很全面,渗碳+渗氮+碳氮共渗表面处理工艺
齿轮渗氮、氮碳共渗工艺及质量控制
齿轮渗氮、氮碳共渗工艺及质量控制
齿轮渗氮是一种提高齿轮表面硬度和耐磨性的表面处理方法,可以通过在齿轮表面注入氮气,使其在表面形成氮化层。
齿轮渗氮的主要工艺包括气体渗氮和盐浴渗氮两种方法。
1. 气体渗氮工艺:气体渗氮是将齿轮置于渗氮炉中,通过加热至高温状态,然后通过氨气或氮气等气体进行渗透处理,使氮原子渗入齿轮表面形成氮化层。
这种工艺具有操作简单、渗透深度可控、成本较低等优点。
2. 盐浴渗氮工艺:盐浴渗氮是将齿轮浸入温度较高的盐浴溶液中进行处理,使盐浴溶液中的氮原子渗透到齿轮表面形成氮化层。
这种工艺渗透速度较快,渗透深度大,但操作复杂,成本较高。
质量控制是齿轮渗氮过程中非常重要的环节,主要包括以下几个方面:
1. 温度控制:温度是齿轮渗氮过程中的重要参数,需要控制在合适的范围内,以保证渗透效果和避免过热损坏齿轮。
2. 渗氮时间控制:渗氮时间是影响氮化层深度和均匀性的重要因素,需要根据齿轮的具体要求和设计要求来确定。
3. 渗氮介质控制:选择合适的渗氮介质对于渗透效果和氮化层质量都有重要影
响,需要根据具体情况进行选择。
4. 清洗和处理后的质量检验:渗氮后需要对齿轮进行清洗和处理,以去除表面的残留物,然后进行质量检验,包括硬度测试、金相分析、氮化层厚度测量等。
通过合理的工艺选择和质量控制,可以确保齿轮渗氮的效果和质量,提高齿轮的使用寿命和性能。
中温气体碳氮共渗
中温气体碳氮共渗介绍中温气体碳氮共渗是一种常用的表面处理工艺,主要应用于金属制品的硬化和耐磨性提升。
本文将从定义、工艺流程、应用领域等方面对中温气体碳氮共渗进行全面探讨。
定义中温气体碳氮共渗是指在中温下,通过将含有碳氮成分的气体与金属表面进行接触,使碳氮元素在金属表面扩散,并与金属原子发生化学反应,从而在金属表面形成一层具有高硬度和耐磨性的化合物层。
工艺流程中温气体碳氮共渗的工艺流程通常包括以下几个步骤:1. 表面准备首先,需要对金属工件进行表面准备,包括去除表面氧化物、油污等杂质,以确保气体能够充分接触金属表面。
2. 清洁处理金属工件经过表面准备后,需要进行清洁处理,以去除表面的杂质和污染物,保证金属表面的纯净度。
3. 预处理在清洁处理后,需要对金属工件进行一些预处理,如钝化处理、活化处理等,以提高金属表面的反应性。
4. 碳氮共渗将含有碳氮成分的气体引入碳氮共渗设备中,通过控制温度、压力和时间等参数,使气体与金属工件表面进行接触和反应,从而实现碳氮的共渗。
5. 冷却处理碳氮共渗完成后,需要对金属工件进行冷却处理,以稳定共渗层的组织结构,并提高其硬度和耐磨性。
6. 后处理最后,对共渗后的金属工件进行后处理,包括清洗、除去残留气体等,以保证共渗层的质量和稳定性。
应用领域中温气体碳氮共渗广泛应用于各个行业的金属制品表面处理,主要包括以下几个方面:1. 汽车工业中温气体碳氮共渗可用于汽车发动机的活塞、曲轴、凸轮轴等零部件的表面处理,提高其硬度和耐磨性,延长使用寿命。
2. 机械制造在机械制造行业中,中温气体碳氮共渗可用于各种机械零部件的表面处理,如齿轮、轴承、滚子等,提高其硬度和耐磨性,增强其使用性能。
3. 刀具行业中温气体碳氮共渗可用于刀具的表面处理,使刀具具有更高的硬度和耐磨性,提高切削效率和使用寿命。
4. 航空航天在航空航天领域,中温气体碳氮共渗可用于发动机零部件、涡轮叶片等的表面处理,提高其耐高温和耐磨性能,提升航空发动机的性能。
模具表面的化学热处理技术
甲醇+丙酮
风扇电动机 废气火焰 炉盖 砂封 电阻丝 耐热罐 工件 炉体
