常见曲线的极坐标方程1
总结高中数学极坐标公式及常见极坐标方程1
总结高中数学极坐标公式及常见极坐标方程1总结高中数学极坐标公式及常见极坐标方程1极坐标公式是一种用极坐标表示平面上点的数学公式。
它由极径和极角两个参数组成。
极径表示点到原点的距离,极角表示点到正半轴的角度。
极坐标公式非常有用,可以简化一些复杂的计算。
它可以用来描述平面上的曲线、图形和方程。
在讲解极坐标公式之前,我们先来了解一下极坐标方程的常见形式。
1.点的极坐标表示一个点的极坐标由极径和极角两个参数表示。
在平面直角坐标系中,点的极坐标表示可以通过以下公式计算得到:x = r * cosθy = r * sinθ其中,(x,y)是点在直角坐标系中的坐标,r是点到原点的距离,θ是点到正半轴的角度。
2.极坐标的规范性要求为了避免重复表示同一个点,极坐标的规范性要求如下:-r>=0:极径必须为非负数,表示点到原点的距离。
-0<=θ<=2π:极角必须在0到2π之间,表示点到正半轴的角度。
3.极坐标方程的常见形式极坐标方程是一种用极径和极角表示的方程。
常见的极坐标方程形式如下:a.极坐标方程中的常数项-r=a:一个常数,描述了点到原点的距离。
-θ=b:一个常数,描述了点到正半轴的角度。
这两种形式表示的是一条线段或射线。
b.极坐标方程中的线性函数-r=a+bθ:一个线性函数,描述了极径随着极角变化的规律。
- θ = a + br:一个线性函数,描述了极角随着极径变化的规律。
这两种形式表示的是一条螺旋线或螺线。
c.极坐标方程中的二次函数-r=a+bθ^2:一个二次函数,描述了极径随着极角平方的变化。
- θ = a + br^2:一个二次函数,描述了极角随着极径平方的变化。
这两种形式表示的是一条渐开螺旋线。
总结而言,高中数学中的极坐标公式和方程主要包括了点的极坐标表示和几种常见的极坐标方程形式。
掌握极坐标公式和方程有助于我们更好地理解平面上的曲线和图形,同时也能够简化一些复杂的计算。
常见的极坐标方程
常见的极坐标方程引言极坐标是一种用于描述平面上点的坐标系统,它不同于直角坐标系,而是使用极径和极角来确定点的位置。
在物理学、工程学和数学等领域,极坐标方程广泛应用于各种问题的建模和解决。
本文将详细介绍常见的极坐标方程,包括圆的极坐标方程、直线的极坐标方程、螺线的极坐标方程等内容。
圆的极坐标方程圆在极坐标系中的方程是常见的极坐标方程之一。
假设圆心位于坐标原点,半径为r,则圆的极坐标方程为:r = a其中a为常数,表示圆的半径。
根据该方程,可以得到不同半径的圆。
直线的极坐标方程直线在极坐标系中的方程是另一种常见的极坐标方程。
对于经过坐标原点的直线,其极坐标方程为:θ = α其中α为常数,表示直线与极轴的夹角。
通过改变α的取值,可以得到不同夹角的直线。
螺线的极坐标方程螺线是一种特殊的曲线,其极坐标方程为:r = aθ其中a为常数。
根据该方程,当θ取不同的值时,可以得到不同形状的螺线。
阿基米德螺线阿基米德螺线是最常见的螺线之一,其极坐标方程为:r = a + bθ其中a和b为常数。
阿基米德螺线呈现出均匀的螺旋形状,可以在多个领域中找到应用,如建筑设计和机械工程。
对数螺线对数螺线是另一种常见的螺线,其极坐标方程为:r = a * e^(bθ)其中a和b为常数。
对数螺线在自然界中广泛存在,如蜗牛的壳的形状就类似于对数螺线。
超越螺线超越螺线是一类特殊的螺线,其极坐标方程为:r = a * exp(θ)其中a为常数。
超越螺线在数学研究中具有一定的重要性,它们通常具有无理数的特性。
总结本文介绍了常见的极坐标方程,包括圆的极坐标方程、直线的极坐标方程、螺线的极坐标方程等内容。
通过了解这些方程,可以更好地理解和应用极坐标系,从而解决各种实际问题。
同时,不同的极坐标方程也反映了曲线的不同特性和形状,对于数学和物理等学科的研究具有一定的意义。
在实际应用中,极坐标方程常常用于描述旋转对称的问题,如涡旋运动、天体运动等。
通过将问题转化为极坐标方程,可以简化计算和分析过程,得到更加直观和具体的结果。
极坐标常用方程
极坐标常用方程极坐标是一种二维坐标系统,与我们常见的直角坐标系有所不同。
在极坐标系统中,一个点的位置由它的极径和极角确定,而不是由它的x坐标和y坐标确定。
极坐标常用方程是一种描述极坐标系中曲线的数学表达式,本文将介绍一些常见的极坐标常用方程。
矩形方程与极坐标方程转换要将直角坐标系中的一个方程转换为极坐标系中的方程,需要使用以下公式:•x = r * cos(θ)•y = r * sin(θ)其中,(x, y)是直角坐标系中的点,(r, θ)是极坐标系中的点。
举例来说,我们有一个方程 x^2 + y^2 = 4,要将它转换为极坐标系中的方程。
