必修一基本初等函数练习题(含详细答案解析)
高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若 , 则 叫做以 为底 的对数, 记作 , 其中 叫做底数, 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化: .(2)几个重要的对数恒等式: , , .(3)常用对数与自然对数:常用对数: , 即 ;自然对数: , 即 (其中 …). (4)对数的运算性质 如果 , 那么 ①加法: ②减法: ③数乘:④log a N a N = ⑤log log (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数 的定义域为 , 值域为 , 从式子 中解出 , 得式子 . 如果对于 在 中的任何一个值, 通过式子 , 在 中都有唯一确定的值和它对应, 那么式子 表示 是 的函数, 函数 叫做函数 的反函数, 记作 , 习惯上改写成 .(7)反函数的求法①确定反函数的定义域, 即原函数的值域;②从原函数式 中反解出 ; ③将 改写成 , 并注明反函数的定义域. (8)反函数的性质①原函数 与反函数 的图象关于直线 对称.②函数 的定义域、值域分别是其反函数 的值域、定义域. ③若 在原函数 的图象上, 则 在反函数 的图象上. ④一般地, 函数 要有反函数则它必须为单调函数.一、选择题:1. 的值是( )A.B. 1C. D. 22. 已知x= +1,则log4(x3-x -6)等于 ( ) A.23 B.45 C.0 D.21 3. 已知lg2=a, lg3=b, 则 等于 ( ) A.B.C. D. 4.已知2lg(x -2y)=lgx +lgy, 则 的值为( )A. 1B. 4C. 1或4D. 4或-15.函数y=)12(log 21 x 的定义域为( ) A. ( , +∞) B. [1, +∞ C. ( , 1 D. (-∞, 1) 6.已知f(ex)=x, 则f(5)等于 ( )A. e5B. 5eC. ln5D. log5e7. 若 的图像是 ( )A B C D8. 设集合等于()A. B.C. D.9. 函数的反函数为()A. B.C. D.二、填空题:10. 计算: log2.56.25+lg +ln +=11. 函数y=log4(x-1)2(x<1的反函数为__________ .12. 函数y=(log x)2-log x2+5在2≤x≤4时的值域为______.三、解答题:13.已知y=loga(2-ax)在区间{0, 1}上是x的减函数, 求a的取值范围.14. 已知函数f(x)=lg[(a2-1) x2+(a+1)x+1], 若f(x)的定义域为R, 求实数a的取值范围.15. 已知f(x)=x2+(lga+2)x+lgb, f(-1)=-2, 当x∈R时f(x)≥2x恒成立, 求实数a的值, 并求此时f(x)的最小值?一、选择题: ABBCBCDCBAAB13. , 14.y=1-2x(x∈R), 15.(lgm)0.9≤(lgm)0.8, 16.17.解析: 因为a是底, 所以其必须满足a>0 且a不等于1a>0所以2-ax为减函数, 要是Y=loga(2-ax)为减函数, 则Y=loga(Z)为增函数, 得a>1又知减函数区间为[0,1], a必须满足2-a*0>0 2-a*1>0 即得a<2综上所述, 啊的取值范围是(1,2)18、解: 依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时, 其充要条件是: 解得a<-1或a>又a=-1, f(x)=0满足题意, a=1, 不合题意.所以a的取值范围是: (-∞, -1]∪( , +∞)19、解析:由f(-1)=-2, 得:f(-1)=1-(lga+2)+lgb=-2, 解之lga-lgb=1,∴=10, a=10b.又由x∈R, f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x, 即x2+xlga+lgb≥0, 对x∈R恒成立, 由Δ=lg2a-4lgb≤0, 整理得(1+lgb)2-4lgb≤0即(lgb-1)2≤0, 只有lgb=1, 不等式成立.即b=10, ∴a=100.∴f(x)=x2+4x+1=(2+x)2-3当x=-2时, f(x)min=-3.。
高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一第二章《基本初等函数Ⅰ》测试一、选择题: 1.若32a =,则33log 82log 6-用a的代数式可表示为( )()A a -2 ()B 3a -(1+a )2 ()C 5a -2 ()D 3a -a 22.下列函数中,值域为(0,)+∞的是( )()A 125xy -= ()B 11()3xy -= ()C y =()D y = 3. 设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是(4.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个()()A 新加坡(270万) ()B 香港(560万) ()C 瑞士(700万)()D 上海(1200万)5.