图 4-2 滴注式气体渗碳炉工作示意图
4.2.1.3 真空渗碳 真空渗碳是一个不平衡的增碳扩散型渗碳工艺,被处 理的工件在真空中加热到奥氏体化,并在渗碳气氛中渗碳, 然后扩散、淬火。由于渗碳前是在真空状态下加热,钢的 表面很干净,非常有利于碳原子的吸附和扩散。与气体渗 碳相比,真空渗碳的温度高,渗碳时间可明显缩短。
渗碳工艺应用于模具表面强化,主要体现在两个方面。 一方面用于低、中碳钢的渗碳。例如,塑料制品模具的形 状复杂,表面粗糙度要求高,常用冷挤压反印法来制造模 具的型腔。因此,可采用碳含量较低、塑性变形性能好的 塑料模具钢,如20、20Cr、12CrNi3A钢以及美国的P2、 P3、P4、P5钢等。先将退火状态的模具钢冷挤压反印法 成形,再进行渗碳或碳氮共渗处理。
4.2 模具表面的化学热处理技术 化学热处理是指将钢件置于特定的活性介质中加 热和保温,使一种或几种元素渗入工件表面,以改变 表层的化学成分、组织,使表层具有与心部不同的力 学性能或特殊的物理、化学性能的热处理工艺。化学 热处理的种类很多,一般都以渗入的元素来命名,常 用的化学热处理方法有渗碳、渗氮、碳氮共渗/氮碳 共渗、渗硼、渗金属等。
4.2.1.4 CD渗碳 CD渗碳是20世纪80年代后期出现的渗碳方法。CD渗 碳法采用含有大量强碳化物形成元素(如Cr、Ti、Mo、V) 的模具钢在渗碳气氛中加热,在碳原子自表面向内部扩散 的同时,渗层中沉淀出大量弥散合金碳化物,弥散碳化物 含量达50%以上,呈细小均匀分布,淬火、回火后可获得 很高的硬度和耐磨性。 经CD渗碳的模具心部没有像Cr12型模具钢和高速钢中 出现粗大共晶碳化物和严重的碳化物偏析,因而其心部韧 性比Cr12MoV钢提高3~5倍。实践表明,CD渗碳模具的使 用寿命大大超过Cr12型冷作模具钢和高速钢。
碳氮共渗热处理工艺
碳氮共渗热处理工艺碳氮共渗热处理工艺是一种常用的表面强化技术,它可以提高金属材料的硬度、耐磨性、抗腐蚀性和疲劳寿命等性能。
本文将从碳氮共渗的原理、工艺流程、影响因素和应用前景等方面进行介绍。
一、碳氮共渗的原理碳氮共渗是指在高温下将碳和氮同时渗入金属表面,形成碳氮化合物层。
这种层具有高硬度、高耐磨性、高抗腐蚀性和高疲劳寿命等优良性能。
碳氮化合物层的形成是由于碳和氮在金属表面的相互作用,形成了一系列的化合物,如Fe3C、Fe4N、Fe2-3(C,N)等。
这些化合物的硬度和稳定性都比金属基体高,因此可以提高金属材料的表面性能。
二、碳氮共渗的工艺流程碳氮共渗的工艺流程主要包括预处理、渗透、淬火和后处理等步骤。
1.预处理:将金属材料进行表面清洗和去油处理,以保证渗透剂能够充分渗透到金属表面。
2.渗透:将金属材料放入渗透炉中,在高温下进行碳氮共渗处理。
渗透剂一般采用氨气和甲烷的混合物,温度一般在800℃-950℃之间,时间一般在2-8小时之间。
3.淬火:将渗透后的金属材料迅速冷却,以保证碳氮化合物层的稳定性和硬度。
4.后处理:对淬火后的金属材料进行退火处理,以消除残余应力和提高材料的韧性。
三、碳氮共渗的影响因素碳氮共渗的效果受到多种因素的影响,如温度、时间、渗透剂成分、金属材料成分和表面状态等。
1.温度:温度是影响碳氮共渗效果的重要因素。
温度过低会导致渗透剂无法充分渗透到金属表面,温度过高会导致碳氮化合物层的过度生长和烧结。
2.时间:时间是影响碳氮共渗效果的另一个重要因素。
时间过短会导致碳氮化合物层的厚度不足,时间过长会导致碳氮化合物层的过度生长和烧结。
3.渗透剂成分:渗透剂成分对碳氮共渗效果也有很大的影响。