首先,我们可以使用换元法将直角坐标系中的x和y表示为极坐标系中的r和θ:* x = r * cos(θ) * y = r * sin(θ)将上述方程代入原方程,得到:* r^2 * cos^2(θ) + r^2 * sin^2(θ) = 4再进行化简,可以得到:* r^2 * (cos^2(θ) + sin^2(θ)) = 4 * r^2 = 4因此,极坐标系中的方程为 r = 2。
这个方程描述了以极径为2的圆。
常见的极坐标常用方程1.极坐标方程 r = a这是一个描述以极径为常数a的圆的方程。
圆心位于原点,半径为a。
2.极坐标方程r = a * cos(θ)这是一个描述以极径可变的半径为a * cos(θ)的螺线的方程。
3.极坐标方程r = a * sin(θ)这是一个描述以极径可变的半径为a * sin(θ)的螺线的方程。
4.极坐标方程r = a / cos(θ)这是一个描述以极径可变的半径为a / cos(θ)的双曲线的方程。
5.极坐标方程r = a / sin(θ)这是一个描述以极径可变的半径为a / sin(θ)的双曲线的方程。
6.极坐标方程r = a * e^(bθ)这是一个描述以极径可变的曲线的方程,其中a和b是常数,e是自然对数的底。
这个方程可以描述出多种不同的曲线,如指数增长曲线。
极坐标参数方程公式大全
极坐标参数方程公式大全极坐标是一种描述平面上点的坐标系,它以原点为中心,以极径和极角两个参数来确定点在平面上的位置。
极坐标参数方程是用极坐标来表示的函数方程,它可以描述一条曲线在极坐标系下的形状。
下面是一些常见的极坐标参数方程公式。
1. 圆的极坐标参数方程圆是一种特殊的曲线,它的每个点到原点的距离都相等。
圆的极坐标参数方程可以表示为:r=a其中,a表示圆的半径。
2. 阿基米德螺线的极坐标参数方程阿基米德螺线是一种由数学家阿基米德创建的曲线,其极坐标参数方程可以表示为:$r=a+b\\theta$其中,a表示螺线的起始半径,b表示每转一圈半径增加的量,$\\theta$表示极角。
3. 双纽线的极坐标参数方程双纽线是一种具有两个回环的曲线,其极坐标参数方程可以表示为:$r^2=a^2\\cos(2\\theta)$其中,a表示双纽线的参数。
4. 渐开线的极坐标参数方程渐开线是一种非常具有特点的曲线,其极坐标参数方程可以表示为:$r=a\\theta$其中,a表示渐开线的参数。
5. 摆线的极坐标参数方程摆线是一种由在铅笔一端水平移动而形成的曲线,其极坐标参数方程可以表示为:$r=a(\\theta-\\sin\\theta)$其中,a表示摆线的参数。
6. 旋轮线的极坐标参数方程旋轮线是一种由相对运动的两个圆形组成的曲线,其极坐标参数方程可以表示为:$x=(r_1-r_2)\\cos\\theta+r_2\\cos(\\frac{r_1-r_2}{r_2}\\theta)$$y=(r_1-r_2)\\sin\\theta-r_2\\sin(\\frac{r_1-r_2}{r_2}\\theta)$其中,r1和r2分别表示两个圆的半径。
以上是一些常见的极坐标参数方程公式。
通过使用这些参数方程,我们可以在极坐标系下描述和绘制出各种曲线的形状。
极坐标系在数学、物理、工程等领域中有广泛的应用,对于研究曲线和解决问题非常有帮助。
1.3 简单曲线的极坐标方程(1)
(2) 圆心在C(a, 0),半径为a; =2acos
(3) 圆心在(a, ),半径为a; 2
(4) 圆心在C(0, 0),半径为r. 2+ 0 2 -2 0 cos( - 0)= r2
=2asin
高中 数学备课组
课堂小结
1、极坐标方程
2、圆的极坐标方程 求曲线的极坐标方程步骤
高中 数学备课组
在平面直角坐标系中, 平面曲线C可以用方 程 f(x, y)=0表示. 曲线与方程f(x, y)=0满足如下关 系: (1) 曲线C上点的坐标都是方程f(x, y)=0的解 ; (2) 以方程 f(x, y)=0 的解为坐标的点都在曲线 C上. 那么, 在极坐标系中,平面曲线是否可以用方 程 f( ,)=0 表示呢?
高中 数学备课组
设M(ρ,θ)为圆上任意一点,则|OM|=r,即 ρ=r 为所求的圆的极坐标方程 . 显然,使极点与圆心重合时的极坐标方程在形 式上比 ρ=2acosθ更简单. 与直角坐标方程 x2+y2=r2 比较, 你能说说极坐 标方程 =r 的优点吗?
高中 数学备课组
题组练习
求下列圆的极坐标方程 (1) 圆心在极点,半径为2; = 2
高中 数学备课组
由此可知,ρ=2acosθ 就是圆心在C(a, 0) (a>0) 半径为a的圆的极坐已知圆O的半径为r,建立怎样的极坐标系, 可以使圆的极坐标方程简单? 解:如果以圆心O为极点, 从O出发的一条射线为极 轴,建立极坐标系(如图),
M
O r x
那么圆上各点的几何特征 就是它们的极径都等于半 径r .
1、根据题意画出草图; 2、设点M(, ) 是曲线上任意一点,并连接OM; 3、根据几何条件建立关于, 的方程,并化简; 4、检验并确认所得的方程即为所求.
