]([)]([)(x t t x dt t t f t d t f dx x f -==⎰⎰⎰'=⋅=ψψψψψψ 常用代换:1. 三角代换⎰⎰⎰⎰⎰⎰====-=+=-tdtt t a f a dx a x f tdtt a f a dx x a f tdtt a f a dx x a f ta x ta x ta x tan sec )tan ()(sec )sec ()(cos )cos ()(22sec 22222tan 2222sin 222. 根式代换⎰⎰--=+=⋅=++dt t t t f anmdxb ax b ax f nm n m ab tx b ax t mn nmnm 1),(),( 三、分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx xax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ 类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e axax ax axcos sin sin cos cos sin cos sin )3(\ 注2:有些函数经过变形、代换后成为上述类型.注3:选择u,v(d 前函数,d 后函数)的原则:留在d 前的函数求导后变易, 进入d 的函数积分后不变难.四、特殊函数积分归类 归类1:⎰⎪⎩⎪⎨⎧→→→++arctan ln 12平方和平方差dx c bx ax 归类2:⎰⎩⎨⎧→<→>→++arcsin 0012a a dx c bx ax 三角代换 归类3:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222 归类4:有理函数.。
第四章不定积分习题课-带解答精品文档6页
第 1 页第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数). 4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫⎝⎛='.例2 设C x dx x f +=⎰2sin 2)(,求)(x f .解 积分运算与微分运算互为逆运算,所以 例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以 例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即 例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得 例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分. 例7 求不定积分⎰++++dx xx x x x 32313.解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即 例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分. 例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec tan 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫⎝⎛++=dx x x 22111C x x +-=1arctan .第 3 页例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(.(曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx x x +=+⎰322)(arctan 311)(arctan ; 2)()C e dx exx ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xee e C e +≠+='++111)1ln(, 计算结果不正确,即 以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx x x f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln注 由于被积函数中含有x tan ln ,表明0tan >x ,故x d x d xtan ln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) 2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2.第 5 页解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) 例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即 例18 计算不定积分⎰+dx x x )1(124. 【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x分部积分目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,则2t x =,tdt dx 2=,解二 先凑微分,再代换,最后分部积分,即 例 21 已知)(x f 的一个原函数是2x e -,求⎰'dx x f x )(. 【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成把分式化为多项式与真分式的和再将真分式232x x x x+--化为最简分式的和,于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 例24 求不定积分⎰+-dx x x x )1(188. 解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181(换元,令8x u =) 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,。
高等数学课后习题答案--第四章不定积分
第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。
高等数学-习题答案-方明亮-第四章
习 题 4-11.求下列不定积分: (1)解:Cx x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x xxd )32(2C xxx++⋅+=3ln 296ln 622ln 24(3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(cscd 11d )cot11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxx x +===⎰⎰80ln 80d 80d 810(6) 解:x x d 2sin 2⎰=Cx x x x ++=-=⎰sin 2121d )cos 1(21(7)⎰+x xx xd sin cos 2cos C x x x x x x xx xx +--=-=+-=⎰⎰cos sin d )sin (cosd sin cos sincos 22(8) 解:⎰x xx x d sincos2cos 22⎰⎰-=-=x xxx xx xx d )cos1sin1(d sincos sincos222222Cx x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d xxy =,从而⎰+==Cx x x y 4341d由0)0(=y ,得0=C ,因此所求曲线方程为 441xy =.3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x2cos21-、 x2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xxd = d (x1-+ C) (2)x xd 1= d (x ln + C)(3)x e x d = d (x e + C) (4) x x d sec 2 = d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x xd 112- = d (x arcsin + C) (8)x xx d 12- = d (21x-+ C)(9)x x x d sec tan = d (x sec + C) (10)xx d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2xarctan+ C) (12) x x d = d (22x+ C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x xxd ln4⎰C xx x +==⎰5ln)d(ln ln54(3) 解:⎰x xe x d 21Ce xe x x+-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32Ce eee e e xxxx x x +++=++=⎰22131)d()22(4332(5) 解:⎰-294d xx Cx x x x x +=-=-=⎰⎰23arcsin31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln(12(7) 解:x xx x d ln ln ln 1⎰Cx x xx xx +===⎰⎰ln ln ln )ln d(ln lnln 1)d(ln ln ln ln1(8) 解:⎰-+x ee xxd 1Ce e exxx+=+=⎰arctan )d(112(9) 解:⎰x x d cos 4x xx x xd 42cos 2cos 21d )22cos 1(22⎰⎰++=+=x xx d )42cos 22cos 41(2++=⎰ ++=42sin xx xxd 24cos 1⎰+++=42sin 3xx Cx +44sin(10) 解:x xx x x d cos sin cos sin 3⎰-+Cx x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sinsin 3(12) 解:x xxd 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos(13) 解:x xx d 1arcsin 2⎰-C xx x +==⎰2arcsin)d(arcsin arcsin 2(14) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d1arctan 22x x xx xx⎰⎰+=+=Cx x x +==⎰2)(arctan )d(arctan arctan2(16) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252Cx x +-=68cos61cos81(17) 解:⎰xx x d sec tan 53⎰⎰-=xx x x x x sec d sec)1(secsec d sec tan4242Cx x x +-=57sec 51sec 71(18) 解:Cx x x xx x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(19) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323Cx x x ++=56tan41tan 61(20) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t tx x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=Cx x +-66arctan66(21) 解:令t x sec =,]2,0[π∈t ,t t t x d tan sec d =,则C t t t t t tt x x x +===-⎰⎰⎰d d tan sec tan sec 1d 112=Cx+1arccos(22) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x xx⎰⎰⎰-=--±=-)1)1d((1)1(1222--=⎰xx1)1(22-=xC xx +-=212习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2Cx x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d (3)解:⎰x x x d ln 2⎰⎰⎰-=-==x xx xx xx xxx d 3ln 3)d(ln 3ln 3)3d(ln 23333C xx x+-=9ln 333(4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222xx x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=Cx x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=xxe x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=xx ex ex exxxd 2sin 42cos 22sin于是⎰-x x exd 2sin C xex exx+--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x xx xxx arctan d 3arctan 33darctan 333⎰+-=x xxx xd 131arctan 3233⎰+-+-=x xx x x x xd 131arctan 3233C x x x x+++-=)1ln(31arctan 3223(8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x xxd )2cos (21d 22cos 1⎰+=x x x xd 2cos 2142⎰+=x x x2sin d 4142⎰-+=x x x x xd 2sin412sin 4142C x x x x+-+=2cos 812sin 4142(9)解:⎰x x xd arcsin1⎰⎰-==xx x x x x arcsin d 2arcsin2d arcsin2⎰--=x xx x d 11arcsin 2Cx x x +-+=12arcsin 2(10)解:⎰x e