不同的渗透剂成分会导致不同的化合物生成,从而影响碳氮化合物层的性能。
4.金属材料成分和表面状态:金属材料的成分和表面状态也会影响碳氮共渗效果。
不同的金属材料对渗透剂的反应不同,表面状态的不同也会影响渗透剂的渗透性能。
碳氮共渗工艺.doc
碳氮共渗工艺碳氮共渗工艺是分很多种的,根据实际的不同选择最合适的是最有利的,把握好细节的处理是非常关键的。
下面就碳氮共渗工艺和大家简单说一下。
(1)直接淬火+低温回火1)工艺特点。
碳氮共渗后由共渗温度(820~860℃)直接淬火,然后进行低温回火160~200℃×2~3h。
2)工艺适用范围。
工艺简单适用于中、低碳钢及低合金钢,可获得满意的表面及心部组织。
一般选择油淬。
(2)分级淬火+低温回火1)工艺特点。
碳氮共渗后由共渗温度820~860℃直接在110~200℃热油或碱浴中分级淬火1~15min后空冷,再进行160~200℃低温回火。
2)工艺适用范围。
工件变形小,适用于尺寸要求较严格的合金钢件。
(3)有次加热淬火+低温回火1)工艺特点。
碳氮共渗后空冷或在冷却坑中缓冷,然后重新加热淬火+低温回火热处理。
2)工艺适用范围。
适用于共渗后需机械加工或因各种原因不宜直接淬火的工件。
(4)直接淬火、冷处理+低温回火1)工艺特点。
碳氮共渗后从共渗温度直接淬火,然后在-80~-70℃介贡中进行冷处理,随后进行低温回火,以减少表层残留奥氏体,提高硬度,稳定尺寸。
2)工艺适用范围。
适用于含铬、镍较多的合金钢,如12CrNiA、20Cr2Ni4A、18CrNiWA等。
(5)缓冷,高温回火,再重新加热淬火+低温回火1)工艺特点。
碳氮共渗后空冷或在冷却坑中缓冷,然后进行高温回火热处理,以减少残留奥氏体,再重新加热淬火+低温回火。
2)工艺适用范围。
适用于含铬、镍较多的合金钢,以及碳氮共渗后尚需机械加工件。
渗氮 渗碳 碳氮共渗
渗氮渗碳碳氮共渗碳氮共渗是一种常见的表面处理技术,通过渗碳和渗氮来改善材料的硬度和耐磨性。
本文将对渗氮、渗碳和碳氮共渗的原理、应用和工艺进行详细介绍。
一、渗氮渗氮是将氮原子渗入材料表面形成氮化物层的过程。
氮原子通过高温处理和氮气氛的作用,渗透到材料表面并与材料中的元素反应,形成硬质氮化物层。
这一薄层氮化物层不仅能提高材料的硬度和抗磨损性能,还能改善材料的耐腐蚀性。
渗氮的主要应用领域包括机械制造、汽车工业、航空航天等。
在机械制造中,渗氮可以增加零件的硬度和耐磨性,延长使用寿命;在汽车工业中,渗氮可以提高引擎零件的耐磨性和抗腐蚀性能;在航空航天领域,渗氮可以增强航空发动机部件的耐高温和耐磨性能。
渗氮的工艺流程一般包括清洗件表面、装配件和炉内预处理、渗氮和回火处理等步骤。
渗氮一般采用封闭式和开放式两种方式进行,根据具体应用需求可以选择合适的渗氮工艺。
二、渗碳渗碳是将碳原子渗入材料表面形成碳化物层的过程。
碳原子通过高温处理和含有碳气体的氛围,渗透到材料表面并在表面与材料中的元素反应,形成硬质碳化物层。
渗碳技术不仅能提升材料的硬度和耐磨性,还可以改善材料的断裂韧性和抗腐蚀性。
渗碳广泛应用于机械零件、钢铁制品等领域。
渗碳后的材料表面硬度高、耐磨性好,适用于制作耐磨零件,如轴承、齿轮等;同时碳化层的外表面与空气隔绝,降低了材料的腐蚀速率,提高了零件的使用寿命。
渗碳的工艺流程包括预处理、渗碳、淬火和回火等。
渗碳一般采用气体渗碳和液体渗碳两种方式进行,具体工艺参数可以根据材料的要求进行选择。
三、碳氮共渗碳氮共渗是将碳原子和氮原子同时渗入材料表面形成碳氮共渗层的过程。