已知函数l o g (2)a y a x =-在[0,1]上是x 的减函数,则a 的取值范围是 ( )()A (0,1) ()B (0,2) ()C (1,2) ()D [2,+∞)6.函数lg (1)(01)()1lg() (10)1x x f x x x-≤<⎧⎪=⎨-<<⎪+⎩,则它是( )()A 偶函数且有反函数 ()B 奇函数且有反函数 ()C 非奇非偶函数且有反函数 ()D 无反函数 二、填空题:7.函数()1log 15.0-=x y 的定义域是 .8.化简⨯53xx 35xx ×35xx = .9.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .10.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,且当01x << 上时,有()0f x >,则()f x 在(0,)+∞上的单调性是 . 三、解答题:(.解答应写出文字说明,证明过程或演算步骤.) 11.(Ⅰ)求x x x x f -+--=4lg 32)(的定义域; (Ⅱ)求212)(x x g -=的值域.12.若()1log 3,()2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.13.已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.14.已知函数()x f 满足()()()1,01log 12≠>--=-a a xx a a x f a , (Ⅰ)求()x f 的解析式并判断其单调性;(Ⅱ)对定义在()1,1-上的函数()x f ,若()()0112<-+-m f m f ,求m 的取值范围;(Ⅲ)当()2,∞-∈x 时,关于x 的不等式()04<-x f 恒成立,求a 的取值范围.参考答案(仅供参考):ABADCB , 7(1,2), 8、1, 9、C4,C2,C3,C1 10单调递减, 11.(Ⅰ){243}x x x ≤<≠且 (Ⅱ)(0,2] 12.f (x)-g(x)=log x 3x-log x 4=log x 43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x). 13解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3. 由{21043a b a b -+=-=得a =1,b =1.14. (Ⅰ) 21()()1xxa f x a a a =-- …………………2′证明在(1,1)-上单调递增 ……………………………………4′(Ⅱ)判断函数()f x为奇函数,22111111111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪-<-⎩…4′(Ⅲ)[2(1,2 ………………4′。
高一必修(第一册)基本初等函数复习(含答案)

咼一升咼—基本初等函数复习设 a =0.6°.4, b =0.4°.6, c=0.4°.4,则 a , b , c 的大小关系为()A . a ::: b ::: cB . b ::: c a C. c ::: a ::: bD. c :::b ::: a已知函数f (x^a x- 3(a =0),贝U f(x)的图象过定点()A . (0,4) B. (2,4) C. (0,3) D. (4,3) 已知2a =3b =6,则a , b不可能满足的关系是()2 2C . (a -1) (b -1) :::22已知x^4,贝U x等于()1A .B . _88f (x) =x 一4 + 9 , x € (0,4),当x=a 时,f (x)取得最小值b,则函数g(x)=a|x^ x +1A.(」:,2] B . [2,::) C . [-2 ,亠)D.(」:,-2]1 函数f(x)=()41x,(2)x -1, [0, :)的值域为()5A.(一;,1]45B . H- , 1]4c . ( -1,1]D.[-1 , 1]已知a =(-2)0'3,0 3b = g 0.3 ,c =03,贝U2a, b,c的大小关系是( )A . a : b :: cB . c :a :::bC . a ■■ c :: b D.b ■c ■■a1 ln2 lg2 -lg 5 -e1 ____________-(丄)_ ..(-2)2的值为(4)1. 2. 3. 4.5.6. 7. & 9.D ._2已知函数9A. -11B .—2C . 3D._510.若幕函数 2f(x)的图象过点(4,2),则f (a )=(B.—a C. _a D. |a|11.已知函数 f (x) = (m22m -2 m 3-m -1)x _ 是幕函数,且其图象与两坐标轴都没有交点,则实A. -13曲线G , C2, C3, C4的n依次为(22C.14.对于幕函数4f(x) =x5,若0 ::x ::X2,则f( X1 X22占大小关系是(f (X i X 2)f (X i ) f (X 2)2 X i X 2f(x i ) f(X 2)f (h^D .无法确定15.若函数f(x) =x a 满足f (3) = 9,那么函数g(x) =|log a (x 1)|的图象大致为()216.若函数y =log 2(kX4kX 5)的定义域为R ,则k 的取值范围()55A . (0,—)B . [0,-)4 455C . [0 , ]D .