x xd 32xxxxxex e x x xee x ex 33233232d 923d 323d 31⎰⎰⎰-=-==C exe e x xxx++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos Cxx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分 (1)解:⎰-x x xd 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123C x x xx+-+++=1ln 2323(2)解:⎰--+x xx x x d 8345⎰⎰---+++=x xx x x x x xd 8d )1(322⎰⎰+---+++=x x x xx x x d )13148(d )1(2C x x x x xx++---+++=1ln 31ln 4ln 82323(3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=xxx x x x d )1(43d 12222⎰⎰+--++--+xxxx x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--=Cx x x x x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28) (4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x xd ])1(1124[2C x x x +-+-+=111ln 2ln 4Cx x x +-+-=11)1(ln 22(5)解:⎰-+-x x x x xd 123x xx xd )1)(1(2⎰+-=xxx x xd 11211d 212⎰⎰+---=Cx x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+xx 2sin3d ⎰-=xx2cos 7d 2xu tan =⎰+243d uu⎰+=2)32(1d 31u uC x+=3tan 2arctan321(7)解:⎰++311d xx 31xt +=⎰+tt t 1d 32t tt d )111(3⎰++-=Ct t t +++-=1ln 232(8)解:x xx x d 11⎰-+xx t -+=11⎰+-t t ttd )1)(1(4222tt t t d )121111(2⎰+++--=Ct t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分:(1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x ax x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d xx x C xx x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n nd ln)(ln d ln1现在3=n ,重复利用此公式三次,得⎰x x d ln3Cx x x x x x x +-+-=6ln 6ln3ln23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+baxxb b axb x x axb 2222d 21)(2d )(1于是现在1=a ,1=b ,于是=+⎰x xd )1(122Cx x xxxx x +++=+++⎰arctan )1(21d 21)1(2222(4)⎰-1d 2x x x解:在积分表中查得公式(51)C xa ax ax x +=-⎰arccos1d 12于是现在1=a ,于是⎰-1d 2x x x C x+=1arccos(5)x x x x d 222-⎰ 解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰tt t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C ax x aax a x x x a x x+-+---=-⎰2222222222ln 8)2(8dCa x x a x x +-=-⎰32222)(31dC ax x aax x x a x +-+--=-⎰2222222ln 22d于是x x x xd 222-⎰2222)1())1(2[81ax a x x -----=Ca x ax x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+bax xx b a bx b ax b ax xxd 2d 2Cbb ax bbax xx +-+-=+⎰arctan 2d于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x xx xx Cx xx +-+-=12arctan 212(7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=xx nn x x nx x n n nd cos1sin cos1d cos21现在6=n ,重复利用此公式三次,得⎰x x d cos6Cx x x x •x x ++++=)22sin 41(2415sin cos 245sin cos6135.(8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)Cbx b bx a eba x bx e axax+-+=⎰)cos sin (1d sin 22现在2-=a ,3=b ,于是Cx x e x x eaxx+--=⎰-)3cos 33sin 2(131d 3sin 2 Cx x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空. (1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x xx d sin 22.(2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为12+=x y .(3)如果 ⎰+=C x x x x f ln d )(,则)(x f = 1ln +x .(4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(. (5)如果 ⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2. 二、求下列不定积分.(1)解:x xxd 2cos 1cos12⎰++x x x d 1cos21cos122⎰-++=x xxd coscos 12122⎰+=xx d )sec1(2⎰+=Cx x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=xxxxeeexe1)1d(1d Ce x++-=)1ln((3)解:x xxx d 42532⎰⋅-⋅x x x x d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin22⎰-⋅-=221d arcsin 2arcsin xx x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin222⎰-+--=C x x x x x ++--=2arcsin 12arcsin22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t tttttt ++-=+--=-=-=⎰⎰⎰11lnd )1111(1d 2)1(d 222(6)解:x x xd )1(223⎰+x xxx xxx x xxx d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+=Cx x ++++=)1(21)1ln(2122(7)解:⎰-221)(arcsin d xx xCxx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x xx x --+-=⎰⎰Cxx +-+=2494132arcsin21(9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec2(sec357C xxx ++-=4sec3sec8sec 468(10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d xx ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2t t t ttt t tt tttC xx x C tttt x C t t +---=+-=+-=211arcsin 2sin2cos22sin 2sin2arcsin 2tan(11)解:⎰x e x x d 23Ceex xee x ex xxxx x+-=-==⎰⎰222222121d 2121d 212222(12)解:xxx d ln ln ⎰Cx x x +=⎰ln ln ln d lnln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F)21(lim )(lim 2210C x x C x x x ++=++--→-→ ,即,21C C =)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x . 四、若,d tan I ⎰=x x n n ,,3,2 =n 证明:21tan11----=n n n x n I I .证明:因为.⎰=x x nn d tan I ⎰⎰-==--x x x x x x n n d )1(sectand tantan2222⎰⎰---=x x x x x n n d tand sectan222⎰⎰---=xx x x n n d tantan d tan2221tan11----=n n x n I故 21tan11----=n n n x n I I .本章复习题B一、填空. (1) xex121--; (2) c x x +-331; (3)21232534154c x c x x+++(4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee xxd arctan 2xx ee 2d arctan 21-⎰-=]d 1)(11arctan [21222x ee e e e xxxx x ⎰+---=]d )11(arctan [2122x eeee exx xxx⎰+----=Ce ee exxx x+++---)arctan arctan (212。
高等数学第四章 不定积分
积分学不定积分定积分微分与积分是一对互逆的运算第四章不定积分§1 不定积分的定义与性质1.问题的提出2.定积分的定义3.定积分的性质例, ,(sin )cos ()x x x '=∀∈-∞+∞一、原函数存在定理定义1若在I 上恒有F '(x )=f (x )(即d F (x )=f (x )d x ),称F (x ) 为f (x ) 在I 上的一个原函数。
上的一个在是原函数),( cos sin +∞-∞=∴I x x (1) 满足什么条件的函数有原函数?问题:(2) 若原函数存在,如何求出?复习:原函数存在定理:连续函数一定有原函数.(sin 1)(sin 3)(sin )cos ,x x x C x '''+=+=+=原函数F (x )不唯一,但只相差一个常数可以看出:简言之:原函数之间只相差一个常数。
⎰=xatt f x d )()(Φ例:积分常数积分号被积函数定义2:Cx F dx x f +=⎰)()(被积表达式积分变量函数f (x )在区间I 上的全体原函数称为f (x )在I 上的不定积分,记为:不定积分是全体原函数的集合。
⎰dx x f )(C 不可丢!前面两例可写作:⎰+=C x xdx sin cos , ,(sin )cos ()x x x '=∀∈-∞+∞问:不定积分的几何意义?不定积分的几何意义xyoxCx F y +=)()(x F y =是积分曲线上、下平移所得到一族积分曲线,称为积分曲线族.)(x F 在点处有相同的斜率,即这些切线互相平行.x )(x f x x f d )(⎰()F x C=+称为的积分曲线.不定积分的几何意义:的原函数的图形称为的积分曲线.的图形的所有积分曲线组成f d)xx(的积分曲线族.yxO0x每条积分曲线上,横坐标相同的点处的切线是平行的例1.设曲线通过点(1, 2), 且其上任一点处的切线斜率等于该点横坐标的两倍, 求此曲线的方程.解:所求曲线过点(1, 2) ,故有因此所求曲线为12+=x y yx)2,1(O[xd d)1(⎰x x f d )(])(x f =[d ⎰x x f d )(]x x f d )(=或C x +=⎰d )2()(x F ')(x F 或C +=⎰d )(x F )(x F 二.不定积分的性质微分运算与求不定积分的运算是互逆的:线性性质⎰=±dx x g x f )]()([)1(;)()(⎰⎰±dx x g dx x f ⎰=dx x kf )()2(.)(⎰dx x f k (k 是常数,)0≠k⎰+=k Ckx kdx ()1(是常数););1(1)2(1-≠μ++μ=+μμ⎰C x dx x ;||ln )3(⎰+=C x xdx ⎰=C dx 0⎰+=C x dx 1基本积分表⎰=xdx cos )6(;sin C x +⎰=xdx sin )7(;cos C x +-⎰=xdx 2sec ;tan C x +⎰=xdx 2csc ;cot C x +-=⎰dx e x )5(;C e x +=⎰dx a x )4(;ln 1C a a x +(8)(9)⎰=xdx x tan sec )12(;sec C x +⎰=xdx x cot csc )13(;csc C x +-=+⎰dx x211)11(C x +arctan =-⎰dx x 211)10(C x +arcsin C x arc +-=cot C x +-=arccos 注:检验积分结果正确与否的方法是积分结果求导= 被积函数。
大一高等数学第四章不定积分习题省名师优质课赛课获奖课件市赛课一等奖课件
1
2
[ln(1
x2)
1
x2 x2
]dx
1 arctan x[(`1 x2 )ln(1 x2 ) x2 3] 2
x ln(1 x2 ) x C .
2
2
例7
求
dx
x(2
x
10
. )
解
原式
x9dx 1 x10 (2 x10 ) 10
d ( x10 ) x10 (2 x10 )
ln
C.