极坐标参数方程知识点总结
极坐标参数方程知识点总结一、概述极坐标参数方程是描述曲线的一种方式,它使用极角和极径来表示点的位置。
在这种表示法中,极径表示点到原点的距离,而极角表示从 x 轴正半轴开始逆时针旋转到该点所需的角度。
二、基本形式极坐标参数方程通常采用下面的形式:r = f(θ)其中 r 和θ 分别是曲线上某一点的极径和极角,f(θ) 是一个关于θ 的函数。
三、常见曲线1. 圆形:r = a圆形是最简单的曲线之一,它由所有到原点距离相等的点组成。
在极坐标系中,圆形可以表示为 r = a,其中 a 是圆的半径。
2. 点阵图案:r = a + b sin(nθ)这种曲线由多个同心圆组成,并且每个圆上都有 n 个等距离的“尖刺”。
这种图案通常被称为“螺旋状”。
3. 椭圆:r = a b / sqrt(b^2 cos^2(θ) + a^2 sin^2(θ))椭圆是一个具有两个焦点的曲线。
在极坐标系中,它可以用上面的方程来表示。
4. 双曲线:r = a sec(θ)双曲线是另一种具有两个焦点的曲线。
在极坐标系中,它可以用上面的方程来表示。
5. 渐开线:r = a / cos(θ)渐开线是一种无限延伸的曲线,它与圆形非常相似。
在极坐标系中,它可以用上面的方程来表示。
四、性质1. 对称性极坐标参数方程通常具有某些对称性。
例如,如果 f(-θ) = f(θ),则曲线关于 y 轴对称;如果f(π-θ) = f(θ),则曲线关于 x 轴对称;如果f(π/2-θ) = f(π/2+θ),则曲线关于直线 y=x 对称。
2. 切线和法线与直角坐标系中类似,极坐标参数方程也可以用来计算切线和法线。
切线的斜率可以通过求导 r 和θ 来得到:dy/dx = (dy/dθ)/(dx/dθ) = (dr/dθ sin θ + r cos θ)/(-dr/dθ cos θ + r sin θ)法线的斜率是切线斜率的负倒数:dy/dx = -1/(dy/dx)3. 弧长和面积极坐标参数方程也可以用来计算曲线的弧长和面积。
曲线的极坐标方程
曲线的极坐标方程一、概述极坐标是一种表示平面上的点的坐标系,它由极径和极角两个参数组成。
在极坐标系中,点的位置由半径和角度来确定,而不是像直角坐标系那样由x和y坐标来确定。
在极坐标系中,我们可以用极坐标方程来描述各种曲线。
二、常见的极坐标方程1. 极坐标方程的一般形式极坐标方程的一般形式为:r=f(θ)其中r表示极径,θ表示极角,f(θ)表示关于θ的函数。
这个方程表示了在极坐标系中点的半径r与角度θ的关系。
2. 圆的极坐标方程圆在极坐标系中的方程可以表示为:r=a其中a为圆的半径。
这种极坐标方程非常简单,它表示了以原点为中心的半径为a 的圆。
3. 直线的极坐标方程直线在极坐标系中的方程可以表示为:r=psin(θ−α)其中p表示直线到原点的距离,α表示直线与极坐标系正半轴之间的夹角。
这种极坐标方程可以描述直线在极坐标系中的位置。
4. 椭圆的极坐标方程椭圆在极坐标系中的方程可以表示为:r=p1−ecos(θ−α)其中p表示椭圆的焦点到原点的距离,e表示椭圆的离心率,α表示椭圆与极坐标系正半轴之间的夹角。
这种极坐标方程可以描述椭圆在极坐标系中的形状。
三、极坐标方程的性质1. 对称性极坐标方程具有一定的对称性。
例如,当极坐标方程中的函数f(θ)关于θ对称时,对应的曲线也具有相应的对称性。
另外,极坐标方程中的极角θ满足周期性,即一个周期内的曲线形状是相同的。
2. 极坐标系与直角坐标系的转换极坐标系与直角坐标系是可以相互转换的。
通过一定的公式,我们可以将一个点在直角坐标系中的坐标转换为极坐标系中的坐标,或者将一个点在极坐标系中的坐标转换为直角坐标系中的坐标。
这种转换可以方便地分析和描述曲线的性质。
四、应用举例1. 螺线螺线是极坐标系中的一种特殊曲线,它的极坐标方程为:r=aθ其中a为常数。
螺线是由于一个点在极坐标系中以匀速绕原点旋转且同时沿极径方向移动而形成的曲线。
螺线是许多自然界中的现象的数学描述,例如螺旋形的贝壳、旋涡等。
极坐标方程公式大全
极坐标方程公式大全极坐标是一种由半径和角度两个参数来描述点的坐标系统。
极坐标系常用于描述圆形、螺线等曲线,对于研究具有旋转对称性的问题非常有用。
在数学和物理学中,极坐标方程提供了描述极坐标系中各种曲线和图形的公式。
本文将介绍一些常见的极坐标方程公式。
圆的极坐标方程圆可以用极坐标方程表示为:r=a其中,a是圆的半径。
该公式表示了以原点为中心的圆,半径为a。
简单螺线的极坐标方程螺线是在极坐标系中以常数速率展开的曲线。
最常见的螺线是阿基米德螺线,其极坐标方程可以表示为:$r = a + b \\theta$其中,a和b是常数,$\\theta$ 是极角。
该公式描述了螺线的形状,a表示了螺线的起始半径,b表示了螺线的展开速率。
雪花曲线的极坐标方程雪花曲线是一种具有对称性的曲线,它由多个相互重叠的圆组成。
它的极坐标方程可以表示为:$r = a \\cdot \\sin(n \\theta)$其中,a和n是常数,$\\theta$ 是极角。
该公式描述了雪花曲线的形状,a控制着雪花曲线的大小,n控制着雪花曲线的复杂程度。
心形线的极坐标方程心形线是以两个相互重叠的圆为基础构成的曲线。
它的极坐标方程可以表示为:$r = a(1 - \\sin \\theta)$其中,a是常数,$\\theta$ 是极角。
该公式描述了心形线的形状,a控制着心形线的大小。