(-二,0)-(,::)4417.已知函数f(x)=lg(ax 2 -2x a)的值域为R ,则实数a 的取值范围为()A . [-1 , 1]B . [0 , 1]C . (-: - , -1) - (1, : :)D . (1,::)18.函数f(x)=2X -s inx 在区间[-10二,10二]上的零点的个数是()A . 10B . 20C . 30D . 4011119 .若 15a =5b =3° =25,贝U ---—一二 _______a b c 20 .方程4X -10L2X *16 =0的解集是 ________f (宁)严)仏) 2x 1 x 221 .已知函数f(x^ a (X 0)是(-::,;)上的增函数,那么实数a的取值范围、ax +3a —8 (x, 0)是____ .22. 已知函数f(x)的图象与函数g(x)=2关于直线y=x对称,令h(x)=f(仁|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(_1,0)上单调递增.中正确的是 __________________ .b 2x23. 已知函数f(x) 二为定义在区间[-2a , 3a -1]上的奇函数,贝V a・b= .2x+13 324. _________________________________________________________________ 已知实数a满足(2a_1)P (a 1)^,则实数a的取值范围是 ____________________________________ .25•已知函数f(x) =2工ax 3(1 )当a =0时,求函数f(x)的值域;(2)若A={x|y =lg(5—x)},函数f(x)=2」也奉在A内是增函数,求a的取值范围.x6 / 18a _2x 26. 已知定义域为R 的函数f(x)=市是奇函数 (1 )求a ,b 的值.(2) 判断f(x)的单调性,并用定义证明(3) 若存在r R,使f(k t ) f (4^2t ) :::0成立,求k的取值范围.27. 利用换底公式求log? 25Jog3 4」og5 9的值.28. 设f (x) =log a(j x) log a(3-x)(a 0 , a=1),且f (1) = 2 .(1 )求a的值及f (x)的定义域.3(2 )求f(x)在区间[0 ,-]上的值域.229.已知函数 f (x) =log2 x的定义域是[2 ,16].设g(x)二f(2x) -[f(x)]2.(1)求函数g(x)的解析式及定义域;2)求函数g(x) 的最值.。
2023年新版高一数学必修一基本初等函数高考真题含详细答案

基本初等函数1.(高考(安徽文))23log 9log 4⨯=( )A .14 B .12C .2D .4 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3.(高考(重庆))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞4.(高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5.(高考(四川))函数(0,1)xy a a a a =->≠旳图象也许是6.(高考(山东))函数21()4ln(1)f x x x =+-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-7.(高考(广东))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .21y x =+8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是10.(高考(江西理))下列函数中,与函数3x( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题11.(高考(上海))方程03241=--+x x 旳解是_________.12.(高考(陕西))设函数发,0,()1(),0,2xx x f x x ,则((4))f f =_____13.(高考(北京))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m旳取值范围是________.14.(高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是______.16.(高考(江苏))函数x x f 6log 21)(-=旳定义域为____.三、解答题17.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.基本初等函数参照答案一、选择题1.【解析】选D 23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3..(高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->因此1x <或3log 5x >;由()2g x <得322x -<即34x <因此3log 4x <故(,1)MN =-∞4.(高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,因此在)2,1(上也为增函数,选B.5.