2(ln 3 ln 2) 3x 2x
例2
求
e
x (1 sin x) 1 cos x
dx.
e x (1 2 sin x cos x )
解 原式
2 2 dx 2 cos2 x
2
(e x 1 e x tan x )dx
2 cos2 x
2
2
[(e xd(tan x ) tan x de x ]
d dx
f
( x)dx
f
(x)
d[ f ( x)dx] f ( x)dx
F ( x)dx F ( x) C dF ( x) F ( x) C
(3) 不定积分旳性质
10 [ f ( x) g( x)]dx f ( x)dx g( x)dx 20 kf ( x)dx k f ( x)dx (k 是常数,k 0)
即:连续函数一定有原函数.
2、不定积分
(1) 定义
在区间I 内,函数 f ( x) 的带有任意常数项 的原函数称为 f ( x)在区间I 内的不定积分,记
为 f ( x)dx .
f ( x)dx F ( x) C
函数 f ( x)的原函数的图形称为 f ( x)的积分曲线.
高等数学 上册 第3版 第4章 不定积分
(2) 3x2dx
解:(1) 因为 (sin x) = cos x , sin x 是 cos x 的一个原函数,
所以
cos xdx = sin x + C
(2) 因为 (x3 ) = 3x2 , x3 是 3x2 的一个原函数,
所以
3x 2 dx = x 3 + C
注:不定积分结果中任意常数 C 的作用是把一个原函数转化成了 原函数族,因此切记不能丢掉。
六、直接积分法
直接用基本积分公式,或者对被积函数进行适当的恒等 变形(代数的或三角的),再利用基本积分公式与运算性质
提到积分号的外面。
证明: 因为[k f (x)dx] = k[ f (x)dx] = kf (x)
即 k f (x)dx 是 kf (x) 的原函数,并且其中含有任意常数 C ,
所以 kf (x)dx = k f (x)dx
性质 4: [ f (x) ±g(x)]dx = f (x)dx ± g(x)dx
8 (- cosx) = sin x
sin xdx = -cosx + C
9 (tan x) = sec2 x
sec2 xdx = tan x + C
10 (- cot x) = csc2 x
csc2 xdx = -cot x + C
11 (arcsin x) = 1
1- x2
1 dx = arcsin x + C 1- x2
12 (arctanx) = 1
1+ x2
13 (secx) = sec x tan x
1
1 + x2 dx = arctanx + C sec x tan xdx = sec x + C
高等数学第四章《不定积分》
第四章 不定积分 一、基本内容(一)主要定义【定义4.1】 若在()f x 的定义区间M 上均满足()()F x f x '=,则称函数()F x 是()f x 在M 上的一个原函数.【定义4.2】 ()f x 的原函数的一般表达式()F x C +称为 ()f x 的不定积分,记成()().f x dx F x C =+⎰(二)性质与定理【定理4.1】 设()f x 在(,)a b 上连续,则必存在原函数. 性质 以下均假设()f x 和()g x 在所讨论的区间上连续,则 1、 (())()f x dx f x '=⎰, ()()d f x dx f x dx =⎰.2、 ()()f x d xf x C '=+⎰,()()df x f x C =+⎰. 3、 (()())()()f x g x d x f x d xg x d x±=±⎰⎰⎰. 4、()(),kf x dx k f x dx =⎰⎰ 常数0.k ≠(三) 基本积分公式 1、11(1)1x dx x C αααα+=+≠-+⎰, 2、1ln ,dx x C x=+⎰ 3、(0,1)ln xxa a dx C a a a=+>≠⎰, 4、,x x e dx e C =+⎰ 5、sin cos xdx x C =-+⎰ 6、cos sin xdx x C =+⎰7、tan ln cos xdx x C =-+⎰ 8、cot ln sin ,xdx x C =+⎰9、sec ln sec tan xdx x x C =++⎰ 10、csc ln csc cot ,xdx x C =-+⎰11、2sec tan xdx x C =+⎰ 12、2csc cot ,xdx x C =-+⎰13、2211tan x dx arc C a a a x =++⎰ 14、2211ln ,2a xdx C a a xa x +=+--⎰15、arcsinx C a =+ 16、ln .dx x C =+ (四)基本积分方法 第一类换元法(凑微分法)(())()(())()f x x dx f x d x φφφφ'=⎰⎰ 令()u x φ=()()(())f u du F u C F x C φ==+=+⎰常见的几种凑微分形式: 1、1()()(),0f ax b dx f ax b d ax b a a +=++≠⎰⎰2、2221()(2)()(),f ax bx c ax b dx f ax bx c d ax bx c a +++=++++⎰⎰3、1(ln )(ln )ln ,dx f x f x d xx a =⎰⎰ 4、2f f =⎰⎰ 5、(sin )cos (sin )sin ,f x xdx f x d x =⎰⎰ 6、(cos )sin (cos )cos ,f x xdx f x d x =-⎰⎰ 7、2(tan )sec (tan )tan ,f x xdx f x d x =⎰⎰8、(sin (sin )sin ,f arc x f arc x darc x =⎰⎰9、2(tan )(tan )tan .1dxf arc x f arc x darc x x=+⎰⎰ 第二类换元积分法设()f x 连续,()x t φ=具有连续导数()t φ',且()0,t φ'≠则()()()((())())t x f x dx x t f t t dt ψφφφ='=⎰⎰其中右边表示对t 积分后再以()x t φ=的反函数()t x ψ=代回成x 的函数. 常见的几种类型的换元法: 以下式子中,(,)R u v 表示,u v 的有理函数.1、(,(R x dx R x dx ⎰⎰型,0a >含,令sin ,cos ;x a t dx a tdt == 含 ,令tan ,x a t =2sec ;dx a tdt =含 ,令sec ,sec tan ;x a t dx a t tdt ==2、(R x dx ⎰型,0a ≠令1,,.mn mn t b mn t x dx t dt a a--===3、(R x dx ⎰型.2222(),,,()dt b a ad bc t t x dx dt a ct a ct --===--其中设0.ad bc -≠ 4、(sin ,cos )R x x dx ⎰型.令tan ,2x t =则2222212sin ,cos ,.111t t x x dx t t t -==+++ 分部积分法设()()u x v x 、均有连续导数,则()()()()()()u x dv x u x v x v x du x =-⎰⎰分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.如3xx e dx ⎰首先变形为3x x de⎰再用公式计算.二、典型例题解析(一) 填空题 【例4.1】= 解=C =+.C . 【例4.2】(98,数二)= .解1=2arcsin 2x C -=+. 解2===2arcsin 2C +. 故应填2arcsin2x C -+ 或2arcsin 2C +. 【例4.3】= . 解1=dx C =+=+⎰解2 令t =22(3)t dt =+⎰312(3)3t t C =++122(3)(6)3x x C =-++故应填122(3)(6)3x x C -++C . 【例4.4】 2xx e dx =⎰解2x x e dx =⎰2x x de ⎰22x x x e xde =-⎰222x x x x e xe e dx =-+⎰2(22)x e x x C =-++,故应填 2(22)x e x x C -++.【例4.5】2ln 1x dx x -=⎰ 解 2l n 1x dx x -=⎰1(l n 1)x d x --⎰2l n 1x d x x x -=-+⎰ln xC x=-+, 故应填. ln xC x-+ 【例4.6】()xf x dx ''=⎰解()xf x dx ''=⎰()xdf x '⎰()()xf x f x dx ''=-⎰. 故应填 ()()x f x f x C'-+ 【例4.7】22156x dx x x -=-+⎰ . 解 22156x dx x x -=-+⎰53()32dx x x ---⎰5l n 33l n 2x x C=---+ 53(3)ln (2)x C x -=+- 故应填 53(3)ln (2)x C x -+-. 【例4.8】(99,数二)25613x dx x x +=-+⎰ .解 25613x dx x x +=-+⎰21(26)82613x dx x x -+-+⎰2221(613)(3)82613(3)4d x x d x x x x -+-=+-+-+⎰⎰ 213ln(613)4arctan 22x x x C -=-+++ 故应填 213ln(613)4arctan22x x x C --+++. 【例4.9】x dx =⎰解 由于 ,0,0x x x x x ≥⎧=⎨-<⎩,所以x dx =⎰2122,02,02x C x x C x ⎧+≥⎪⎪⎨⎪-+<⎪⎩,由于x 是连续的,则存在可导的原函数,从而原函数在0x =连续,固12C C C ==. 从而x dx =⎰12x x C +,故应填 12x x C +. 【例4.10】 设2sin x 是()f x 的一个原函数,则2()x f x dx =⎰解1 ()f x 22(sin )2cos x x x '==,则2()x f x dx =⎰322cos x x dx ⎰22sin x d x =⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++,解2 由于2sin x 是()f x 的一个原函数,则2()x f x dx =⎰22sin x d x ⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++, 故应填 222s i n c o s x x x C ++(二)选择题【例4.11】 下列结论正确的是 [ ] (A) 21x -在(1,1)-上的原函数为1x ;(B)121arctan ,1dx x C x -=-++⎰ 2211arctan ,1dx C xx -=++⎰ 即1arctan ,arctan x x-为同一个函数的原函数,彼此差一常数.(C) 符号函数sgn x 在(,)-∞+∞上存在原函数.