导数及其应用.知识框架

合集下载

导数及其应用知识结构(总结)

导数及其应用知识结构(总结)

导数及其应用知识结构(总结)一、导数①函数的变化率与导数的概念1、函数的平均变化率函数值的改变量与自变量的改变量之比2、函数的瞬时变化率对于一般的函数 y = f(x),在自变量 x 从 x0 变到 x1 的过程中,若设△x = x1 - x0 , △y = f(x1)-f(x0), 则函数的平均变化率是而当△x 趋于0 时,平均变化率就趋于函数在x0 点的瞬时变化率,瞬时变化率刻画的是函数在一点处变化的快慢。

3、平均变化率与瞬时变化率的区别与联系①区别平均变化率刻画函数值在区间【x1,x2】上变化的快慢,瞬时变化率刻画函数值在点x0 处的变化的快慢。

②联系当△x 趋于 0 时,平均变化率△y/△x 就趋于一个常数,这个常数即为函数在 x0 处的瞬时变化率,它是一个固定的值。

4、导数的概念函数 f(x)在 x = x0 处的瞬时变化率的定义:一般地,函数 y = f(x)在 x = x0 处的瞬时变化率是我们称它为函数 y = f(x)在 x = x0 处的导数,记作【知识结构图】②导数的计算利用导数的概念计算导数;【例题1】已知函数 f(x)= 2x^2 + 3x - 1 ,求 f'(2)的值是多少?【方法指导】有两种方法:一是先求△y ,然后求△y/△x ,再求二是先求 f'(x), 再求 f'(2)。

【解答过程】解法一解法二利用初等函数求导公式计算导数。

二、导数的应用(1)、导数在研究函数中的应用函数的单调性、极值与最值、证明不等式、恒成立问题等。

(2)、生活中的优化问题举例1、函数的最值的存在性及其求法一般地,如果在区间 [a , b] 上函数 y = f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值。

只要利用导数求出函数y = f(x)的所有极值,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值。

【例题2】函数 f(x)= x(1 - x^2)在 [0 , 1] 上的最大值为()【解析】2、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.【例题3】一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时 10 公里时燃料费是每小时 6 元,而其他与速度无关的费用是每小时 96 元,则此轮船的速度为每小时()公里时,能使行驶每公里的费用总和最小.【解析】3、利用导数解决生活中的优化问题的一般步骤(1) 分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2) 求函数的导数 f'(x),解方程f'(x)=0;(3) 比较函数在区间端点和极值点的函数值的大小,最大(小)者为最大(小)值.注:确定函数关系中自变量的定义区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.【知识结构图】三、微积分基本定理罗尔定理、费马定理、拉格朗日中值定理等。

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数知识点总结及应用

导数知识点总结及应用

导数知识点总结及应用导数是微积分中的基本概念,是描述函数变化率的工具。

它具有广泛的应用,不仅在数学中起着重要作用,也在其他学科中有着广泛的应用,如物理学、经济学、工程学等。

本文将总结导数的基本知识点以及其应用。

一、导数的定义和性质导数可以通过极限的计算来定义,假设函数f(x)在点x_0处有定义。

那么f(x)在x_0处的导数可以定义为:f'(x_0)=lim(x→x_0) (f(x)-f(x_0))/(x-x_0)导数的计算方法有很多,其中最基本的有以下几种:1.使用导数定义的极限计算法;2.利用导数的基本性质:线性性、乘法法则、链式法则等。

导数具有以下基本性质:1.若函数f(x)在点x_0处可导,则f(x)在该点连续;2.若函数f(x)在点x_0处可导,则f(x)在该点的函数值变化率为f'(x_0)。