碳氮共渗通过碳氮共渗剂和高温处理,使碳原子和氮原子分别与材料中的元素发生反应,形成硬质碳氮化物层。
碳氮共渗能够同时获得渗碳和渗氮的特性,提高材料的硬度、耐磨性和抗腐蚀性。
碳氮共渗广泛应用于汽车工业、航空航天等领域。
在汽车工业中,碳氮共渗可以提高零部件的硬度和耐磨性,同时还可以提高零部件的抗磨损能力和抗腐蚀性;在航空航天领域,碳氮共渗可以增强发动机部件的抗高温性能和抗腐蚀能力。
碳氮共渗的三个基本流程
碳氮共渗的三个基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!碳氮共渗的基本流程。
1. 预处理。
预处理旨在为后续的渗碳和氮化处理做好准备,包括以下步骤:脱脂和清洗,去除工件表面的油污、灰尘和氧化物,确保渗碳剂和氮化剂均匀渗透。
氮碳共渗工艺流程
氮碳共渗工艺流程
《氮碳共渗工艺流程》
氮碳共渗工艺是一种通过将氮气和碳源同时引入工件表面进行热处理的方法,以提高材料表面的硬度和耐磨性。
这种工艺在金属加工和热处理行业中被广泛应用,特别是在汽车零部件、机械零件和工具加工领域中具有重要的意义。
该工艺流程主要包括准备工作、氮碳共渗处理、淬火和回火等步骤。
在准备工作阶段,首先需要清洗和除去工件表面的油污、锈蚀等杂质,确保表面光洁。
然后将工件放置在氮碳共渗炉中,在一定的温度和气氛条件下进行处理。
氮气和碳源配比通过控制进气量和比例来实现,以保证渗碳层的均匀性和硬度。
处理时间取决于工件材料和尺寸,通常在几小时到数十小时不等。
处理完毕后,工件需要进行淬火和回火处理。
淬火是通过急冷工件表面,使其达到较高的硬度,提高耐磨性和强度。
回火则是通过加热工件至一定温度,然后进行缓慢冷却,使其获得适当的韧性和塑性。
这两项处理操作对于提高工件的综合性能至关重要。
总的来说,氮碳共渗工艺流程具有较为清晰的步骤和操作规范,通过合理控制处理参数和时间,可以获得理想的表面硬度和性能。
在实际应用中,需要针对不同的工件材料和要求,选择合适的处理工艺和工艺参数,以获得最佳的处理效果。
碳氮共渗工艺流程
碳氮共渗工艺流程
《碳氮共渗工艺流程》
碳氮共渗工艺是一种常用的表面淬火工艺,它可以提高钢件的表面硬度和耐磨性。
在碳氮共渗工艺中,碳化物和氮化物一起渗入钢件表面,从而形成一层坚硬的外壳。
下面将介绍碳氮共渗工艺的具体流程。
首先,将待处理的钢件经过去氧化、碱洗、酸洗等预处理工艺,将表面的油污和杂质去除干净,以保证碳氮共渗工艺的有效进行。
接着,将经过预处理的钢件放入碳氮共渗炉中,进行渗碳氮处理。
渗碳氮的温度通常为850°C-950°C,时间为2-6小时。
在
这个温度下,碳氮原子将渗透到钢件的表面,并在晶粒边界和晶粒内形成碳化物和氮化物。
随后,将处理后的钢件经过水冷或油冷,使其迅速冷却。
这一步骤可以有效地保持钢件的硬度和组织。
最后,对处理后的钢件进行表面处理,如打磨、抛光等,以去除表面的氧化层和残余碳化物、氮化物。
总的来说,碳氮共渗工艺是一种比较成熟的工艺,可以在钢件表面形成一层坚硬的外壳,提高其表面硬度和耐磨性。
通过对工艺流程的控制和优化,可以获得高质量的碳氮共渗处理效果。
碳氮共渗和渗碳
碳氮共渗和渗碳
碳氮共渗和渗碳是热处理中常见的两种工艺。
这两种工艺都是为
了在金属材料表面形成一层淬火硬化层,提高材料的硬度和耐磨性。
下面将介绍这两种工艺的基本原理和应用。
碳氮共渗是指同时在金属材料表面扩散一定浓度的碳和氮原子。
在热处理过程中,一定温度下将金属件浸入含有碳和氮的混合气体中,使得碳和氮原子渗入金属表面,与金属原子共同形成一层淬火硬化层。