(高考(四川文))函数(0,1)xy a a a a =->≠旳图象也许是[答案]C [解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. (高考(山东文))函数21()4ln(1)f x x x =-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-解析:要使函数)(x f 故意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B. 7.(高考(广东文))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+解析:D.()()()22ln 1ln 1f x x x f x -=-+=+=.8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A.(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是[答案]C [解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C. 10.(高考(江西理))下列函数中,与函数3x定义域相似旳函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD 【解析】 函数3y x=旳定义域为()(),00,-∞+∞,而答案中只有sin xy x=旳定义域为()(),00,-∞+∞.故选D.二、填空题11.(高考(上海文))方程03241=--+x x 旳解是_________.[解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x ,3log 2=x . 12.(高考(陕西文))设函数发,0,()1(),0,2x x x f x x ,则((4))f f =_____解析:41(4)()162f ,((4))(16)164f f f13.(高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 旳取值范围是________. 【解析】首先看()22xg x =-没有参数,从()22xg x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),因此舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,因此30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,因此4m >-,又0m <,故(4,0)m ∈-,综上,m 旳取值范围是(4,0)-.14.(高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴= 2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是___5___.16.(高考(江苏))函数xx f 6log 21)(-=旳定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x . 由1lg)1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 由于01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-== 由单调性可得]2lg ,0[∈y . 由于y x 103-=,因此所求反函数是xy 103-=,]2lg ,0[∈x。
基本初等函数-人教A版高中数学必修1课时训练(含答案)

解析 令 x-1=0,得 x=1, 此时 y=2+1=3,∴图象恒过定点(1,3). 答案 C 8.函数 f(x)= 1-2x的定义域是( A.(-∞,0] B.[0,+∞) ).
C.(-∞,0) D.(-∞,+∞) 解析 要使函数有意义,则 1-2x≥0,即 2x≤1,∴x≤0.
答案 A 5 3 9.已知函数 f(x)是指数函数,且 f-2= 25 ,则 f(3)=________.
1 2x+1x<-1, = + x≥-1. 2x 1 1 其图象分成两部分,一部分是将 y1=2x+1(x<-1)的图象作出,而它的图象可以 1 看作将 y=2x 的图象沿 x 轴的负方向平移一个单位而得到, 另一部分是将 y=2x
解析 原式= 答案 0
综合提高
7.下列说法中,正确说法的个数为(
限时25分钟
).
n ① an=a;②若 a∈R,则(a2-a+1)0=1; 3 ③ x4+y3= 3 6 +y;④ -5= -52. D.3
A.0 B.1 C.2
解析 ①中,若 n 为偶数,则不一定成立,故①是错误的;②中,因为 a2-a+1 1 3 =a-22+4≠0,所以(a2-a+1)0=1 是正确的;③是错误的;④左边为负数, 而右边为正数,是错误的,故选 B. 答案 B
+1
(x≥-1)的图象作出, 而它的图象可以看作将 y=2x 的图象沿 x 轴的负方向平移
一个单位而得到,如图所示.
法二 先作出 y=2x(x≥0)的图象,再关于 y 轴对称即得 y=2|x|的图象,再将 y= 2|x|的图象左移一个单位即可得到 y=2|x+1|的图象,如法一中图所示.