二、导数的应用1.函数的极值与图像的凹凸性导数的一个重要应用是用于确定函数的最大值和最小值。

根据函数的图像和导数的符号,可以判断函数的增减性以及极值点。

具体来说,函数在极值点的导数为零,并且在极值点的导数变号。

另外,导数的符号还可以用来确定函数图像的凹凸性。

如果函数的导数在其中一区间上恒大于零,则函数在这一区间上是严格递增的,图像是凸的。

如果函数的导数在其中一区间上恒小于零,则函数在这一区间上是严格递减的,图像是凹的。

2.切线与法线函数的导数可以用来确定函数图像上任意一点处的切线和法线。

在其中一点x_0处,函数图像上的切线的斜率等于函数在该点处的导数值,即切线的斜率为f'(x_0)。

切线的方程可以通过点斜式来确定。

3.函数的近似计算函数的导数可以用来近似计算函数在其中一点处的函数值。

根据导数的定义,函数在该点的导数等于函数在该点的函数值变化率。

所以,如果已知其中一点的导数,可以通过导数乘以函数值变化的增量来估计函数值的增量。

4.曲线的弯曲程度导数还可以用来衡量曲线的弯曲程度。

导数知识框架

导数知识框架

导数知识框架导数是微积分中的重要概念,用来描述函数在某一点的变化率。

它是数学分析中的基本工具,广泛应用于物理、经济学、工程学等各个领域。

本文将按照导数的知识框架,介绍导数的定义、性质、计算方法以及应用等方面的内容。

一、导数的定义导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。

对于函数y = f(x),在点x=a 处的导数可以用极限的概念进行定义。

具体而言,函数在点x=a 处的导数可以表示为f'(a) 或dy/dx|_(x=a)。

导数的定义式为:f'(a) = lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗其中,lim 表示极限,h 为自变量的增量。

二、导数的性质导数具有一些重要的性质,包括线性性、乘积法则、商法则、复合函数法则等。

这些性质可以帮助我们简化导数的计算过程。

1. 线性性:若f(x) 和g(x) 在x=a 处可导,则有(cf(x)+dg(x))'|_(x=a) = cf'(a)+dg'(a),其中 c 为常数。

2. 乘积法则:若 f(x) 和 g(x) 在 x=a 处可导,则有(f(x)g(x))'|_(x=a) = f'(a)g(a)+f(a)g'(a)。

3. 商法则:若f(x) 和g(x) 在x=a 处可导且g(a)≠0,则有(f(x)/g(x))'|_(x=a) = (f'(a)g(a)-f(a)g'(a))/[g(a)]^2。

4. 复合函数法则:若 y=f(g(x)),其中 f(x) 和 g(x) 都在 x=a 处可导,则有(dy/dx)|_(x=a) = f'(g(a))g'(a)。

三、导数的计算方法导数的计算方法有多种,常用的有基本导数公式、求导法则和隐函数求导法等。

1. 基本导数公式:包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算公式。

导数知识点归纳及应用

导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。

导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。

一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。

如果导数存在,则称f(x)在该点可导。

2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。

3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。

b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。

4.基本导数公式:a.常数函数的导数为0。

b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。

c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。

d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。

二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。

2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。

b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

导数及其应用总结

导数及其应用总结

第一章导数及其应用知识梳理知识框架导数及其应用1.曲线的切线和切线的斜率:曲线在点00(,)P x y处的切线,是指曲线上点P的邻近点00(,)x x y y+∆+∆Q沿曲线逐渐向点P接近时,割线P Q的极限位置所在的直线.根据切线的定义,切线的斜率应通过极限过程求得,即tan limxyxα∆→∆=∆k=.2.瞬时速度: 非匀速直线运动物体在时刻t的临近时间间隔t∆内的平均速度v(v=st∆∆),当0t∆→时, v的极限值v叫做物体在时刻t的速度,也叫瞬时速度.即limtsvt∆→∆=∆3.导数的定义:设x是函数()y f x=定义域的一点,如果自变量x在x处有增量x∆,则函数值y也引起相应的增量00()()y f x x f x∆=+∆-;比值00()()f x x f xyx x+∆-∆=∆∆称为函数()y f x=在点x到x x+∆之间的平均变化率;如果极限0000()()lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆存在,则称函数()y f x=在点x处可导,并把这个极限叫做()y f x=在x处的导数,记作()f x'或|x xy=',即()f x'=0000()()lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆.4.几何意义由定义可知函数()y f x=在点x处的导数的几何意义是曲线()y f x=在点00(,)P x y处的切线的斜率. 也就是说,曲线()y f x=在点P(,())x f x处的切线的斜率是()f x',切线方程为00()().y y f x x x'-=-.5.导函数:函数()y f x=在开区间(,)a b内每一点处的导数都存在,就说()f x在(,)a b内可导,其导数也是(,)a b内的函数,这一新函数叫做()f x在开区间(,)a b内的导函数,记作()f x'或y'(需指明自变量时记作xy') 函数()f x的导函数()f x'在x x=时的函数值()f x'就是()y f x=在点x处的导数.6.几种常见函数的导数:①0;C'=②()1;n nx nx-'=③(sin)cosx x'=; ④(cos)sinx x'=-;⑤();x xe e'=⑥()lnx xa a a'=; ⑦()1ln xx'=; ⑧()1l g loga ao x ex'=.7.可导法则:①()u v u v'''±=±推广:1212()()...()()()...()n ny f x f x f x y f x f x f x''''=+++⇒=+++;②()uv vu v u'''=+;③2(0)u vu v uvv v'''-⎛⎫=≠⎪⎝⎭④()Cu Cμ''=(C为常数);⑤复合函数求导x xy yμμ'''=⋅8.导数的应用:⑴函数的单调性:一般地,设函数()y f x=在某个区间内可导,如果()0f x'>,则()f x为增函数; 如果()0f x'<则()f x为减函数;如果()0f x=׳,则()f x为常数函数.⑵函数的极值: 一般地,设函数()y f x=在点0x附近有定义,如果对0x附近的所有的点,都有0()()f x f x<,则()f x是()f x的一个极大值;如果对x附近的所有的点,都有()()f x f x>,则()f x是()f x的一个极小值.良好的开端,等于成功的一半。