这种工艺适用于低碳合金钢、工具钢等材料的淬火处理,可以提高材
料的硬度和耐磨性,延长材料的使用寿命。
渗碳是指在金属材料表面扩散一定浓度的碳原子。
在热处理过程中,将金属件浸入含有碳的气体中,使得碳原子渗入金属表面形成一
层淬火硬化层。
渗碳工艺适用于低碳合金钢、铬钼钢等材料的淬火处理。
与碳氮共渗相比,渗碳工艺更加经济实惠,但硬化层的厚度相对
较薄,且耐热性能较差。
在实际应用中,选择碳氮共渗或渗碳工艺需要考虑许多因素,例
如金属种类、加工要求、环境污染等。
因此,发展新型热处理工艺和
选择可持续发展的材料成为了热处理技术研究的重要方向。
总的来说,碳氮共渗和渗碳是热处理工艺中常用的两种硬化工艺,适用范围较广。
在实际应用中,需要根据具体情况选择合适的工艺,
并注重环境保护,推动热处理技术的可持续发展。
钢的渗碳和碳氮共渗、淬火、回火工艺
钢的渗碳和碳氮共渗.淬火.回火工艺1.主题内容和适用范围本工艺规则了渗碳钢的气体渗碳氮共渗淬火回火处理的工序准备.工艺规范.操作规程.质量检验和安全环保等方面要求;2.引用标准JB3999—85钢的渗碳和碳氮共渗淬火回火处理GB85839—87齿轮材料及热处理质量检验一般规则ZBJ17022—88齿轮碳氮共渗工艺及质量控制ZBT04001—88汽车渗碳齿轮金相检验JB/ZQ4038—88重载齿轮渗碳质量检验GB9450—88钢件渗碳淬火有效硬化层深度的测定和校核GB15735—1995金属热处理生产过程安全卫生要求3.工艺准备3.1工件准备3.1.1对照图纸了解被处理工件的材料牌号(或化学成份),予处理情况和质量要求,磨削留量,必要时检查齿轮(轴齿轮)的加工精度;3.1.2工件表面不得有氧化皮.碰伤和裂纹,用清洗剂洗净油污后烘干;3.1.3工件表面不需要渗碳或碳氮共渗的部位,又无留余量,没安排剥碳层的加工工序,就要用防渗涂料保护,防渗涂料的厚度应大于0.3mm,涂层应致密,防渗涂料应符合ZB451—014的规则;3.2工装准备3.3开炉准备选用的工装应具有足够的热处理强度和刚度;3.3.1检查热处理设备的机械和电气部分是否正常,炉子是否漏气;检查炉子需润滑油的部位,使其不断润滑;3.3.2检查测温仪表,热电隅是否正常,要定期进行校验;3.3.3定期清理气体渗碳炉炉罐中的碳黑和灰烬;3.4工件的表卡和试样3.4.1根据工件的形状和要求,选用适当的吊具和夹具;3.4.2工件间要有5~10mm的间隙;3.4.3应随炉放臵与装炉工件材质和予处理相同和符合GB8539—87“齿轮材料及热处理质量检验的一般规则”规则的样式,并放臵在有代表性的位臵,以备炉前操作抽样检查;4.渗碳和碳氮共渗淬火回火处理的工艺规范和操作规程4.1渗碳.碳氮共渗处理4.1.1装炉4.1.1.1工件装炉前应把炉温升到渗碳或共渗温度,连续生产时可干上一炉出炉后立即装炉;4.1.1.2工件应装在炉子的有效加热区内,加热区的炉温不得超过±15℃;4.1.1.3每炉装载量不大于设备的装载量;4.1.2气体渗碳工艺规范和操作规程4.1.2.1气体渗碳工艺规范参照图1,低碳合金渗碳钢的渗碳温度取上限;4.1.2.2排气期排气期的渗剂滴入量,参照表1,炉子到温后的排气时间的长短取决于排气程度,应取气进行分析,当CO2和O2的含量低于0.5%时,即可关闭试样孔,转入强渗期;无气体分析仪时,可观察废气火苗的颜色和状态,当火苗呈杏黄色,上升无力时,排气基本结束;一般地排气时间为1~1.5小时;4.1.2.3强渗期,关闭试样孔,点燃排出的废气;检查炉盖及通风机轴处是否漏气;调整煤油.