(D )112sin cos ,0()0,0x x f x x xx ⎧-≠⎪=⎨⎪=⎩ 在(,)-∞+∞存在原函数,所以不连续函数也可以存在原函数.解 若()f x 在区间I 内有原函数()F x ,则()F x 在I 内一定是连续函数, ()f x 在I 内却不一定连续.(A )中函数1x 在0点不连续;(B )中函数1arctan x在0点不连续,因而与arctan x 不是同一函数的原函数;(C )中符号函数在(,)-∞+∞上不存在原函数;(D )中()f x 的原函数为21sin ,0()0,0x x F x xx ⎧≠⎪=⎨⎪=⎩,故选答案D. 【例4.12】 设()ln f x dx x x C =+⎰,则()f x = [ ](A )ln 1x + (B )ln x . (C )x (D )ln x x解 由不定积分定义()(ln )ln 1,f x x x C x '=+=+故选A.【例4.13】 设()F x 是()f x 的一个原函数,则等式成立的是 [ ] (A) (())()d f x dx F x =⎰ (B)()()F x dx f x C '=+⎰(C)()()F x dx F x '=⎰(D)(())()df x dx f x dx=⎰ 解 由不定积分的性质选答案D .【例4.14】 已知21f x x ⎛⎫'= ⎪⎝⎭,则下列式子中正确的是 [ ](A) 21()f x x d x C x ⎛⎫==-+ ⎪⎝⎭⎰ (B)3213x f x dx C x ⎛⎫==+ ⎪⎝⎭⎰,所以31()3f x C x =+(C) ()21,f x x'=211()f x dx C x x ==-+⎰ (D) 32()3x f x x dx C ==+⎰解 令1,t x =,则由题设有()21f t t '=,即()21,f x x'=因而选C. 【例4.15】 设()x f x e -=,则(ln )f x dx x '=⎰ [ ](A) x C + (B) x C -+ (C) 1C x+ (D) 2ln x C +解 (l n )f x dx x '=⎰(l n )(l n f x d x '⎰1(l n )f x C x==+,故选C.【例4.16】 若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩ (B) ,0()2,0x x e C x F x e C x -⎧+≥=⎨-++<⎩(C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩解 本题与[例4.9]类似,应选C .【例4.17】 (05,数二)设()F x 是连续函数()f x 的一个原函数,“M N ⇔”表示“M 的充要条件是N ”,则必有 [ ].(A) ()F x 是偶函数⇔()f x 是奇函数 (B) ()F x 是奇函数⇔()f x 是偶函数 (C) ()F x 是周期函数⇔()f x 是周期函数(D) ()F x 是单调函数⇔()f x 是单调函数 解 (B) 2()f x x =为偶函数,31()13F x x =+非奇非偶(C) ()sin f x x =为周期函数,cos 1,sin 0()cos 1,sin 0x x F x x x -+>⎧=⎨+<⎩不是周期函数(D) ()2f x x =为单调函数,但2()F x x =不是单调函数.故选A.注 当问题直接证明不易解答时,采用反例是非常有效的方法. (三)主观题 1.第二类换元法【例4.18】求下列积分 (1)d x a x -⎰; (2)d ln x x x ⎰; (3)x x ⎰.解 (1) d d()ln .x a -x a x C a x a x =-=--+--⎰⎰ (2) d d(ln )ln ln ln ln x x x C x x x==+⎰⎰.(3) 333332211221)(1)(1).3339xx x x C x C =+=⋅++=++⎰【例4.19】 求(1)(2)(ln(1)ln ).(1)x x dx x x +-+⎰ (3).⎰解 (1) 原式22.C ===+⎰(2) 原式()1111ln ln ln ln(1)1x x dx d x x x x x x ++⎛⎫⎛⎫⎛⎫=⋅-=⋅-+⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎰⎰ 21111ln ln ln .2x x x d C x x x +++⎛⎫⎛⎫⎛⎫=-⋅=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(3)原式22211()(arctan )(1)(1)x x x xx ==-=-++=3221(arctan ).3C x-+被积函数中含有xe 时,通常有效的方法是分子、分母同时乘以xe 或.xe -【例4.20】 求 (1)(1).(1)x x dx x xe ++⎰ (2)21.x xdx e e +⎰解 (1)原式(1)()11()()(1)(1)1x x xx x x x x x x e d xe dx d xe xe xe xe xe xe xe +===-+++⎰⎰⎰ ln .1x xxe C xe=++ (2)原式22222222()111xx x x xx x x e eeedx dx d e ee e --------⋅===-+++⎰⎰⎰2212(1)()1x x d e e--=--+⎰2222ln(1).x x e eC --=-+++以指数函数为基本元素且底不尽相同的被积函数式一般首先将被积函数式化为同底数幂的形式.【例4.21】 求 (1) 23.94x xxxdx -⎰ (2) 112510x x x dx +--⎰解 (1) 原式2212223ln 13233ln .2(ln 3ln 2)32221133xx x x x x x xd dx C ⎛⎫⎪⎛⎫⎝⎭ ⎪-⎝⎭===+-+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎰⎰ (2) 原式12525xx dx dx --=-⎰⎰=2152ln 55ln 2x xC ---++. 被积函数为三角函数,利用凑微分法积分时,通常“奇化偶,偶降幂,中间穿插恒等式”.【例4.22】 求 (1)3sin xdx ⎰. (2)6sec xdx ⎰(3)3sin cos dxx x ⎰解 (1) 原式222sin sin sin cos (1cos )cos x xdx xd x x d x ==-=--⎰⎰⎰=31cos cos 3x x C -++ (2) 原式 22222(sec )sec (1tan )tan x xdx x d x ==+⎰⎰24(12tan tan )tan x x d x =++⎰=3521tan tan tan 35x x x C +++. (3) 原式223sin cos sin cos x xdx x x+=⎰=32sin 1cot cos cos x dx x dx x x +⎰⎰ =21(tan )2cos tan d x x x +⎰21ln tan 2cos x C x=++. 2.变量代换法形如(,(,0R x dx R x dx a >⎰⎰的积分含 ,令sin ,cos ;x a t dx a tdt ==含 ,令2tan ,sec ;x a t dx a tdt ==含,令sec ,sec tan ;x a t dx a t tdt ==【例4.23】 求 (1)2.dx x⎰(2) 5. (3)解 (1)令sin x t =,则cos dx tdt =,原式2222cos cos 1sin csc cot sin sin t t t dt dt tdt t t t C t t⋅-===-=--+⎰⎰⎰arcsin .x C =-+(2) 令tan ,x t =则2sec dx tdt =,原式5422tan sec tan sec (sec 1)sec t tdt td t t d t ===-⎰⎰⎰5224121sec sec sec (843.5315t t t C x x C =-++=-+ 注t =更简单;还可以分部积分将5x 的次数降低求解. (3) 令sec ,x t =则sec tan dx t tdt =,原式sec tan 1arccos .sec tan t t dt tdt t C C t t x==±=+=+⎰⎰ 注此题还可分别令1x cht t x t===、求出相应的解. 【例4.24】 求下列积分(1); (2)解 (1)(法一)原式=2sec sec 2sec t dt tdt t ==sec tan 2C tt =++212C x =++.(法二)原式2122x C ==+++21x C =+++. (2)原式2===arcsin(21)x C =-+.【例4.25】 求解1,u =则222ln(1),.1ux u dx u =-=-原式2112ln ln .11u du C C u u -==+=++-⎰ 解2原式222xx--===-22ln(xeC -=-++.3.分部积分法分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.【例4.26】 求 (1)3xx e dx ⎰. (2)2tan x xdx ⎰(3)()2arctan x x dx ⎰解 (1) 原式33232336x x x x x xx de x e x de x e x e xde ==-=-+⎰⎰⎰32366.x x x xx e x e xe e C =-+-+(2) 原式=2(sec 1)x x dx -⎰21tan 2xd x x =-⎰ 21tan tan 2x x x xdx =--⎰ 21tan ln cos 2x x x x C =-+++. (3) 原式()221arctan 2x d x ⎛⎫= ⎪⎝⎭⎰()2222111arctan arctan 21x x x x dx x +-=-+⎰ ()221arctan arctan 2x x xdx =-⎰21arctan 1x dx x +⋅+⎰ ()2221arctan arctan 21x x x x x dx x ⎛⎫=-- ⎪+⎝⎭⎰arctan arctan xd x +⎰ ()()22211arctan arctan ln 122x x x x x =-++()21arctan 2x C ++【例4.27】 求322ln .(1)x xdx x+⎰解原式ln xd ⎛⎫=-=+⎰=+1ln .C x ⎛=-++ ⎝【例4.28】求.x解1原式222x ===⎰,u =则222ln(2),,2ux u dx du u =+=+22222u du u C u ==-++⎰原式2.C =解2,u =则222ln(2),,2ux u dx du u =+=+ 原式222ln(2)(2)2(2)u u udu u u ++⋅=+⎰ 222222ln(2)2ln(2)22u u du u u du u =+=+-+⎰⎰22l n (2)42a n u uu C =+-+22a r 1.C = sin ,cos x x e xdx e xdx ⎰⎰型, 连续用两次分部积分公式,移项解方程可得.