导数知识点总结与应用

导数知识点总结与应用

导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。

数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。

导数在几何意义上就是函数在某一点的切线的斜率。

二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。

导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。

导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。

在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。

三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。

导数部分知识框架

导数部分知识框架

导数部分知识框架一、导数:1、导数的定义;2、导数的几何意义;3、导数的计算(基本求导公式,四则运算法则;复合求导公式)二、导数在函数中的应用1、导数和单调性的关系(求单调区间;已知单调性求参数范围或值);2、导数和极值的关系(求极值;已知极值情况求参数值或范围);3、导数法求最值4、函数与方程、不等式的关系:(1)方程根的情况问题;(2)不等式恒成立问题;(3)证明不等式,比大小问题注:函数与方程思想:主要是方程、不等式问题可转化为函数问题处理;有少数函数问题可转化为方程、不等式问题处理5、导数中常考的两种分类讨论问题:(1)讨论单调性、单调区间问题(抓定义域和导函数恒正、恒负还是有正有负学案87页3);(2)最值分界点(学案88页例2:开口朝下,最小值分两种,分界点依据端点函数值相等、最大值分三种,拐点在区间左侧,中间,右侧三种,开口朝上,情况相反;可类比二次函数)三、导数在实际生活中的应用—---———应用题要求:对照复习,主要依据学案,其次课本和创新(作为补充),知识梳理(要记忆的东西写下来)和典型例题(只写出处)导数部分知识框架一、导数:1、导数的定义;2、导数的几何意义;3、导数的计算(基本求导公式,四则运算法则;复合求导公式)二、导数在函数中的应用1、导数和单调性的关系(求单调区间;已知单调性求参数范围或值);2、导数和极值的关系(求极值;已知极值情况求参数值或范围);3、导数法求最值4、函数与方程、不等式的关系:(1)方程根的情况问题;(2)不等式恒成立问题;(3)证明不等式,比大小问题注:函数与方程思想:主要是方程、不等式问题可转化为函数问题处理;有少数函数问题可转化为方程、不等式问题处理5、导数中常考的两种分类讨论问题:(1)讨论单调性、单调区间问题(抓定义域和导函数恒正、恒负还是有正有负学案87页3);(2)最值分界点(学案88页例2:开口朝下,最小值分两种,分界点依据端点函数值相等、最大值分三种,拐点在区间左侧,中间,右侧三种,开口朝上,情况相反;可类比二次函数)三、导数在实际生活中的应用———----应用题要求:对照复习,主要依据学案,其次课本和创新(作为补充),知识梳理(要记忆的东西写下来)和典型例题(只写出处)导数部分知识框架一、导数:1、导数的定义;2、导数的几何意义;3、导数的计算(基本求导公式,四则运算法则;复合求导公式)二、导数在函数中的应用1、导数和单调性的关系(求单调区间;已知单调性求参数范围或值);2、导数和极值的关系(求极值;已知极值情况求参数值或范围);3、导数法求最值4、函数与方程、不等式的关系:(1)方程根的情况问题;(2)不等式恒成立问题;(3)证明不等式,比大小问题注:函数与方程思想:主要是方程、不等式问题可转化为函数问题处理;有少数函数问题可转化为方程、不等式问题处理5、导数中常考的两种分类讨论问题:(1)讨论单调性、单调区间问题(抓定义域和导函数恒正、恒负还是有正有负学案87页3);(2)最值分界点(学案88页例2:开口朝下,最小值分两种,分界点依据端点函数值相等、最大值分三种,拐点在区间左侧,中间,右侧三种,开口朝上,情况相反;可类比二次函数)三、导数在实际生活中的应用-—---—-应用题要求:对照复习,主要依据学案,其次课本和创新(作为补充),知识梳理(要记忆的东西写下来)和典型例题(只写出处)。