2.1.2 指数函数的性质的应用 双基达标
必修1第二章 基本初等函数(Ⅰ)(练习题)

高一数学必修1导学案 第二章 基本初等函数(Ⅰ)1§2.1.1 指数与指数幂的运算(1)1.).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 25 3.化简2是( ).A. b -B. bC. b ±D. 1b4.= .5.计算:3=;1. 计算:(1(2)2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()n n nab a b =与()n n n a a b b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m mnna a a ÷= B. m n mna a a ⋅= C. ()n m m n a a += D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算(122--⎡⎤⎢⎥⎣⎦的结果是().AB.D .4. 化简2327-= .5. 若102,104mn==,则3210m n -= .1. 化简下列各式: (1)3236()49; (2.2.1⎛÷- ⎝.§2.1.1 指数与指数幂的运算(练习)1.).A.B. C. 3D. 7292.3(a >0)的值是( ).A. 1B. aC. 15aD. 1710a23. 下列各式中成立的是( ).A .1777()n n m m = B.C34()x y =+ D .4. 化简3225()4-= .5. 化简21151********()(3)()3a b a b a b -÷= .1. 已知32x a b --=+, .2.2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2) 3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是().4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数y =的定义域为 .1. 求函数y =1151x x--的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ). A. R , R B. R , (0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减 C.若1,则a >1 D. 若2x >1,则1x >高一数学必修1导学案 第二章 基本初等函数(Ⅰ)34. 比较下列各组数的大小:122()5- 320.4-(;0.76 0.75-(. 5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 若2log 3x =,则x =( ). A. 4 B. 6 C. 8D. 92. log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4.计算:1(3+= .5. 若log 1)1x =-,则x=________,若l 8y =,则y =___________.1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a =(4)1() 1.032m =; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243;(3);(3)(2log (2;(4).§§2.2.1 对数与对数运算(2)1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c=C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x = C .3y x = D .4y x =4. 计算:(1)99log 3log 27+= ;(2)2121log log 22+= .5. 计算:15lg 23=.41. 计算:(1;(2)2lg 2lg2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证: 1112c a b -=.§2.2.1 对数与对数运算(3)1.25()a -(a ≠0)化简得结果是( ). A .-a B .a 2 C .|a | D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15 BC .D .2254. 若3a=2,则log 38-2log 36用a 表示为 . 5. 已知lg 20.3010=,lg1.07180.0301=,则lg 2.5=;1102=.1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小: (1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)高一数学必修1导学案 第二章 基本初等函数(Ⅰ)52. 求下列函数的定义域:(1)y (2)y =§2.2.2 对数函数及其性质(2)1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ).A. (0)y x =>B. (0)y x >C. (0)y x =>D. y =4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x=,4log a y x =的图象,则底数之间的关系为 .1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).2. 探究:求(0)ax by ac cx d+=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论?§2.2 对数函数(练习)1. 下列函数与y x =有相同图象的一个函数是( )A. y =B. 2x y x=C. log (01)a x y a a a =>≠且D. log x a y a =2. 函数y ).A. [1,)+∞B. 2(,)3+∞C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg(8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 .1. 若定义在区间(1,0)-内的函数2()log (1)a f x x =+满足()0f x >,则实数a 的取值范围.2. 已知函数211()log 1xf x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性.6§2.3 幂函数1. 若幂函数()f x x α=在(0,)+∞上是增函数,则( ).A .α>0B .α<0C .α=0D .不能确定 2. 函数43y x =的图象是( ).A. B. C. D.3. 若11221.1,0.9a b -==,那么下列不等式成立的是( ).A .a <l<bB .1<a <bC .b <l<aD .1<b <a 4. 比大小:(1)11221.3_____1.5; (2)225.1______5.09--. 