摆线的极坐标方程摆线是由一个悬挂的线上的一点在重力作用下运动形成的曲线。
摆线的极坐标方程可以表示为:$r = a - b \\cdot \\cos \\theta$其中,a和b是常数,$\\theta$ 是极角。
该公式描述了摆线的形状,a控制摆线的振幅,b控制摆线的周期。
总结极坐标方程提供了描述极坐标系中各种曲线和图形的公式。
本文介绍了圆、螺线、雪花曲线、心形线和摆线的极坐标方程。
每个公式都可以通过调整常数参数来控制图形的形状和大小。
极坐标方程的使用可以简化对特定曲线和图形的描述和分析,为研究具有旋转对称性的问题提供了便利。
曲线的极坐标方程
1附录1 曲线的极坐标方程一. 极坐标我们知道,单元实函数()y f x =(x ∈()f D )的图形一般是平面上的一条曲线(段)L , 而()y f x =(x ∈()f D )就是L 的方程. 由给定曲线建立其方程是平面解析几何的基本任务之一,也是本课程所必须的. 但是,在直角坐标系中,对于许多曲线来说,要建立其方程是比较困难的,即使是常用曲线(如等速螺线)也是这样. 然而在极坐标系中,有些问题可以迎刃而解.极坐标也是人们确定平面上点的位置的常用方法. 例如,炮兵射击时,以大炮为基点,利用目标的方位角及目标到大炮的距离来确定目标的位置的. 在航海中也经常使用类似的方法.下面给出利用角和距离建立的坐标系——极坐标系.在平面内取定一点O ,称之为极点,引一条射线Ox ,称之为极轴. 再选定单位长度和角的正向(通常取逆时针方向)(见图F-1).图 F —1对于平面内任意一点M ,用ρ表示M 到O 的距离,即线段OM 的长度,θ表示从Ox 到OM 的角度. 其中ρ称为点M 的极径,θ称为点M 的极角,当M 为极点O 时,其极径0ρ=,其极角可取任意值. 于是平面上的任意一点就用一对有序实数表示出来了,有序对实数(, )ρθ称为点M 的极坐标.反过来,给定一对有序实数,ρθ(假定0ρ≥),以极点为顶点、极轴为始边作大小等于θ的角,在其终边上截取长为ρ的线段OM ,则M 是平面上极坐标为(, )ρθ的唯一的点.2极坐标为(, )ρθ的点M 也可表示为(,)M ρθ. 这样建立起来的坐标系称为极坐标系.例1 在极坐标系中画出下列各点:.()()()()()π5π4π5π2π1,,(2,0), 1.5,,3,,2,,3,.46333A B C D E F −解图 F —2注意:()()4π2π3,3,33D F −与是同一点.上例表明,平面上点的极坐标不是唯一的. 事实上,一个点的极坐标有无穷多,因为始边为Ox 、终边为OM 的角有无穷多个. 例如,()()()πππ2,,2,2π,2,2π444+−,以及()π2,2π()4k k +∀∈Z 等,都是同一点A 的极坐标.不仅如此, 在某些情况下,允许ρ取负值,是方便的. 当0ρ<时,点.(, )M ρθ可按下列规则确定:作射线OP ,在OP 的反向延长线上取一点M ,使得OM ρ=,则点M 就是极坐标为(, )ρθ的点(见图F —3 ).例如,上例中的点()π2,4A 也可以表示为()π2,(21)π()4M k k −++∀∈Z .3图F —3如果限定0, 02πρθ≥≤<(或πθπ−<≤),则除极点外,平面上的点与其极坐标就是一一对应的了.二. 曲线的极坐标方程在极坐标系中,曲线L 可以用含有极坐标ρ和θ这两个变量的方程(,)0F ρθ=来表示. 这种方程叫做曲线L 的极坐标方程. 此时,以这个方程的每一组解为坐标的点都在曲线L 上,然而曲线L 上每个点的极坐标有无穷多个,故可能不全满足这个方程,但其中至少有一个坐标能满足这个方程. 这一点是曲线的极坐标方程与直角坐标方程的不同之处.求曲线的极坐标方程的方法与步骤,同直角坐标方程类似,即视曲线为满足某种条件的点的集合(或动点的轨迹),将已知条件用曲线上点的即坐标ρ和θ的关系式表示出来,就得到曲线的极坐标方程.例2 (1)求从极点出发、倾角为π4的射线的极坐标方程;(2)求过极点且倾角为π4解 (1)设(,)M ρθ(图F —4),由条件得π4θ= (0ρ≥).图F —4这就是所求射线的方程,因为对于任意0ρ≥,坐标为()π,4ρ的点均在此射线上,另一方面,在此射线上的每一点都可用坐标()π,4ρ(0ρ∀≥)来4表示,故其至少有一个坐标满足方程π4θ= (0ρ≥).(2)易知所求直线的极坐标方程为π4θ= (ρ∀∈R )(见图F —4 ).图F —5例 3 求中心在极点、半径为 (0)a a >的圆的极坐标方程.解 设(,)M ρθ为圆上动点,由轨迹条件OM a =,得所求圆的方程为a ρ= (θ∀∈R ).如果限制02πθ≤<,则此圆上的点的极坐标与方程a ρ=(02πθ≤<)的解是一一对应的.图F —65例4 求圆心在点(,0) (0)a a >其中、半径为a 的圆的极坐标方程. 解 由条件知,圆心在极轴上,且圆经过极点O . 设圆与极轴的另一交点为A (见图F —7),则2OA a =.设(,)M ρθ是圆上任意一点,则OM MA ⊥,于是有 cos OM OA θ=. 所以此圆的极坐标方程为2cos a ρθ= (ππ22θ−≤≤).图F —6 例5 阿基米德螺线由极坐标方程a ρθ= (0a >为常数)确定的曲线,通常称为阿基米德螺线(或等速螺线).请画出基米德螺线. 解 在极坐标系中作图的方法和步骤,同直角坐标系中是一样的. 给出θ的一系列允许值,通过()ρρθ=算出ρ的对应值(可列成表格),再根据得到的有序数对在极坐标系中描出相应的点,然后依次将这些点连成平滑的曲线,便得到()ρρθ=的图形.