导数及其应用知识归纳

导数及其应用知识归纳

数为0的点不一定是极值点。
(3 )利用导数求函数极值的步骤:
一.检查 f ‘ ( x )在方程根左、右值的符号 若左正右负,则 f ( x )在这个根处取得极大值; 若左负右正,则 f ( x )在这个根处取得极小值; 若同正同负,则 f ( x )在这个根处无极值.
一. 求 f ‘ ( x ) ; 二. 求 f ‘ (x )=0的根;
《导数及其应用》 知识归纳
击此处添加文本具体内容,简明扼要地阐述你的观点
二、本章内容总结
(一)导数的概念 本章介绍导数和定积分的概念、求法以及应用. 可过分地记为 ‘’导数值’’与’’导函数’’以示区别!
导数来源于各种实际问题,它描述了非均匀变化过程的变 化率.例如变速直线运动的瞬时速度、质量分布不均匀的 细直杆的线密度、曲线切线的斜率等等 ·
3 .函数的最值
(2 )利用导数求最值的步骤:
一. 将 f ( x )的各极值与 f ( a ) , f (b )比较,确定 f (x )的最大值和最小值. 一.求 f (x )在( a , b )内的极值;
(1)在闭区间[a ,b]上连续的函数
f ( x ) ,在 [ a ,b]上必有最大值和最小值.两种方法,即导数定义法和导函数的函数值法.
(六)导数的应用
1利用导数判断函数的单 调性
2 函数的极值
(l )设函数 f ( x )在点
A
x 。的附近有定义,如果对
附近所有的点都有:
(2 )可导函数 f ( x )在
B
极值点处的导数为0,但导

函数的导数与导数应用知识点总结

函数的导数与导数应用知识点总结

函数的导数与导数应用知识点总结函数的导数是微积分中的重要概念,用来描述函数在某一点的变化率。

导数应用则是指在解决实际问题时利用导数的性质和计算方法进行分析和求解。

下面将对函数的导数与导数应用的知识点进行总结。

一、函数的导数函数的导数在数学中是指函数在某一点的变化率,可以用来描述函数的变化速度和曲线的陡峭程度。

导数常用符号表示为f'(x),表示函数f(x)在点x处的导数。

1. 导数的定义函数f(x)在点x处的导数定义为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h,其中lim表示极限,h表示x的增量。

2. 导数的几何意义函数在某一点的导数等于该点切线的斜率,也就是函数曲线在该点处的斜率。

3. 导数的基本性质导数具有以下基本性质:- 函数常数的导数为0,即常数函数的导数为0。

- 导数的和差法则,即导数的和(差)等于各导数的和(差)。

- 导数的常数倍法则,即函数乘以一个常数后,导数等于该常数乘以原函数的导数。

- 导数的乘积法则,即两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数加上另一个函数的导数乘以其中一个函数。

- 导数的商法则,即两个函数的商的导数等于分子函数的导数乘以分母函数减去分母函数的导数乘以分子函数,再除以分母函数的平方。

二、导数应用导数应用广泛应用于数学、物理、经济等领域,在解决实际问题时具有重要的意义。

以下是几个常见的导数应用知识点。

1. 最值问题导数可以用来求函数的最值问题,即求函数在一段区间上的最大值或最小值。

要求函数在区间内取得最值,需找到导数等于零或不存在的点,然后通过二阶导数的正负来判断最值是极大值还是极小值。

2. 函数图像的凹凸性和拐点导数可以用来分析函数图像的凹凸性和拐点。

当导数大于零时,函数图像凹向上,当导数小于零时,函数图像凹向下。

拐点是指函数图像由凹向上变为凹向下或由凹向下变为凹向上的点。

3. 斜率问题导数可以代表函数曲线在某一点处的斜率,因此可以用来分析曲线的特性和斜率问题。

导数及其应用-知识点整理(完整,清晰)