5. 已知幂函数()y f x =的图象过点,则它的解析式为 .1. 已知幂函数f (x )=13222p p x -++(p ∈Z )在(0,)+∞上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ).2. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.第二章 基本初等函数Ⅰ(复习)1. 函数2322x x y --+=的单调递增区间为( ).A. 3(,)2-∞ B. 3(,)2+∞C. 3(,)2-∞-D. 3(,)2-+∞2. 设2(log )2(0)x f x x =>,则(3)f 的值是( ).A. 128B. 256C. 512D. 8 3. 函数2log (y x =+的奇偶性为( ). A .奇函数而非偶函数 B .偶函数而非奇函数 C .非奇非偶函数 D .既奇且偶函数4. 函数2y x -=在区间1[,2]2上的最大值是 .5. 若函数12(log )x y a =为减函数,则a 的取值范围是 .1. 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?2. 某公司经过市场调查,某种商品在最初上市的几个月内销路很好,几乎能将所生产的产品全部销售出去. 为了追求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后设法将该商品的生产量翻两番,求平均每月生产量的增长率.。
高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

课时21 对数对数的意义①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①与② B .②与④ C .② D .①②③④ 答案 C解析 对于①,当M =N ≤0时,log a M 与log a N 无意义,因此①不正确;对于②,对数值相等,底数相同,因此,真数相等,所以②正确;对于③,有M 2=N 2,即|M |=|N |,但不一定有M =N ,③错误;对于④,当M =N =0时,log a M 2与log a N 2无意义,所以④错误,由以上可知,只有②正确.2.求下列各式中x 的取值范围: (1)lg (x -10); (2)log (x -1)(x +2); (3)log (x +1)(x -1)2.解 (1)由题意有x -10>0,即x >10,即为所求; (2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2;(3)由题意有⎩⎪⎨⎪⎧x -2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.3答案507解析 因为m =log 37,所以3m =7,则3m +3-m =7+7-1=507.4.将下列指数式化成对数式,对数式化成指数式: (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)13-4=81;(4)27=128.对数性质的应用(1)log 8x =-23;(2)log x 27=34;(3)log 3(2x +2)=1.解 (1)由log 8x =-23,得x =8-23=(23)-23=23×⎝ ⎛⎭⎪⎫-23=2-2=14;(2)由log x 27=34,得x 34=27.∴x =2743=(33)43=34=81;(3)由log 3(2x +2)=1,得2x +2=3, 所以x =12.对数恒等式的应用(2)计算23+log23+35-log39.解(1)令t=10x,则x=lg t,∴f(t)=lg t,即f(x)=lg x,∴f(3)=lg 3;(2)23+log23+35-log39=23·2log23+353log39=23×3+359=24+27=51.一、选择题1.下列四个命题,其中正确的是( )①对数的真数是非负数;②若a>0且a≠1,则log a1=0;③若a>0且a≠1,则log a a=1;④若a>0且a≠1,则a log a2=2.A.①②③ B.②③④C.①③ D.①②③④答案 B解析①对数的真数为正数,①错误;②∵a0=1,∴log a1=0,②正确;③∵a1=a,∴log a a=1,③正确;④由对数恒等式a log a N=N,得a log a2=2,④正确.2.2x=3化为对数式是( )A.x=log32 B.x=log23C.2=log3x D.2=log x3答案 B解析由2x=3得x=log23,选B.3.化简:0.7log 0.78等于( ) A .2 2 B .8 C.18 D .2答案 B解析 由对数恒等式a log aN =N ,得0.7log 0.78=8.∴选B. 4.若log 2(log x 9)=1,则x =( ) A .3 B .±3 C.9 D .2 答案 A解析 ∵log 2(log x 9)=1,∴log x 9=2,即x 2=9, 又∵x >0,∴x =3.5.若log a 3=m ,log a 2=n ,则a m +2n的值是( )A .15B .75C .12D .18 答案 C解析 由log a 3=m ,得a m=3,由log a 2=n ,得a n=2, ∴am +2n=a m ·(a n )2=3×22=12.二、填空题6.已知log 2x =2,则x -12=________.答案 12解析 ∵log 2x =2,∴x =22=4, 4-12=⎝ ⎛⎭⎪⎫1412=12.7.若lg (ln x )=0,则x =________. 答案 e解析 ∵lg (ln x )=0,∴ln x =1,∴x =e.8.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)=________. 答案 13解析 ∵x ≠0,y ≠0,∴lg xy =0,∴xy =1, 则{x,1,0}={0,|x |,y },∴x =y =-1, log 8 (x 2+y 2)=log 82=log 8813=13.三、解答题9.(1)已知log 189=a ,log 1854=b ,求182a -b的值;(2)已知log x 27=31+log 32,求x 的值.解 (1)18a =9,18b=54,182a -b=a218b=9254=8154=32; (2)∵log x 27=31×3log 32=31×2=6, ∴x 6=27,∴x =2716=(33)16= 3.10.求下列各式中x 的值:(1)log 4(log 3x )=0;(2)lg (log 2x )=1; (3)log 2[log 12(log 2x )]=0.解 (1)∵log 4(log 3x )=0,∴log 3x =40=1, ∴x =31=3;(2)∵lg (log 2x )=1,∴log 2x =10,∴x =210=1024;(3)由log 2[log 12(log 2x )]=0,得log 12(log 2x )=1,log 2x =12,x = 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一基本初等函数练习题(含详细答案解析)
一、选择题
1.对数式log
3
2-
(2+3)的值是().