对于a ρθ=(0a >为常数)有:O6图F —7如果允许ρ取负值,则当,ρθ是方程a ρθ=的解时,,ρθ−−也是a ρθ=的解. 因为在极坐标系中,点(,)ρθ−−与点(,)ρθ关于过极点且垂直于极轴的直线对称,故a ρθ=的图形也关于该直线对称. 同济P360(10)图中的实线表示,ρθ取正值时的螺线部分,而虚线表示,ρθ取负值时的螺线部分.阿基米德螺线可以看作按以下条件运动的动点M 的轨迹:以点O 为端点的射线l ,绕点O 作等角速度的转动,而l 上的点M 从O 出发沿l 作等速直线运动. 因此,阿基米德螺线也叫做等速螺线或等进螺线. 在机械传动的凸轮装置中,将绕定轴旋转的凸轮的轮廓设计为阿基米德螺线,以使从动杆作等速直线运动.例6 心脏线用同样的方法,可画出由极坐标方程(1cos )a ρθ=+ (0a >为常数)确定的曲线(见图F —8),称为心脏线 (或心形线),它是外摆线的一种.更多曲线的极坐标方程请见同济附录II7三. 直角坐标与极坐标的转换关系为了研究的方便,有时需将要曲线在一种坐标系下方程转化为另一种坐标系下的方程. 如图F —9所示,把直角坐标系 的原点为极点,Ox 轴的正半轴作为极 轴,并在两种坐标系中取相同的单位 长度.设M 为平面上任意一点,其直角 坐标为(,)x y ,极坐标为(,)ρθ. 则有“极—直”关系转换式:cos sin (0)x y ρθρθρ⎧≥⎨⎩==. 图F —9 由此也有关系转换式:,tan (0)yx x ρθ⎧=⎪⎨=≠⎪⎩在一般情况下,由tan θ确定θ时,可根据点M 所在的象限取最小正角. 例7 (1) 将点M 的极坐标()π5,6化为直角坐标; (2)将点P 的直角坐标()1−化为极坐标.解 (1)x = π55sin ,62y ==即点M 的直角坐标为)52.(2)2, tan ρθ====因为点P 在第三象限,而20,ρ=> 故最小正角为7π6θ=. 因此,P 的极坐标为()7π2,6.例8 化圆的直角坐标方程2220(0)x y ay a +−=>为极坐标方程.8解 将cos (0)sin x y ρθρρθ=⎧≥⎨=⎩2222cos sin 2sin a ρθρθρθ+−即 2sin a ρθ=(0θπ≤≤).图F —10*例9 广义极坐标变换co s n s i x a y b ρθρθ=⎧⎨=⎩将椭圆22221y x a b+=变换成极坐标系中的单位圆 1 (02π)ρθ=≤≤.习题F-11. 极坐标方程22cos 2 (0)a a ρθ=>的图形称为双纽线. 请描绘出双纽线.2. 指出下列极坐标方程表示什么曲线,并画图:(1)3ρ=; (2)π ()3θρ=−∞<<+∞;(3)cos 2ρθ=; (4)10sin ρθ=; (5)10(1cos )ρθ=+.。
极坐标方程公式大全
极坐标方程公式大全1.点到原点的距离:r2.与正半轴的夹角:θ3.线段:r=ar=a表示距离原点为a的一个圆,其中a是一个常数。
如果a>0,圆心在极坐标系的原点;如果a<0,圆心在原点的反向。
4. 线段:r = a(1±sinθ)r = a(1±sinθ)表示一个心脏形状曲线,其中a是一个常数。
当a>0时,曲线是两半心脏形状;当a<0时,曲线是两半相反的心脏形状。
5. 线段:r = 1/a(1±cosθ)r = 1/a(1±cosθ)表示一个准一次曲线,其中a是一个常数。
当a>0时,曲线有两个极大值和一个极小值;当a<0时,曲线有一个极大值和两个极小值。
6. 线段:r = a±bcosθr = a±bcosθ表示一个椭圆形状曲线,其中a和b是常数。
当a=0时,曲线是一个标准椭圆;当a≠0时,曲线是一个偏心椭圆。
7. 线段:r = a±bsinθr = a±bsinθ表示一个双曲线形状曲线,其中a和b是常数。
当a>0时,曲线有两个分支;当a<0时,曲线只有一条分支。
8. 曲线:r = a(1-sinθ)r = a(1-sinθ)表示一个钟形曲线,其中a是一个常数。
9. 曲线:r = a(1+sinθ)r = a(1+sinθ)表示一个叶形曲线,其中a是一个常数。
10. 曲线:r = asin(nθ)r = asin(nθ)表示一个以原点为中心,顶点在极轴上,具有n个叶片的曲线,其中a和n是常数。
以上是一些常见的极坐标方程公式示例,用于描述平面上的点的坐标。
这些方程能够帮助我们更完整地了解点的位置和形状。
不同的极坐标方程可以描述出各种各样的曲线形状,从简单的圆形到复杂的心脏形状和叶形曲线,极坐标方程为我们提供了更灵活的表示平面上点的方式。
极坐标系下的曲线方程
极坐标系下的曲线方程极坐标系是一种以极点为中心,以极轴为基准,描述平面上点位置的坐标系。
在极坐标系中,点的位置由两个参数r 和θ 描述,其中 r 表示点到极点的距离,θ 表示点与极轴的夹角。
极坐标系常用于描述环形物体、旋转对称图形等。
在极坐标系中,曲线的方程可以用极坐标参数 r 和θ 表示。
下面介绍几种常见的曲线方程。
1. 极轴和极点如果一个点的 r 坐标为 0,则该点位于极轴上;如果一个点的θ 坐标为 0,则该点位于极点上。
因此,极轴和极点可以用下面的方程表示:极轴:θ = k (k 为常数)极点:r = 02. 圆的方程在直角坐标系中,圆的方程为 (x-a)² + (y-b)² = r²,其中 (a,b) 表示圆心坐标,r 表示半径。