导数及其应用-知识点整理(完整,清晰)

导数及其应用基本知识点1,导数:当x ∆趋近于零时,x x f x x f ∆-∆+)()(00趋近于常数C 。

可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c x x f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。

函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。

即x x f x x f x f x ∆-∆+=→∆)()(l i m)(0000'2,导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。

即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率x x f x x f x f k x ∆-∆+==→∆)()(l i m )(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-,如果曲线)(x f y =在点))(,(00x f x P 的切线平行于y 轴(此时导数不存在)时,由切线定义可知,切线方程为0x x =,故过点),(00y x P 的切线的方程为:))((00'0x x x f y y -=- 3,导数的四则运算法则:(1))()())()((x g x f x g x f '±'='± (2))()()()(])()([x g x f x g x f x g x f '+'='(3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4,几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)( (3)x x cos )(sin =' (4)x x sin )(cos -='(5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)x x e e =')( (8)a a a x x ln )(=' 5,函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结导数在数学和物理学中具有广泛的应用。

它是描述函数变化率的工具,可以用来解决许多实际问题。

在本文中,我们将讨论导数的应用以及一些常用的求导法则知识点。

一、导数的应用1. 切线与法线导数可以用来求解曲线上的切线和法线。

给定一个函数f(x),我们可以通过求解导数f'(x)来获得曲线上任意一点的切线斜率。

切线的斜率是导数的值。

与切线垂直的线被称为法线。

法线的斜率是切线斜率的负倒数。

2. 最值问题导数可以帮助我们找到函数的最值点。

在一个区间内,函数的最大值和最小值通常出现在导数为零或不存在的点。

因此,我们可以通过求解导数为零的方程来找到这些临界点,然后通过比较函数值来确定最值。

3. 凹凸性与拐点导数可以用来判断函数的凹凸性以及拐点的位置。

如果导数在某个区间内是递增的,那么函数在该区间内是凹的;如果导数是递减的,那么函数是凸的。

拐点发生在导数变化的方向改变的点。

4. 高阶导数导数的概念可以进一步推广到高阶导数。

高阶导数描述了函数变化的更高阶性质,比如曲率和弯曲程度。

通过求解导数的导数,我们可以计算出函数的高阶导数。

二、求导法则知识点1. 基本导数法则基本导数法则是求导的基础。

它包括了常数规则、幂函数规则、指数函数规则、对数函数规则和三角函数规则。

这些法则允许我们快速求解各种类型的函数导数。

2. 乘积法则乘积法则可以用来求解两个函数的乘积的导数。

假设有两个函数u(x)和v(x),它们的乘积为f(x) = u(x)v(x)。

那么,f'(x) = u'(x)v(x) +u(x)v'(x)。

3. 商积法则商积法则可以用来求解两个函数的商的导数。

假设有两个函数u(x)和v(x),它们的商为f(x) = u(x) / v(x)。

那么,f'(x) = [u'(x)v(x) - u(x)v'(x)] / v(x)^2。

4. 链式法则链式法则可以用来求解复合函数的导数。

最新导数及其应用(知识点总结)

最新导数及其应用(知识点总结)

导数及其应用 知识点总结1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式:①'C 0=; ②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.9、求解函数极值的一般步骤:(1)确定函数的定义域 (2)求函数的导数f ’(x)(3)求方程f ’(x)=0的根(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.。

《导数及其应用》知识点总结

《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的定义与运算1.导数的定义:导数表示函数在其中一点上的变化率,定义为函数在该点处的极限值。