A.-1 B.0 C.1 D.不存在
1.A
解析:log
3
2-
(2+3)=log
3
2-
(2-3)-1,故选A.
2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().
A B C D
2.A
解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.
3.如果0<a<1,那么下列不等式中正确的是().
A.(1-a)3
1
>(1-a)2
1
B.log1-a(1+a)>0
C.(1-a)3>(1+a)2D.(1-a)1+a>1
3.A
解析:取特殊值a=
2
1
,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图
象如图所示,则a,b,c,d的大小顺序是().
A.1<d<c<a<b
B.c<d<1<a<b
C.c<d<1<b<a
D.d<c<1<a<b
4.B
解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.
(第4题)
5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .
3
4 B .8 C .18 D .
2
1 5.D
6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭
⎫
⎝⎛121 ,上是减函数,那么实数a 的取值范围
是( ).
A . a ≤2
B .a >3
C .2≤a ≤3
D .a ≥3
6.D
7.函数f (x )=2-
x -1的定义域、值域是( ). A .定义域是R ,值域是R
B .定义域是R ,值域为(0,+∞)
C .定义域是R ,值域是(-1,+∞)
D .定义域是(0,+∞),值域为R
7.C
+∞).
8.已知-1<a <0,则( ).
A .(0.2)a <a
⎪⎭⎫
⎝⎛21<2a
B .2a <a
⎪⎭⎫
⎝⎛21<(0.2)a
C .2a <(0.2)a <a
⎪⎭
⎫
⎝⎛21
D .a
⎪⎭
⎫
⎝⎛21<(0.2)a <2a
8.B
9.已知函数f (x )=⎩⎨⎧+-1 log 1≤
413> ,,)(x x x a x a a
是(-∞,+∞)上的减函数,那么a 的取值范
围是( ).
A .(0,1)
B .⎪⎭
⎫ ⎝⎛310,
C .⎪⎭
⎫⎢⎣⎡3171,
D .⎪⎭
⎫⎢⎣⎡171,
9.C
解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0
上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.
10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)
10.B
解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且
若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.
若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.
所以a 的取值范围应是(1,2),故选择B . 二、填空题
11.满足2-x >2x 的 x 的取值范围是 .
11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.
12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).
解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.
64
log 2
log 273的值为_____.
14.已知函数f (x )=⎪⎩
⎪⎨⎧,≤ ,,
>,020
log 3x x x x 则
⎪⎪⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.
15.函数y =)-(34log 5.0x 的定义域为 .
16.已知函数f (x )=a -
1
21
+x
,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,
三、解答题
17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.
17.参考答案:a =100,b =10.
解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.
联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .
(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.
18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有
⎩
⎨
⎧0 <440
a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.
②当a ≠0时,应有⎩
⎨
⎧0 ≥440
a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要
求(其中x 1,x 2是方程ax 2+2x +1=0的二根).
综上,a 的取值范围是[0,1].
19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2
+3231x -x ⎪
⎭
⎫
⎝⎛.
19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.
t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +
1+1在(-∞,+∞)上单调递增.
20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.
(1)求函数f(x)-g(x)的定义域;
(2)判断f(x)-g(x)的奇偶性,并说明理由;
(3)求使f(x)-g(x)>0成立的x的集合.
20.参考答案:(1){x |-1<x<1};
(2)奇函数;
(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.
(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且
F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.
(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。