在极坐标系中,圆的方程可以表示为:r = a cos(θ) + b sin(θ)其中 (a,b) 表示圆心坐标,r 表示半径。
这个方程的具体形式可以通过将圆心坐标和半径代入得到。
例如,以圆心为 (2,3),半径为 4 的圆的方程为:r = 2 cos(θ) + 3 sin(θ) + 43. 椭圆的方程在直角坐标系中,椭圆的方程为 (x-a)²/a² + (y-b)²/b² = 1,其中(a,b) 表示椭圆中心坐标,a 和 b 分别表示横向半轴长度和纵向半轴长度。
在极坐标系中,椭圆的方程可以表示为:r = (a b) / √((b cos(θ))² + (a sin(θ))²)其中 (a,b) 表示椭圆中心坐标。
这个方程的具体形式可以通过将椭圆中心坐标代入得到。
例如,以中心为 (2,3),横向半轴长度为4,纵向半轴长度为 3 的椭圆的方程为:r = (12) / √(9 cos²(θ) + 16 sin²(θ))4. 双曲线的方程在直角坐标系中,双曲线的方程为 (x-a)²/a² - (y-b)²/b² = 1,其中(a,b) 表示双曲线中心坐标,a 和 b 分别表示横向半轴长度和纵向半轴长度。
曲线的极坐标方程乐乐课堂
曲线的极坐标方程在数学中,我们常常通过极坐标方程来描述平面上的曲线。
极坐标方程给出了曲线上每个点的极径和极角,通过这两个参数,我们可以唯一确定曲线上的每个点。
极坐标系极坐标系是一种用于描述平面上的点的坐标系统。
与直角坐标系不同的是,极坐标系使用极径(r)和极角(θ)来表示点的位置。
极径是指点到坐标原点(极点)的距离,可以是正数或零。
极角是指点与极坐标的极轴(通常是x轴)之间的夹角,可以是0到360度之间的任意实数。
极坐标方程极坐标方程是指通过极径和极角来描述一个曲线上的点的方程。
一般来说,极坐标方程可以写成以下形式:r = f(θ)其中r是极径,f是一个描述极径和极角关系的函数。
不同的曲线对应不同的极坐标方程。
下面介绍一些常见的曲线及其极坐标方程。
极坐标方程示例:圆圆是最简单的曲线之一。
它在极坐标系中的方程为:r = a其中a是圆的半径。
不论极角θ取任何值,r都等于a,表示圆上的每个点都与极点的距离相等。
极坐标方程示例:直线直线也可以用极坐标方程来表示。
假设直线与极轴的夹角为α,离极点的距离为d,则直线在极坐标系中的方程为:r = d / cos(θ - α)这个方程描述了直线上每个点的极径与极角之间的关系。
极坐标方程示例:螺线螺线是一种极坐标方程非常复杂的曲线。
它的方程可以写成:r = a + bθ其中a和b是常数,可以控制螺线的形状。
螺线是一种既有径向增长,又有角度变化的曲线。
极坐标方程示例:心形线心形线是一种非常美丽的曲线。
它有多种极坐标方程的表示形式,其中一种常见的方程是:r = a(1 - cos(θ))这个方程描述了心形线上每个点的极径与极角之间的关系。
通过改变参数a的值,可以调整心形线的大小。
总结极坐标方程是一种用于描述平面上曲线的方程。
通过极径和极角,可以准确地表示曲线上每个点的位置。
不同的曲线对应不同的极坐标方程。
在解决一些特定的几何问题时,极坐标方程有时比直角坐标方程更加方便和简洁。
极坐标和参数方程知识点总结
千里之行,始于足下。
极坐标和参数方程知识点总结极坐标是一种表示平面上点位置的坐标系统,它是由点到原点的距离(称为极径)和点与极轴的夹角(称为极角)所确定的。
在极坐标系中,每个点的坐标可以表示为(r,θ)的形式,其中r为极径,θ为极角。
参数方程是一种用一对参数变量来表示曲线上的点的坐标的方法。
对于平面上的曲线,常用的参数方程形式为x=f(t)和y=g(t),其中t为参数变量,f(t)和g(t)分别表示x和y的函数关系。
以下是极坐标和参数方程的一些重要知识点总结:1. 极坐标的转换关系:- 直角坐标到极坐标的转换:x=r*cos(θ),y=r*sin(θ)- 极坐标到直角坐标的转换:r=sqrt(x^2+y^2),θ=tan^(-1)(y/x)2. 常见曲线的极坐标方程:- 直线:θ=常数- 圆:r=常数- 椭圆:r=a*b/sqrt(b^2*cos^2(θ)+a^2*sin^2(θ))3. 参数方程的表示方式:- 曲线方程:(x,y)=(f(t),g(t))- 曲线长度的计算公式:L=∫sqrt((dx/dt)^2+(dy/dt)^2)dt4. 参数方程的性质:- 曲线方向:随着参数变量的增大,曲线的运动方向- 曲线对称性:参数方程对称性特点取决于函数f(t)和g(t)的对称性第1页/共2页锲而不舍,金石可镂。
- 曲线切线方向:曲线上某点的切线方向由参数方程的导数决定5. 参数方程与极坐标之间的关系:- 参数方程可以转换为极坐标方程,极径r=f(t),极角θ=g(t)- 极坐标方程可以转换为参数方程,x=f(θ)*cos(θ),y=f(θ)*sin(θ)需要注意的是,极坐标和参数方程在一些问题中可以更方便地描述曲线的特性,而在其他问题中直角坐标系可能更适用。
因此,在应用中需要根据具体问题选择合适的坐标系表示。
常见的极坐标方程
常见的极坐标方程极坐标方程是描述平面直角坐标系中的点在极坐标系中的位置和形状的一种方式。
极坐标方程通常表示为$r=f(\theta)$,其中$r$表示点到原点的距离,$\theta$表示点与$x$轴正半轴之间的夹角。
常见的极坐标方程包括:一、基本形式1. $r=a$:表示以原点为中心,半径为$a$的圆。
2. $r=a\cos\theta$:表示以原点为焦点,以$x$轴正半轴为对称轴,离心率为$\frac{1}{2}$,长轴长度为$a$的椭圆。