异丙醇的滴入量,滴量多少取决于设备大小,装炉工件表面积的大小及炉子密封的情况,表1的滴量供选择时参考;强渗期炉气成份应控制在表2规则的范围内;有条件应采用红外线CO2碳位自控仪或露点仪控制炉气或用奥氏体分析仪对炉气进行分析,作为调正滴量的依据;强渗期的炉压控制在100~300pa;废气燃烧的火苗高度控制在200~250㎜的长度;根据工件有效硬化层要求和渗速经验,约达到1/2~2/3渗层深度时,抽验第一根试样,根据第一个试样的渗层确定第二个试样的时间,当有效硬化层深度达到或接近工件的有效硬化深度时,即可进入扩散期;4.1.2.4扩散期:扩散期的煤油.异丙醇滴量约为强渗期的0.5倍,为了保证炉压,并同时加滴甲醇,扩散期的时间与工件要求的有效硬化层深度有关,有效硬化层深度愈深,扩散时间要求愈长一些,与工件的碳势(试样的碳势)有关,碳势高要求扩散时间长一些,还与试样渗层深度有关,为了保证工件表面0.85~1.0%的碳浓度和合理的过滤层,扩散时间约为1~3小时;4.1.2.5降温期:抽验的第三个试样,如果网状碳化物≥5级为作正火处理,920℃出炉空冷,对20CrMnMo17Cr2Ni20CrNi2Mo当工件室冷到300-400℃时要放到回火炉中炉冷,防止在表面和次层在空冷时产生马氏体,形成表面裂纹;对于17CrNi2Mo.20Cr2NiMo等Cr.Ni渗碳钢即使碳化物不超级也要出炉空冷,空冷的炉温度为860~880℃;对于碳化物不超级的20CrMnTi.20CrMnMo~840℃,保渗碳齿轮,随炉冷到830温0.5~1H后直接淬火;4.1.3气体碳氮共渗工艺规范和操作规程;4.1.3.1气体碳氮共渗操作规程;4.1.3.2采用煤油加氨氧的气体碳氮共渗工艺曲线4.1.3.3共渗过程其炉气成分应符合下表规则4.2.1工件渗碳后直接淬火;对本质细晶粒钢工件渗碳后可采用直接淬火的方法,以获得所需要的表层和心部硬度以及有效硬化层深度,如20CrMo.20CrMnMo,以及含硼和稀土的合金钢渗碳件;直接淬火一般在炉中降温到830~850℃,均温0.5~1H出炉后淬火工件渗碳后直接淬火另一个条件是渗层金相组织网状碳化物≤4级;工件要求渗层深,炉中碳势又高的情况,容易造成碳化物超级,而对于模数≤5的20CrMnTi.20CrMnMo齿轮,渗碳深度1.2~1.3㎜(含磨量)碳化物不易超级,可以直接淬火,模数大于5的齿轮视渗层的金相组织中网状碳化物的级别而定,如果网状碳化物小于4级可以直接淬火;5级以上则要高温正火,消除网状碳化物或降低网状碳化物级别;4.2.2工件渗碳后空冷后再淬火,按方法有以下几种原因:a.工件渗碳后需要进行机械加工,如制碳层;b.容易发生过热的碳钢和非细晶粒合金钢件,以及某些不宜直接淬火的工件(如需要在压床上淬的齿轮);c.渗层组织如出现网状碳化物超级对于a.b两种情况,炉冷到850~860℃空冷,但对20CrMnMo渗件要求在400℃以下缓冷,否则易再次表层出现马氏体组织形成裂纹,对于C种情况,要求在900~930℃出炉直接空冷;4.2.312CrNi3.12Cr2Ni4.17CrNi2Mo.20CrNi4.20Cr2Ni4.20Cr2Ni4MoA.20Cr2Ni4WA等高强合金渗碳件,渗碳炉冷到920℃出炉空冷(用于制作大模数齿轮),400以下缓冷,并增加一次至二次650~680℃,5~6H的高温回火;这种高温回火称为催化或促变处理,它不仅能改善机械加工性能,更主要它是获得良好淬火组织的条件和保证;必须严格执行;4.2.4碳氮共渗的工件一般都从共渗温度或低于共渗温度出炉直接淬火;4.2.5经过渗碳淬火或碳氮共渗淬的工件,通常采用180℃±10℃的低温回火;4.2.5.1碳氮共渗齿轮回火的温度为180℃±10℃,回火时间3H;4.2.5.2模数1~3的齿轴渗碳淬火后温度200~210℃,时间3H,模数1~3的齿轮渗碳淬火后的回温度220℃±10℃,时间3H4.2.5.3模数3~5的齿轴.