设函数y=f(x),则函数f(x)在点x=a处的导数记为f'(a),可以表示为以下三种形式:(1)f'(a) = lim(x→a) [f(a)-f(x)] / (a-x)(2)f'(a) = lim(h→0) [f(a+h)-f(a)] / h(3)f'(a) = dy / dx,_(x=a)2.导数的运算法则:(1)和差法则:(u±v)'=u'±v'(2)数乘法则:(ku)' = ku'(3)乘法法则:(uv)' = u'v+uv'(4)商法则:(u/v)' = (u'v-uv') / v²(5)复合函数求导法则:(f[g(x)])'=f'(g(x))*g'(x)二、导数的几何意义1.切线与法线:函数在其中一点处的导数就是函数在该点处的切线的斜率,切线方程为y-f(a)=f'(a)(x-a)。

函数在其中一点处的导数的倒数就是函数在该点处的法线的斜率,法线方程为y-f(a)=-(1/f'(a))(x-a)。

2.函数的单调性与极值:若函数在一段区间上的导数大于0,则函数在该区间上单调递增;若函数在一段区间上的导数小于0,则函数在该区间上单调递减。

函数在一个点处的导数为0,则该点为函数的驻点;函数在驻点上的导数为正,则该点为函数的极小值点;函数在驻点上的导数为负,则该点为函数的极大值点。

三、导数的应用1.函数的极值与最值:(1)求函数的极值点:将函数的导数等于0的解作为候选点,再通过计算二阶导数或进行导数的符号表来判断是否为极值点。

(2)求函数的最值:将函数的极值点和函数在定义域的两端计算的值进行比较,得出最大值或最小值。

导数的应用知识点总结

导数的应用知识点总结

导数的应用知识点总结一、导数的定义与几何意义。

1. 导数的定义。

- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。

- 如果函数y = f(x)在开区间(a,b)内的每一点都可导,就说f(x)在区间(a,b)内可导。

这时对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数f^′(x),这样就构成了一个新的函数f^′(x),称它为函数y = f(x)的导函数,简称导数,记作y^′或f^′(x)或(dy)/(dx)等。

2. 导数的几何意义。

- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。

- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。

二、导数的基本公式与运算法则。

1. 基本公式。

- (C)^′ = 0(C为常数)- (x^n)^′ = nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′ =-sin x- (a^x)^′ = a^xln a(a>0,a≠1)- (e^x)^′ = e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)2. 运算法则。

- (u± v)^′ = u^′± v^′- (uv)^′ = u^′ v + uv^′- ((u)/(v))^′=(u^′ v - uv^′)/(v^2)(v≠0)三、导数在函数单调性中的应用。

1. 函数单调性与导数的关系。

- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,那么函数y = f(x)在这个区间内单调递增;如果f^′(x)<0,那么函数y = f(x)在这个区间内单调递减。