3. $r=a\sin\theta$:表示以原点为焦点,以$y$轴正半轴为对称轴,离心率为$\frac{1}{2}$,长轴长度为$a$的椭圆。
4. $r=a\cos n\theta$或$r=a\sin n\theta(n\in N^*)$:分别表示以原点为中心,半径分别是$a,a/2,a/3,\cdots,a/n$等等的$n$个同心圆。
这些圆上有$n$个等分点,在这些等分点上分别作切线,则这些切线所组成的$n$边形叫做正$n$边形。
二、特殊形式1. $r=\dfrac{a}{1\pm\cos\theta}$:表示以原点为焦点,离心率为$1$,长轴长度为$a$的双曲线。
2. $r=\dfrac{a}{1\pm\sin\theta}$:表示以原点为焦点,离心率为$1$,长轴长度为$a$的双曲线。
3. $r=a(1+\cos\theta)$:表示以原点为焦点,以$x=-a/2$为对称轴,离心率为$\frac{1}{2}$,长轴长度为$a$的摆线。
4. $r=a(1-\cos\theta)$:表示以原点为焦点,以$x=a/2$为对称轴,离心率为$\frac{1}{2}$,长轴长度为$a$的摆线。
5. $r=a(1+\sin\theta)$:表示以原点和$(a,0)$两个焦点确定的椭圆上沿着逆时针方向运动的一个质点在$x$轴正半轴上留下的投影长度。
6. $r=a(1-\sin\theta)$:表示以原点和$(a,0)$两个焦点确定的椭圆上沿着顺时针方向运动的一个质点在$x$轴正半轴上留下的投影长度。
简单曲线的极坐标方程课件
2.求极坐标方程的步骤
剖析求曲线的极坐标方程的步骤与求直角坐标方程的步骤类似,
就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲
线上的点的极坐标ρ,θ的关系式f(ρ,θ)=0表示出来,就得到曲线的极
坐标方程,具体如下:
(1)建立适当的极坐标系,设P(ρ,θ)是曲线上的任意一点.
(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和
【例3】 将下列曲线的直角坐标方程化为极坐标方程:
(1)射线 y= 3(≤0);
(2)圆x2+y2+2ax=0(a≠0).
= cos,
分析:由公式
化简即可.
= sin
解:(1)将 x=ρcos θ,y=ρsin θ 代入 y= 3,
得ρsin θ= 3cos θ.当 ρ≠0 时,tan θ= 3,
π
4π
∴θ= 或 = .
3
3
∵x≤0,∴ρcos θ≤0,∴θ=
4π
3
.
由于射线过极点,故射线 y= 3(≤0)的极坐标方程为
4π
θ= (≥0).
3
(2)将x=ρcos θ,y=ρsin θ代入x2+y2+2ax=0,得
ρ2cos2θ+ρ2sin2θ+2aρcos θ=0,
即ρ(ρ+2acos θ)=0.
1.直角坐标系与极坐标系的区别
剖析(1)在直角坐标系中,一条曲线如果有方程,那么曲线和它的
方程是一一对应的(解集完全相同且互相可以推导的等价方程,只
看作一个方程).可是在极坐标系中,虽然是一个方程只能与一条曲
线对应,但一条曲线却可以与多个方程对应,所以曲线和它的方程
高等数学18种曲线
高等数学18种曲线以下是高等数学中18种曲线的详细介绍:1.星形线:星形线是一种特殊的曲线,其极坐标方程为ρ=sinθ,直角坐标方程为x2+y2−x=0。
星形线是围绕原点对称的,并且在直角坐标系中呈现出类似于星形的形状。
2.心形线:心形线也是一种特殊的曲线,其极坐标方程为ρ=1+cosθ,直角坐标方程为x2+y2−2x=0。
心形线也是围绕原点对称的,并且在直角坐标系中呈现出类似于心形的形状。
3.摆线:摆线是一种在圆上运动的质点在直线上的轨迹曲线。
其极坐标方程为ρ=a+bθ,直角坐标方程为x=a(1−cos t)和y=b(1+sin t)。
摆线有许多有趣的性质,例如它的长度和圆的半径相等。
4.对数螺线:对数螺线是一种以原点为中心,向四周无限延伸的曲线。
其极坐标方程为ρ=eθ,直角坐标方程为x=et cos t和y=et sin t。
对数螺线的形状类似于螺壳,并且它的曲率随着半径的增长而逐渐减小。
5.双曲螺线:双曲螺线是一种在双曲线上运动的点在直线上的轨迹曲线。
其极坐标方程为ρ=a2−b2sinθ,直角坐标方程为x=a cosh t cosθ和y=b sinh t sinθ。
双曲螺线的形状类似于螺线,但是它的曲率是负的。
6.阿基米德螺线:阿基米德螺线是一种在平面内无限延伸的曲线,其极坐标方程为ρ=aθ,直角坐标方程为x=a(1−os t)和y=a(1+sin t)。
阿基米德螺线的形状类似于螺线,并且它的曲率随着半径的增长而逐渐减小。
7.伯努利双纽线:伯努利双纽线是一种特殊的曲线,其极坐标方程为ρ=±2a sin2θ,直角坐标方程为(x2+y2)2=4a2y2。
伯努利双纽线的形状类似于两个交叉的圆环,并且在不同的参数条件下表现出不同的性质。
8.三叶玫瑰线:三叶玫瑰线是一种具有三个叶子的特殊曲线,其极坐标方程为ρ=3a cosθ,直角坐标方程为x=3a cos3t和y=3a sin3t。
三叶玫瑰线的形状类似于三片叶子连接在一起,并且它的曲率随着半径的变化而变化。
空间曲线极坐标方程 知乎
空间曲线的极坐标方程是描述三维空间中的曲线的一种方式。