齿轮渗碳淬火后进行二次回火;第一次回火温度230℃,时间4H;第二次齿轴的回火温度230℃,回火时间3H;4.2.5.4模数≥6的齿轮.齿轴,渗碳后直接淬火的工件,需要进行三次回火;第一次回火温度230℃,回火时间3H;第二次回火,齿轴的回火温度230℃,时间3H,齿轮的回火温度240℃,时间3H;第三次回火,齿轴的回火温度220℃,时间3H,齿轮的回火温度240℃,时间3H;4.2.5.5模数≥6的齿轮齿轴渗碳后空冷,后加热淬火;进行二次回火;第一次回火温度230℃,时间4H;第二次回火,齿轴的回火温度220℃,时间4H,齿轮的回火温度240℃,时间4H;4.2.5.6前一次回火后,工件空冷到室温或≤50℃,才能进行下一次回火;4.2.5.7工件回火必须放在回火炉的有效加热区内(渗碳淬火的齿轮部分需量出回火炉底部300㎜);4.3渗碳和碳氮共渗淬火回火件的最后处理;4.3.1清理:进行喷砂,以清除赤面的油污和氧化模;4.3.2校直和矫正:用偏摆仪检查齿轴的变形,当超过允许变形时,应对其校直和矫正;随后进行去应力回火;条件允许(淬火工件量少时)应在淬火后马上进行校直,然后再回火;5.质量检验5.1外观:不得有裂纹和碰伤5.2表面硬度5.2.1硬度检验方法,按GB23083《金属洛氏硬试验法》或其他硬度试验法进行;5.2.2表面硬度的偏差范围,表面硬度不得超过下表规则:5.3.1有效硬化层检验方法,按GB《钢的渗碳硬化层有效硬化层深度的测定和校验》中的规则执行;5.3.2有效硬化层深度偏差不得超过下表规则;根据零件的要求,按有关标准进行检定;5.5变形:零件的变形应符合技术要求;6.安全与环保6.1操作者要穿戴好必须的劳动保护用品;6.2执行所用设备的安全操作规程;6.3气体渗碳或碳氮共渗出炉淬火时,同时淬火的工件量大时,应先检查油温,当油温>100℃时,应先降油温后淬火,以防止油槽着火;着火时需用灭火器,石棉被灭火,严禁用水灭火;6.4要防止渗碳炉滴注器渗漏,以免引起炉盖着火,烧毁电机或造成渗剂失火;6.5其它方面按GB15735—1995,金属热处理生产过程安全卫生要求;。
渗碳渗氮、碳氮共渗和氮碳共渗,傻傻分不清楚?来看看他们的区别
渗碳渗氮、碳氮共渗和氮碳共渗,傻傻分不清楚?来看看他们的区别渗碳、渗氮、碳氮共渗和氮碳共渗,都是⾦属材料的表⾯处理⼯艺。
为了实现不同零件的⼯作条件和功能要求,需要对其表⾯进⾏不同的处理。
1. 渗碳渗碳是指使碳原⼦渗⼊到钢表⾯层的过程。
是使低碳钢的⼯件具有⾼碳钢的表⾯层,再经过淬⽕和低温回⽕,使⼯件的表⾯层具有⾼硬度和耐磨性,⽽⼯件的中⼼部分仍然保持着低碳钢的韧性和塑性。
具体⽅法是将⼯件置⼊具有活性渗碳介质中,加热到900--950摄⽒度的单相奥⽒体区,保温⾜够时间后,使渗碳介质中分解出的活性碳原⼦渗⼊钢件表层,从⽽获得表层⾼碳、⼼部仍保持原有成分。
它可以使渗过碳的⼯件表⾯获得很⾼的硬度,提⾼其耐磨程度。
典型渗碳⼯艺流程 渗碳⼯件的材料⼀般为低碳钢或低碳合⾦钢(含碳量⼩于0.25%)。
渗碳后﹐钢件表⾯的化学成分可接近⾼碳钢。
⼯件渗碳后还要经过淬⽕,以得到⾼的表⾯硬度、⾼的耐磨性和疲劳强度,并保持⼼部有低碳钢淬⽕后的强韧性,使⼯件能承受冲击载荷。