注 对于分部积分也可用下列快速计算表格法:uu 'u ''v 'vv⎰......++-(1)n-(1)n u +1(1)(1)n n nu v++-⎰⎰⎰⎰v⎰⎰()n u nv⎰⎰⎰上一行代表对u 不断求导,下一行代表对v 不断积分,斜线代表两个函数相乘,竖线代表两函数乘积后再积分,连线上符号代表乘积后的符号,上表格用式子写出来即为(1)()()()(1)(1)()(1)(2)(2)()(1)(2)1(1)d d d d (1)d n n n n n n n n n n n n n n n uvx uv u v x uv u v u v xuv u v u v u v x uv u v u v u v x+-------++''''=-=-+'''''' =-+-''' ==-+-+-⎰⎰⎰⎰⎰常用于以下类型的分部积分:①d ,sin d ,kxx e x x kx x μμ⎰⎰一般设u x μ=②ln d ,arctan d ,x x x x x x μμ⎰⎰一般设()n v x μ=③sin d ,xekx x μ⎰,u v 可以任意设.对于含多项式的积分,如类型①②,须求导至0或易积分时为止,而对于循环类型③,须求导至上下函数乘积与原积分函数相同时为止.【例4.29】求32(2)d xx x e x -+⎰.解 取32u x x =-+原式2321111[(2)(31)66]24816x e x x x x C =-+--+⋅-⋅+2321(4627)8xe x x x C =-+++ 【例4.30】求cos 2d xe x x ⎰.解 取cos 2u x =32x x -+231x -6x 2xe 212x e 214x e ++--2116x e 218xe 6cos 2x2sin 2x -4cos 2x-2xe 212xe 4x e +-+22211cos 2d (cos 2sin 2)cos 2d 22x x xe x x e x x e x x =+-⎰⎰ 原式21(cos 2sin 2)4xe x x =+. 【例4.31】 求sin(ln )x dx ⎰解s i n (l n )x d x⎰s i n (l n )c o s (l n x x x d x=-⎰ sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰故s i n (l n )x d x⎰[s i n (l n )c o s (l n )].2xx x C =-+ *【例4.32】 设sin n n dxI x =⎰,试建立递推公式.解 221sin sin sin n nx xI dx x-+=⎰ 22cos sin n n xdx I x-=+⎰2111cos ()1sin n n xd I n x --=-+-⎰ 2211cos 11sin 1n n n x I I n x n ---=--+--211cos 21sin 1n n x n I n x n ---=-+-- *【例4.33】 求22,()n n dxI x a =+⎰其中n 为正整数.解 当1n >时,有21221221222212(1)()()()()n n n n n dx x x dx xI n x a x a x a x a ----==+-=++++⎰⎰ 2212212222112(1)2(1)()()()()n n n n n a xn dx n I a I x a x a x a ---⎡⎤+--=+--⎢⎥+++⎣⎦⎰ 122211(23)2(1)()n n n xI n I a n x a --⎡⎤∴=+-⎢⎥-+⎣⎦1221arctan dx xI C x a a a==++⎰.【例4.34】 已知()f x 的一个原函数是2,x e -求().xf x dx '⎰解 原式()()()xdf x xf x f x dx ==-⎰⎰2222()(21)x x x x e e C x e C ---'=-+=--+注 这类问题一般直接用分部积分,而不是先求出()f x '后代原积分求解. 4.有理函数的积分【例4.35】 求 (1)422331.1x x dx x +++⎰ (2)4611x dx x ++⎰ 解 (1) 原式=23213arctan .1x dx dx x x C x =+=+++⎰⎰ (2) 原式=422611x x x dx x -+++⎰22232332()113()11()x x dx dx x x -+=+++⎰⎰ 321arctan 31dx x x =++⎰31arctan arctan 3x x C =++. 注 拆项求解有理函数的积分是一种简洁有行之有效的方法. 【例4.36】 求2(1)dxx x +⎰.解 设221(1)1A Bx C x x x x +=+++,去分母221(1),A x Bx Cx =+++比较多项式系数得1,1,0A B C ==-=.故22211ln ln(1)2(1)1dx xdx dx x x C x x x x =-=-++++⎰⎰⎰l .C =+ 注 比较系数法可以与赋值法同时使用.如上例代入0x =直接可得 1.A = 【例4.37】 求42.21dxx x -+⎰解 设422222111121(1)(1)(1)(1)A B C Dx x x x x x x x ==+++-+-+-+-+上式两边乘以21(1),1,4x x C -→=并令得; 上式两边乘以21(1),1,4x x +→-=并令得D ;上式两边乘以,,0x x →+∞=并令得A +B ; 用0x =代入上式得1,2B A -=从而11,44A B =-=. 原式1111ln .4111x C x x x ⎛+⎫=+-+ ⎪--+⎝⎭幂次较高的有理函数积分一般采用降幂或恒等变形凑微分法.【例4.38】 求 (1)91088x dx x x -+⎰ (2)7.(1)dx x x +⎰ (3)2100.(1)x dxx -⎰ 解 (1) 原式998(8)x dx x x -=+⎰9899(8)(8)x x dx x x -=+⎰9999912(8)9(8)x x dx x x -+=+⎰92ln 8ln 9x x C =+-+ (2) 原式6777771(1)7(1)x dx dx x x x x ==++⎰⎰ 77771()7(1)dx dx x x =-+⎰⎰771ln 71x C x =++. 变形方法不唯一,也可为()()87777111711dx x dx d x x x x x ----+==-+++⎰⎰⎰71ln 17x C -=-++ (3) 原式210099100111(1)(1)(1)(1)x x d x dx dx x x x -++-==-----⎰⎰⎰ 989999121(1)(1)99(1)dx dx x x x =-+---⎰⎰979899121.97(1)98(1)99(1)C x x x =-++--- 5.三角有理式的积分形如(sin ,cos )R x x dx ⎰的积分,原则上令tan 2xt =利用万能公式做变换.但计算中由于此法复杂,通常采用三角恒等式变形.【例4.39】 求sin 1sin cos xdx x x ++⎰ 解1 令tan 2xt =,原式=22(1)(1)tdt t t ++⎰2111t dt dt t t +=-++⎰⎰21arctan ln(1)ln 12t t t C =++-++ =ln sec ln 1tan 222x x xC +-++. 解2 原式=22sin cos 222sin cos 2cos 222x x dx x x x +⎰sin2sin cos22xdx x x =+⎰(sin cos )(cos sin )22222sin cos22x x x x x d x x +--=+⎰ (sin cos )222sin cos22x x d x x x +=-+⎰ =ln sin cos 222x x xC -++. 解3 原式分子分母同乘1(sin cos )x x -+, 原式=sin (1sin cos )2sin cos x x x dx x x ---⎰1(1sin cos )2cos x x dx x--=-⎰11sin 1ln ln cos 41sin 22x x x C x -=--+++ 【例4.40】 求 (1) 21cos dx x +⎰ (2) 1tan dx x +⎰ (3) cos()4sin cos x dx x xπ+⎰ 解 (1)原式222tan .cos (1sec )2tan dx d x C x x x ===+++⎰⎰ (2) 原式 cos 1cos sin cos sin cos sin 2cos sin xdx x x x xdxx x x x++-==++⎰⎰ 1(cos sin )22cos sin x d x x x x +=++⎰1ln cos sin .22x x x C =+++ (3)原式=sin )2sin cos x x dx x x -⎰11()sin cos dx x x=-⎰csc cot ln sec tan )x x x x C =++++. 形如sin cos mx nxdx ⎰,sin sin mx nxdx ⎰或cos cos mx nxdx ⎰的积分,一般用积化和差公式先将被积函数变形后再积分.【例4.41】 求sin sin 2sin 3x x xdx ⎰. 解 sin sin 2sin 3x x x ()1cos3cos sin 32x x x =-- 1(sin 3cos3cos sin 3)2x x x x =--1111sin 6sin 4sin 22222x x x ⎛⎫=-++ ⎪⎝⎭()1sin 6sin 4sin 24x x x =-++原式()1sin 6sin 4sin 24x x x dx =-++⎰111cos 6cos 4cos 224168x x x C =+++ 形如s i n c o s s i n c o sa xb xdx c x d x ++⎰的三角函数有理式的积分可采用拆项的方法,拆成(s i n c o s )(s i n c o s )s i n c o s s i n c o s A c x d x B c x d x d x d x c x d x c x d x+++++⎰⎰通过待定系数法确定的,A B 值.【例4.42】 求3sin 2cos 2sin 3cos x x dx x x ++⎰解 设3sin 2cos (2sin 3cos )(2sin 3cos )x x x x x x αβ'+=+++, 解得 125,1313αβ==- . 原式12(2sin 3cos )125ln 2sin 3cos .132sin 3cos 1313x x dx dx x x x C x x '+=-=-+++⎰⎰ 形如(sin ,cos )R x x dx ⎰的三角有理式的积分,若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设cos t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设sin t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x --=,则可设tan t x =.