导数及其应用.知识框架 普通高中数学复习讲义Word版

导数及其应用.知识框架 普通高中数学复习讲义Word版

要求层次重难点导数及其应用导数概念及其几何意义导数的概念 A 了解导数概念的实际背景;理解导数的几何意义.导数的几何意义 C导数的运算根据导数定义求函数y c=,y x=,2y x=,3y x=,1yx=,y x=的导数C能根据导数定义,求函数23y c y x y x y x====,,,,1y y xx==,(c为常数)的导数.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b+的复合函数)的导数.导数的四则运算 C简单的复合函数(仅限于形如()f ax b+)的导数) B导数公式表 C导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次)C了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).会利用导数解决某些实际问题.函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题 B定积分与微积分基本定理定积分的概念 A 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.微积分基本定理 A高考要求模块框架导数及其应用了解微积分基本定理的含义.一、导数的概念与几何意义1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.3.可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.4.导数的几何意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.知识内容x 0xy xOD CB A二、导数的运算1注:ln e a =.注意()x x e e '=.2.导数的四则运算法则:⑴函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差). ⑵函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即,常数与函数之积的导数,等于常数乘以函数的导数. ⑶函数的商的求导法则:设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()()()f x g x f x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦. 特别是当()1f x ≡时,有21()()()g x g x g x ''⎡⎤=-⎢⎥⎣⎦.三、导数的应用1.利用导数判断函数的单调性的方法:如果函数()y f x =在x 的某个开区间内,总有()0f x '>,则()f x 在这个区间上是增函数;如果函数()y f x =在x 的某个开区间内,总有()0f x '<,则()f x 在这个区间上是减函数.2.利用导数研究函数的极值:已知函数()y f x =,设0x 是定义域内任一点,如果对0x 附近的所有点x ,都有0()()f x f x <,则称函数()f x 在点0x 处取极大值,记作0()y f x =极大.并把0x 称为函数()f x 的一个极大值点. 如果在0x 附近都有0()()f x f x >,则称函数()f x 在点0x 处取极小值,记作0()y f x =极小.并把0x 称为函数()f x 的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点.(二)主要方法:1.求函数()y f x =的极值的方法: 第1步 求导数()f x ';第2步 求方程()0f x '=的所有实数根;第3步 考察在每个根0x 附近,从左到右,导函数()f x '的符号如何变化.如果()f x '的符号由正变负,则0()f x 是极大值;如果由负变正,则0()f x 是极小值.如果在()0f x '=的根0x x =的左右侧,()f x '的符号不变,则0()f x 不是极值.2.函数()f x 的最大(小)值是函数在指定区间的最大(小)的值. 求函数最大(小)值的方法:第1步 求()f x 在指定区间内所有使()0f x '=的点;第2步 计算函数()f x 在区间内使()0f x '=的所有点和区间端点的函数值,其中最大的为最大值,最小的为最小值.四、导数与其它知识综合1.导数与函数的性质、基本初等函数的结合,这是导数的最主要的考查内容; 2.导数与数列的结合,要注意数列作为函数的特殊性;3.导数与三角函数的结合;4.导数在不等式的证明中的运用,经常需要构造函数,利用导数去求单调性,证明不等式.五、微积分与定积分基本定理1.函数定积分:设函数()y f x =定义在区间[,]a b 上.用分点0121n n a x x x x x b -=<<<<<=,把区间[,]a b 分为n 个小区间,其长度依次为10121i i i x x x i n +∆=-=-,,,,,.记λ为这些小区间长度的最大值,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点i ξ,作和式10()n n i i i I f x ξ-==∆∑.当0λ→时,如果和式的极限存在,我们把和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作()baf x dx ⎰,即1()l i m ()n bi i ai f x dx f x λξ-→==∆∑⎰. 其中()f x 叫做被积函数,a 叫积分下限,b 叫积分上限.()f x dx 叫做被积式.此时称函数()f x 在区间[,]a b 上可积.2.曲边梯形:曲线与平行于y 轴的直线和x 轴所围成的图形,通常称为曲边梯形. 根据定积分的定义,曲边梯形的面积S 等于其曲边所对应的函数()y f x =在区间[]a b ,上的定积分,即()ba S f x dx =⎰.求曲边梯形面积的四个步骤:第一步:分割.在区间[]a b ,中插入1n -各分点,将它们等分成n 个小区间[]1i i x x -, ()12i n =,,,,区间[]1i i x x -,的长度1i i i x x x -∆=-,第二步:近似代替,“以直代曲”,用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和. 第四步:取极限.3.求积分与求导数互为逆运算.()()()baF x dx F b F a '=-⎰,即()F x '从a 到b 的积分等于()F x 在两端点的取值之差.4.微积分基本定理如果()()F x f x '=,且()f x 在[,]a b 上可积,则()()()baf x dx F b F a =-⎰,其中()F x 叫做()f x 的一个原函数.由于[()]()F x c f x '+=,()F x c +也是()f x 的原函数,其中c 为常数. 一般地,原函数在[,]a b 上的改变量()()F b F a -简记作()b a F x , 因此,微积分基本定理可以写成形式:()()()()bb a a f x dx F x F b F a ==-⎰.