与平面极坐标方程类似,极坐标方程使用极径(radial distance)和极角(polar angle)来定义曲线上的点。
在三维空间中,通常使用极径、极角和高度(或Z坐标)来表示曲线上的点。
极坐标方程通常采用以下形式:
1. **极径(r)**:表示点到原点的距离。
2. **极角(θ)**:表示点在平面上的角度,通常以弧度为单位。
3. **高度(z)**:表示点在垂直方向上的位置。
具体的极坐标方程可以根据曲线的形状和位置而变化。
以下是一些常见的空间曲线的极坐标方程示例:
1. **圆柱坐标系中的圆锥**:
- 极径:r
- 极角:θ
- 高度:z
- 极坐标方程:r = z * tan(α),其中α是锥的半顶角。
2. **圆柱坐标系中的螺旋线**:
- 极径:r
- 极角:θ
- 高度:z
- 极坐标方程:r = a + bθ,其中a 和b 是常数。
3. **球坐标系中的球面**:
- 极径:r
- 极角:θ
- 高度:φ
- 极坐标方程:r = R,其中R 是球体的半径。
4. **球坐标系中的球面上的点**:
- 极径:r
- 极角:θ
- 高度:φ
- 极坐标方程:r = R * sin(φ),其中R 是球体的半径,φ是点与极轴的夹角。
这些是一些常见的空间曲线的极坐标方程示例。
具体的极坐标方程取决于曲线的几何形状和位置,你可以根据需要进行调整。
在数学和物理学中,极坐标方程用于描述各种曲线和三维形状的特性。
曲线的极坐标方程
上述方程统一表示椭圆,双曲线, 上述方程统一表示椭圆,双曲线,抛物线 当0<e<1时,方程表示 时 椭圆, 是左焦点 是左焦点, 椭圆,F是左焦点,L 是左准线. 是左准线. 当1<e时,方程表示双 时 曲线, 是右焦点 是右焦点, 曲线,F是右焦点,L 是右准线. 是右准线. 当e=1时,方程表示抛 时 物线, 是焦点 是焦点, 是 物线,F是焦点,L是 准线,开口向右. 准线,开口向右.
M y o x M
同一条曲线在两个不同坐标系中方程的互化 P54 例 3 化圆的直角坐标方程 2+y2-2ax=0为 化圆的直角坐标方程x 为 极坐标方程. 极坐标方程. 解题时,应用公式,注意整体替代. 解题时,应用公式,注意整体替代.把 x2+y2=ρ2,x=ρcosθ代入直角坐标方程得 ρ ρ θ ρ2-2aρcosθ = 0ρ(ρ-2acosθ)=0 ρ θ ρ θ 所示的极坐标方程是ρ 或 所示的极坐标方程是ρ=0或ρ-2acosθ =0 θ 是极点, ρ =0 是极点, ρ=2acosθ θ 表示以(a, 为圆心 为圆心, 为 表示以 ,0)为圆心,a为 o (a,0) x , 半径,且过极点的圆, 半径,且过极点的圆,所以 不必写出来. ρ =0不必写出来. 不必写出来
o x
把极坐标方程ρ2sin2θ =2tgθ化为直角坐标方程 把极坐标方程ρ θ θ 解:把原方程化为ρsinθ ρcosθ = tg θ 把原方程化为ρ θ θ y x= ρcosθ ,y= ρsinθ ,— = tgθ θ θ θ x 它的直角坐标方程是 y xy= — y(x2-1)=0 y (x-1) (x+1)= 0 x 从极坐标方程直接看不出方程表示的曲线 是什么,化为直角坐标方程后知道它表示的 是什么, 是三条直线:y=0或x=1或x=-1 是三条直线: 或 或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见曲线的极坐标方程(1)
学习目标:
1、能在极坐标系中给出简单图形(过极点的直线)的方程;
2、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形
时选择适当坐标系的意义;
3、理解极坐标系中直线的方程。
活动过程:
活动一:知识回顾
1、曲线的极坐标方程的意义。
2、(1)直线x y 1的极坐标方程是__________________________________ ;
(2)曲线COS 1的直角坐标方程是____________________________ 。
活动二:直线的极坐标方程
探究:若直线l经过M (0,0),且直线I的倾斜角为,求直线I的极坐标方程。
(这里,直线I的倾斜角是指极轴与直线I向上的方向所成的角。
)
小结:一些特殊位置的直线的极坐标方程:
(1)当直线I过极点时,直线I的极坐标方程是:______________________________ ;
(2)
当直线I过点M(a,0)且垂直于极轴时,直线I的极坐标方程是: _________________ (3)当直线I过点M(b,7)且平行于极轴时,直线I的极坐标方程是: _______________
活动三:直线的极坐标方程的求解
例1按下列条件写出直线的极坐标方程:
(1)经过极点和点A(6,g)的直线;(2)经过点B(5,),且垂直于极轴的直线;
(3)经过点C(8,6),且平行于极轴的直线;
(4)经过点D(2.. 3,0),且倾斜角为务的直线。
例2:分析极坐标方程cos 6,sin 6的特点,说明他们分别表示什么曲线? 例3:求曲线cos 1 0关于直线7对称的曲线方程。
活动四:课堂小结与自主检测
1按下列条件写出直线的极坐标方程:
(1)经过极点,且倾斜角是的直线;(2)经过点A(2,p),且垂直于极轴的直线;
(3)经过点B(3, 3),且平行于极轴的直线;
(4)经过点C(4,0),且倾斜角为罕的直线。
2、直线和直线sin( ) 1的位置关系是_________。