【例4.43】 求 (1)254cos (2cos )sin xdx x x ++⎰ (2) 66sin 2sin cos xdx x x +⎰解 (1) 令cos t x =,则原式=2254(2)(1)t dt t t +-+-⎰2222(2)(1)(2)(1)t t dt t t ++-=-+-⎰2211(2)dt dt t t =---+⎰⎰111ln 212t C t t -=++++111c o sln 2s 21cos x C co x x-=++++. (2) 令2tan ,sec ,t x dt xdx ==则原式2242222131()24tdt dt C t t t ⎛⎫===+-+-+⎰⎰21r c t a .C =+ 6.无理函数的积分形如(R x dx ⎰;(,0.R x dx a ≠⎰的积分,分别令2222(),,,()dt b a ad bc tt x dx dt a ct a ct --===--其中设0ad bc -≠;,t = 1,mn mn t b mn x dx t dt a a--==【例4.44】 求 (1)(2)(3).dx解 (1)令t =则321,3x t dx t =-=原式22211333(ln(1)).1112t dt t t dt t t C t t t ⎛⎫-==+=-+++ ⎪+++⎝⎭⎰⎰3ln(1.C =+++(2)原式=, 令t =3211x t =+-原式=3322dt t C -=-+⎰.C = (3) 令65,6x t dx t dt ==,则原式211666ln .11()dt t dt C C t t t t t ⎛⎫==-=+=+ ⎪+++⎝⎭⎰⎰【例4.45】 求 (1). (2)解 (1)原式=(x x dx ⎰3211(1)32x x =-- 332211(1)33x x C =--+.(2) 原式==332221(31)(21)93x x C =++++.注 当分母是无理式时,有时分母有理化会简化计算. 7.综合杂例【例4.46】 设1,01(ln ),1x f x x x ≤≤⎧'=⎨<<+∞⎩求(),(ln )f t f x .解 令ln t x =,则1,0(),0tt f t e t -∞<<⎧'=⎨<<+∞⎩,,0(),0t t C t f t e D t +-∞<≤⎧=⎨+<<+∞⎩, 由()f t 的连续性得1C D =+,因此有1,0(),0tt D t f t e D t ++-∞<≤⎧=⎨+<<+∞⎩, l n 1,01(l n ),1x D t f x x D x ++<≤⎧=⎨+<<+∞⎩.【例4.47】 设()f x 的导函数为()f x '开口向下的二次抛物线,且()f x 的极小值为2,极大值为6,试求()f x .解()(2),(0)f x ax x a '=-<,所以32()(2)()3x f x ax x dx a x C =-=-+⎰由(0)0,(2)0f f ''==,且(0)0,(2)0f f ''''><,故()f x 的极小值为(0)2,f C ==极大值322(2)(2)26,33f a a =-+=⇒=-,所以32()32f x x x =-++.【例 4.48】设()F x 是()f x 的一个原函数,(1)4F =,若当0x >时有()()f x F x =,试求()f x .解 由于()F x 是()f x 的一个原函数,()()F x f x '=()()F x F x '=()()F x dF x =⎰,221()2F x C =+,又(1)4F =,所以0C =,()F x =故 ()f x =.【例4.49】 设()y y x =是由22()y x y x -=所确定的隐函数,求2dx y ⎰.解 令y tx =,则由22()y x y x -=可得211,(1)(1)x y t t t t ==--,3223(1)tdx t t -+=- 原式=23t dt t -+⎰32ln t t C =-+32ln y yC x x=-+. 注 这种隐函数的不定积分一般通过变量代换将x 和y 用另一个变量表示,然后求解.三、综合测试题综合测试题A 卷一、填空题(每小题4分,共20分) 1、函数2x为 的一个原函数.2、已知一阶导数 (())f x dx '=⎰,则(1)f '= 3、若()arctan xf x dx x C =+⎰,则1()dx f x ⎰=4、已知()f x 二阶导数()f x ''连续,则不定积分()xf x dx ''⎰=5、不定积分cos cos ()xxd e ⎰=二、选择题(每小题4分,共20分)1、已知函数2(1)x +为()f x 的一个原函数,则下列函数中是()f x 的原函数的是 [ ] (A) 21x - (B) 21x + (C) 22x x - (D) 22x x + 2、已知()sin x x e f x dx e x C =+⎰,则()f x dx ⎰= [ ] (A) sin x C + (B) cos x C + (C) cos sin x x C -++ (D) cos sin x x C ++ 3、若函数ln xx 为()f x 的一个原函数,则不定积分()xf x dx '⎰= [ ] (A)1ln x C x -+ (B) 1ln xC x ++ (C)12ln x C x -+ (D) 12ln xC x++ 4、已知函数()f x 在(,)-∞+∞内可导,且恒有()f x '=0,又有(1)1f -=,则函数()f x = [ ](A) -1 (B) -1 (C) 0 (D) x5、若函数()f x 的一个原函数为ln x ,则一阶导数()f x '= [ ](A)1x (B) 21x- (C) ln x (D) ln x x 三、解答题 1、(7分)计算22(1)dxx x +⎰. 2、(7分)计算1x dx e +⎰.3、(7分)计算 321x dx x +⎰. 4、(7分)计算 254dxx x ++⎰.5、(8分)计算.6、(7分)计算23xx e dx ⎰.7、(8分)已知222(sin )cos tan 01f x x xx '=+<< ,求()f x .8、(9分)计算 cos ax I e bxdx =⎰.综合测试题A 卷答案 一、填空题1、2ln 2x2 3、241124x x C ++ 4、()()xf x f x C '-+5、cos (cos 1)x ex C -+二、选择题1、D2、C3、C4、A5、B 三、解答题 1、1arctan x C x --+ 2、ln(1)x x e C -++ 3、2211ln(1)22x x C -++4、11ln 34x C x +++5、C6、2221()2x x x e e C -+7、21()ln(1)2f x x x C =---+8、22(sin cos )axe b bx a bx C a b +++综合测试题B 卷一、填空题(20分)1、不定积分(sin d =⎰.2、已知()(),f x dx F x C =+⎰则()()F x f x dx =⎰ .3、若21(ln ),2f x dx x C =+⎰则()f x dx =⎰ .4、1)dx +=⎰ .5、2ln x dx =⎰.二、选择题(25分) 1、若2(),f x dx xC =+⎰则2(1)xf x dx -=⎰ [ ](A) 222(1)x C --+ (B) 222(1)x C -+ (C) 221(1)2x C --+ (D) 221(1)2x C -+ 2、设()2,x f x dx x C =++⎰则()f x '= [ ](A) 2l n 22x x C ++ (B) 2l n 21x + (C) 22l n 2x (D) 22l n 21x + 3、11dx x =-⎰ [ ](A )ln 1x C -+ (B ) l n (1)x C -+ (C )ln (1)x C -++ (D )ln 1x C --+4、存在常数A 、B 、C ,使得21(1)(2)dx x x =++⎰ [ ](A )2()12A B dx x x +++⎰ (B ) 2()12Ax Bx dx x x +++⎰ (C )2()12A Bx C dx x x ++++⎰ (D )2()12Ax B dx x x +++⎰5、若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩(B) ,0()2,0x xe C x F x e C x -⎧+≥=⎨-++<⎩ (C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩三、计算题(48分) 1、(7分)求积分2arccos x . 2、(7分)求.3、(7分)2(1)dx x x +⎰. 4、(01,数二,8分)求.5、(8分)求积分1sin cos dx x x ++⎰.6、(06,数二,11分)求arcsin xxe dx e⎰. 四、(7分)计算2ln sin sin x dx x ⎰综合测试题B 答案 一、填空题1、C 2、2()2F x C + 3、xe C + 4、335222353x x x x C +--+ 5、2ln 2x x x C -+ 二、选择题1、C2、C3、D4、C5、C 三、计算题1、2arccos 1102ln10xC -+ 2、1)C + 3、221ln .21x C x ++ 4、C =+ 5、ln 1tan 2x C =++6、解 arcsin x x e dx e⎰arcsin arcsin x x x x x xe de e e e ---=-=-+⎰⎰a r c s i n x xxee --=-+a r c s i n xx xe e --=-- s e cx t e -=令s e c t a n a r c s i n t a n xxt tdt e e t-=--⎰a r c s i n s e c x xe e tdt -=--⎰a r c s i n l n s e c t a n x xe e t t C -=--++a r c s i n l n 1x x x e e e C--=--+ 四、 2ln sin sin xdx x ⎰cot ln sin cot x x x x C =-⋅--+.。
《高等数学》第4章不定积分4-4
x 1
1
x
1 x2
. 1
难点 将有理函数化为部分分式之和.
有理函数化为部分分式之和的一般规律:
(1)分母中若有因式 ( x a)k ,则分解后为
(x
A1 a)k
(x
A2 a)k1
Ak xa
,
其中 A1 , A2 ,, Ak 都是常数.
特殊地:k
1,
分解后为
x
A
a
;
(2)分母中若有因式 ( x2 px q)k ,其中 p2 4q 0 则分解后为
4
2
(
x
Mx 2 px