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求层次重难点导数及其应用导数概念及其几何意义导数的概念 A 了解导数概念的实际背景;理解导数的几何意义.导数的几何意义 C导数的运算根据导数定义求函数y c=,y x=,2y x=,3y x=,1yx=,y x=的导数C能根据导数定义,求函数23y c y x y x y x====,,,,1y y xx==,(c为常数)的导数.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b+的复合函数)的导数.导数的四则运算 C简单的复合函数(仅限于形如()f ax b+)的导数) B导数公式表 C导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次)C了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).会利用导数解决某些实际问题.函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题 B定积分与微积分基本定理定积分的概念 A 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.微积分基本定理 A高考要求模块框架导数及其应用了解微积分基本定理的含义.一、导数的概念与几何意义1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.3.可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.4.导数的几何意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.知识内容x 0xy xOD CB A二、导数的运算1注:ln e a =L . 注意()x x e e '=.2.导数的四则运算法则:⑴函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差). ⑵函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即,常数与函数之积的导数,等于常数乘以函数的导数. ⑶函数的商的求导法则:设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()()()f x g x f x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦. 特别是当()1f x ≡时,有21()()()g x g x g x ''⎡⎤=-⎢⎥⎣⎦.三、导数的应用1.利用导数判断函数的单调性的方法:如果函数()y f x =在x 的某个开区间内,总有()0f x '>,则()f x 在这个区间上是增函数;如果函数()y f x =在x 的某个开区间内,总有()0f x '<,则()f x 在这个区间上是减函数.2.利用导数研究函数的极值:已知函数()y f x =,设0x 是定义域内任一点,如果对0x 附近的所有点x ,都有0()()f x f x <,则称函数()f x 在点0x 处取极大值,记作0()y f x =极大.并把0x 称为函数()f x 的一个极大值点. 如果在0x 附近都有0()()f x f x >,则称函数()f x 在点0x 处取极小值,记作0()y f x =极小.并把0x 称为函数()f x 的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点.(二)主要方法:1.求函数()y f x =的极值的方法: 第1步 求导数()f x ';第2步 求方程()0f x '=的所有实数根;第3步 考察在每个根0x 附近,从左到右,导函数()f x '的符号如何变化.如果()f x '的符号由正变负,则0()f x 是极大值;如果由负变正,则0()f x 是极小值.如果在()0f x '=的根0x x =的左右侧,()f x '的符号不变,则0()f x 不是极值.2.函数()f x 的最大(小)值是函数在指定区间的最大(小)的值. 求函数最大(小)值的方法:第1步 求()f x 在指定区间内所有使()0f x '=的点;第2步 计算函数()f x 在区间内使()0f x '=的所有点和区间端点的函数值,其中最大的为最大值,最小的为最小值.四、导数与其它知识综合1.导数与函数的性质、基本初等函数的结合,这是导数的最主要的考查内容; 2.导数与数列的结合,要注意数列作为函数的特殊性;3.导数与三角函数的结合;4.导数在不等式的证明中的运用,经常需要构造函数,利用导数去求单调性,证明不等式.五、微积分与定积分基本定理1.函数定积分:设函数()y f x =定义在区间[,]a b 上.用分点0121n n a x x x x x b -=<<<<<=L ,把区间[,]a b 分为n 个小区间,其长度依次为10121i i i x x x i n +∆=-=-L ,,,,,.记λ为这些小区间长度的最大值,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点i ξ,作和式10()n n i i i I f x ξ-==∆∑.当0λ→时,如果和式的极限存在,我们把和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作()baf x dx ⎰,即1()lim ()n bi i ai f x dx f x λξ-→==∆∑⎰.其中()f x 叫做被积函数,a 叫积分下限,b 叫积分上限.()f x dx 叫做被积式.此时称函数()f x 在区间[,]a b 上可积.2.曲边梯形:曲线与平行于y 轴的直线和x 轴所围成的图形,通常称为曲边梯形. 根据定积分的定义,曲边梯形的面积S 等于其曲边所对应的函数()y f x =在区间[]a b ,上的定积分,即()ba S f x dx =⎰.求曲边梯形面积的四个步骤:第一步:分割.在区间[]a b ,中插入1n -各分点,将它们等分成n 个小区间[]1i i x x -,()12i n =L ,,,,区间[]1i i x x -,的长度1i i i x x x -∆=-,第二步:近似代替,“以直代曲”,用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和. 第四步:取极限.3.求积分与求导数互为逆运算.()()()baF x dx F b F a '=-⎰,即()F x '从a 到b 的积分等于()F x 在两端点的取值之差.4.微积分基本定理如果()()F x f x '=,且()f x 在[,]a b 上可积,则()()()baf x dx F b F a =-⎰,其中()F x 叫做()f x 的一个原函数.由于[()]()F x c f x '+=,()F x c +也是()f x 的原函数,其中c 为常数. 一般地,原函数在[,]a b 上的改变量()()F b F a -简记作()b a F x , 因此,微积分基本定理可以写成形式:()()()()bb a a f x dx F x F b F a ==-⎰.。

相关文档
最新文档