N q
)n
dx
(t2
Mt a2 )n
dt
(t2
b a2 )n
dt
(1)
n 1,
Mx N x2 px
q
dx
M ln( x2 px q) b arctan
x
p 2
C;
2
a
a
(2) n 1,
(
x
Mx 2 px
N q
)n
dx
2(n
M 1)(t 2
M1x ( x2 px
N1 q)k
M2x N2 ( x2 px q)k1
Mkx Nk x2 px q
其中 Mi , Ni都是常数(i 1,2,, k ).
特殊地:k 1,
分解后为
x
Mx N 2 px
q
;
真分式化为部分分式之和的待定系数法
例1
x
2
x
3 5x
6
(
x
x 2)(
(1)
代入特殊值来确定系数 A, B,C
(完整word版)高等数学第四章不定积分习题,DOC.docx
(完整word版)高等数学第四章不定积分习题,DOC.docx第四章不定积分§4–1 不定积分的概念与性质一.填空题1.若在区间上F ( x) f ( x),则 F(x)叫做f ( x)在该区间上的一个 , f ( x)的所有原函数叫做 f ( x) 在该区间上的__________。
2.F(x)是f ( x)的一个原函数,则y=F(x) 的图形为? (x) 的一条_________.3.因为1,所以 arcsinx 是______的一个原函数。
d (arcsin x)dx1x24.若曲线 y=? (x)上点(x,y)的切线斜率与x3成正比例,并且通过点A(1,6) 和B(2,-该曲线方程为 __________ 。
二.是非判断题1.若 f x的某个原函数为常数,则 f x 0.[]2.一切初等函数在其定义区间上都有原函数 .[]3. f x dx f x dx .[]4.若 f x在某一区间内不连续,则在这个区间内 f x必无原函数 .[]5. y ln ax 与 y ln x 是同一函数的原函数.[]三.单项选择题1.c 为任意常数,且 F ' (x) =f(x),下式成立的有。
(A) F '(x)dx f(x)+c; (B) f ( x)dx =F(x)+c;(C) F (x)dx F ' (x) +c;(D) f '(x)dx=F(x)+c.2.F(x) 和 G(x) 是函数 f(x) 的任意两个原函数, f(x)0,则下式成立的有。
( A )F(x)=cG(x); (B )F(x)=G(x)+c;(C )F(x)+G(x)=c;(D) F ( x) G( x) =c.3.下列各式中是 f ( x) sin | x |的原函数。
(A) y cos | x |;(B)y=-|cosx|;(c)y=cos x, x 0, (D)y= cos x c 1 ,x0,c 1 、 c 2 任意常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 不定积分习 题 4-11.求下列不定积分: (1)解:C x x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x x xd )32(2C xx x ++⋅+=3ln 296ln 622ln 24 (3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxxx+===⎰⎰80ln 80d 80d 810 (6) 解:x x d 2sin2⎰=C x x x x ++=-=⎰sin 2121d )cos 1(21 (7)⎰+x x x xd sin cos 2cos C x x x x x x x x x x +--=-=+-=⎰⎰cos sin d )sin (cos d sin cos sin cos 22 (8) 解:⎰x xx xd sin cos 2cos 22⎰⎰-=-=x x x x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d 由0)0(=y ,得0=C ,因此所求曲线方程为 441x y =. 3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫ ⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xx d = d (x 1- + C) (2)x x d 1 = d (x ln + C) (3)x e xd = d (xe + C) (4) x x d sec 2= d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x x d 112- = d (x arcsin + C) (8)x x x d 12- = d (21x -+ C)(9)x x x d sec tan = d (x sec + C) (10)x x d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2x arctan + C) (12) x x d = d (22x + C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x x x d ln 4⎰C x x x +==⎰5ln )d(ln ln 54(3) 解:⎰x xexd 21C e x e x x +-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32C e e e e e ex x x x x x+++=++=⎰22131)d()22(4332(5) 解:⎰-294d x x C x x x x x +=-=-=⎰⎰23arcsin 31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12 (7) 解:x x x x d ln ln ln 1⎰11d(ln )d(ln ln )ln |ln ln |ln ln ln ln ln x x x C x x x ===+⎰⎰(8) 解:⎰-+x e e x x d 1C e e e x x x +=+=⎰arctan )d(112 (9)解:2211()(12)24x x x C =--=--= (10)解:3222222133d d 3323x x x x x x dx x x x +-==+++⎰⎰⎰22222131131(3)ln(3)22322dx d x x x C x =-+=-+++⎰⎰ (11)解:3x x x =+2234)38x x =+-2arcsin3x C =(12)解:211111d d d 2(2)(1)321x x x x x x x x x ⎛⎫==- ⎪---+-+⎝⎭⎰⎰⎰ 12ln 31x C x -=++ (13)解:2111sin ()d (1cos2())cos2()2()224t t t dt dt t d t ωϕωϕωϕωϕω+=-+=-++⎰⎰⎰⎰11sincos2()24t t C ωϕω=-++ (14)解:31d cos (arccos )x x arc x x ==-⎰ 21(cos )2arc x C -=+(15)解:2lncot lncot 1lncot 1lncot d d csc d dcot sin 22sin cos 2cot 2cot x x x xx x x x x x x x x x===-⎰⎰⎰⎰ 211ln cot dln cot (ln cot )24x x x C =-=-+⎰ (16)解:222x ===⎰2C =+(17) 解:⎰x x d cos 4x xx x x d 42cos 2cos 21d )22cos 1(22⎰⎰++=+= x x x d )42cos 22cos 41(2++=⎰ ++=42sin x x x x d 24cos 1⎰+++=42sin 3x x C x+44sin(18) 解:x xx xx d cos sin cos sin 3⎰-+C x x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(19) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (20) 解:x xx d 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos (21) 解:x xxd 1arcsin 2⎰-C xx x +==⎰2arcsin )d(arcsin arcsin 2 (22) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(23) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252C x x +-=68cos 61cos 81 (24) 解:35tan sec d x x x =⎰⎰⎰-=x x x x x x sec d sec )1(sec sec d sec tan 4242C x x x +-=57sec 51sec 71 (25) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(26) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323C x x x ++=56tan 41tan 61 (27) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t t x x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=C x x +-66arctan 66 (28) 解:设2tan ,sec x t dx tdt ==,则21td d sectx t t ==⎰sin t C C =+=(29) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x x x⎰⎰⎰-=--±=- )1)1d((1)1(1222--=⎰xx1)1(22-=x C x x +-=212(30)解:设3sec ,3sec tan x t dx t tdt ==,则2233tantdt tan (sec 1)22x tdt t dt =⨯==-⎰⎰333(tan 1)arccos )222t C x =-+=+(31)解:设2sin ,2cos x t dx tdt ==,则222=4sin dt x t =⎰12(1cos2)dt =22sin cos 2arcsin 22x t t t t C C =--+=-⎰(32)解: 22111d 2323313x dx x x x x =++++⎰⎰211111)()1833344()39x dx x C x +==+=+++⎰(33)解:1)4x x x ==+14x C =++ (34)解:1)2x x x ==-1)x C =-+习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d(3)解:⎰x x x d ln 2⎰⎰⎰-=-==x x x x x x x x x x d 3ln 3)d(ln 3ln 3)3d(ln 23333C x x x +-=9ln 333 (4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222x x x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=C x x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x exd 2sin ⎰--=xe x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x e xd 2sin C xe x e x x +--=--52cos 22sin (7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333⎰+-=x x x x x d 131arctan 3233⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x x d )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsin d 2arcsin 2d arcsin 2⎰--=x xx x d 11arcsin 2C x x x +-+=12arcsin 2(10)解:⎰x e x xd 32x x xx x e x e x x xe e x e x 33233232d 923d 323d 31⎰⎰⎰-=-== C e xe e x x x x ++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos C xx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分(1)解:⎰-x x x d 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123 C x x x x +-+++=1ln 2323 (2)解:⎰--+x x x x x d 8345⎰⎰---+++=x xx x x x x x d 8d )1(322⎰⎰+---+++=x x x x x x x d )13148(d )1(2C x x x x x x ++---+++=1ln 31ln 4ln 82323 (3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=x x x x x x d )1(43d 12222⎰⎰+--++--+ x x x x x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--= C x x xx x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28)(4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x x d ])1(1124[2 C x x x +-+-+=111ln 2ln 4C x x x +-+-=11)1(ln 22 (5)解:⎰-+-x x x xxd 123x x x x d )1)(1(2⎰+-=x x x x x d 11211d 212⎰⎰+---= C x x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u⎰+=2)32(1d 31u u C x +=3tan 2arctan 321(7)解:⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232(8)解:x xx xd 11⎰-+x x t -+=11⎰+-t t t t d )1)(1(4222t t t t d )121111(2⎰+++--= C t t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分: (1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x x C x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰ 由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31d C a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----=C a x a x x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x x xx x C x xx +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n nd cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C xx x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e ax ax+-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx +--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空.(1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x x x d sin 22. (2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为 12+=x y .(3)如果⎰+=C x x x x f ln d )(,则)(x f = 1ln +x . (4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(.(5)如果⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2.二、求下列不定积分.(1)解:x x x d 2cos 1cos 12⎰++x x x d 1cos 21cos 122⎰-++=x xx d cos cos 12122⎰+=x x d )sec 1(2⎰+= C x x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=x x x x e e e x e 1)1d(1d C e x++-=)1ln( (3)解:x xxxd 42532⎰⋅-⋅x x xx d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin 22⎰-⋅-=221d arcsin 2arcsin x x x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin 222⎰-+--=C x x x x x ++--=2arcsin 12arcsin 22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t t t t t t t ++-=+--=-=-=⎰⎰⎰11ln d )1111(1d 2)1(d 222 (6)解:x x x d )1(223⎰+x x x x x x x x x x x d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+= C x x ++++=)1(21)1ln(2122 (7)解:⎰-221)(arcsin d x x xC xx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x x x x --+-=⎰⎰C x x +-+=2494132arcsin 21 (9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec 2(sec 357C xx x ++-=4sec 3sec 8sec 468 (10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d x x ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2tt t t t t t t t t t t C x x x C t t t t x C t t +---=+-=+-=211arcsin 2sin2cos 22sin2sin 2arcsin 2tan(11)解:⎰x e x x d 23C e e x x e e x e x x x x x x +-=-==⎰⎰222222121d 2121d 212222(12)解:x xxd ln ln ⎰C x x x +=⎰ln ln ln d ln ln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F)21(lim )(lim 22010C x x C x x x ++=++--→-→ ,即,21C C =)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+ ,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x .四、若,d tan I ⎰=x x n n ,,3,2 =n 证明:21tan 11----=n n n x n I I . 证明:因为⎰=x x n n d tan I ⎰⎰-==--x x x x x x n n d )1(sec tan d tan tan 2222 ⎰⎰---=x x x x x n n d tan d sec tan 222⎰⎰---=x x x x n n d tan tan d tan 2221tan 11----=n n x n I 故 21tan 11----=n n n x n I I .本章复习题B一、填空.(1) xe x 121--; (2) c x x +-331; (3) 21232534154c x c x x +++ (4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee x x d arctan 2xx e e 2d arctan 21-⎰-=]d 1)(11arctan [21222x e e e e e x x x x x ⎰+--- =]d )11(arctan [2122x e e e e e xx x xx ⎰+----=C e e e e x x x x +++---)arctan arctan (212。