渗碳⼯艺⼴泛⽤于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。
⼯件渗碳淬⽕后的表层显微组织主要为⾼硬度的马⽒体加上残余奥⽒体和少量碳化物,⼼部组织为韧性好的低碳马⽒体或含有⾮马⽒体的组织,但应避免出现铁素体。
齿轮渗碳表⾯组织(马⽒体+碳化物)渗碳后⼼部组织低碳马⽒体⼀般渗碳层深度范围为0.8~1.2毫⽶,深度渗碳时可达2毫⽶或更深。
表⾯硬度可达HRC58~63,⼼部硬度为HRC30~42。
渗碳淬⽕后﹐⼯件表⾯产⽣压缩内应⼒﹐对提⾼⼯件的疲劳强度有利。
齿轮渗碳层深度按含碳介质的不同,渗碳可分为固体渗碳、液体渗碳、⽓体渗碳和碳氮共渗等。
2. 渗氮是在⼀定温度下⼀定介质中使氮原⼦渗⼊⼯件表层的化学热处理⼯艺。
常见有液体渗氮、⽓体渗氮、离⼦渗氮。
渗⼊钢中的氮⼀⽅⾯由表及⾥与铁形成不同含氮量的氮化铁,⼀⽅⾯与钢中的合⾦元素结合形成各种合⾦氮化物,特别是氮化铝、氮化铬。
低温化学热处理方法——氮碳共渗
低温化学热处理方法——氮碳共渗氮碳共渗又叫软氮化,是钢铁在铁素体状态下低温化学热处理方法的一种。
1、氮碳共渗的原理及特点氮碳共渗是在Fe⁃C⁃N三元素共析温度以下对工件表面进行氮、碳共渗的一种表面扩散渗入处理工艺,该工艺以渗氮为主,同时也渗入少量的碳原子。
在Fe⁃C⁃N三元相图中的三元共析点为565⁃,此时,氮在α⁃Fe中具有最大的溶解度,故氮碳共渗的温度一般为570⁃左右。
氮碳共渗处理与气体氮化相比具有如下特点。
氮碳共渗处理的时间短,一般为1~4h,而气体氮化长达几十小时。
氮碳共渗时,除活性氮原子外,还有活性炭原子。
钢的表面首先被碳饱和并形成超显微的碳化物,这种碳化物作为触媒剂促进了氮的渗入,当表面ε相形成后,ε相中又可溶解较多的碳,所以渗碳和渗氮相互促进,从而渗速加快。
氮碳共渗化合物层中除含氮外,还含有少量的碳,由于ε相中含有碳,使得化合物的脆性降低,因此氮碳共渗形成的白亮层一般脆性较小。
气体渗氮一般只适用于特殊的氮化钢,而氮碳共渗不受被处理材料的限制,可广泛用于碳素钢、合金钢、铸铁等。
2、氮碳共渗层组织钢铁工件的氮碳共渗层组织由表及里依次为Fe2~3N,Fe3N和Fe4N构成的化合物层(如是合金钢,还有Cr、W、V、Al、Mo等合金氮化物)和扩散层(主要是氮在α⁃Fe中的固溶体)。
碳钢氮碳共渗后的组织由白亮的化合物层和暗黑色的扩散层组成。
化合物层主要为ε相和γ′相。
合金钢氮碳共渗后,表面也得到由ε相和γ′相组成的白亮化合物层。
3、氮碳共渗层性能(1)共渗层硬度氮碳共渗显著提高工件表面硬度及耐磨性,与调质、感应淬火相比较,磨损失重分别降低1~2个数量级。
(2)共渗层的抗疲劳性能氮碳共渗后的疲劳强度高于渗碳或碳氮共渗淬火以及感应淬火。
低、中碳钢可提高40%~80%;合金结构钢提高25%~35%;不锈钢提高30%~40%;灰铸铁提高20%左右,见下图。
▲氮碳共渗处理使疲劳强度提高的情况(球墨铸铁)最近采取在氮碳共渗后高频淬火的复合热处理工艺。
碳氮共渗热处理工艺(一)
碳氮共渗热处理工艺(一)碳氮共渗热处理工艺什么是碳氮共渗热处理工艺?碳氮共渗热处理工艺是指将碳和氮共同渗透到金属表面形成一定深度的复合渗层的热处理过程。
常见于钢铁制品,可增强材料硬度、耐腐蚀性、耐磨性等性能。
碳氮共渗的优点碳氮共渗相比单纯的碳渗和氮渗有以下优点:•提高硬度。
碳氮共渗后可形成较高硬度的表面层,增强了材料的抗磨性和耐用性。
•提高耐腐蚀性。
碳氮共渗后形成的表面层能够保护材料免受氧化和腐蚀的侵害。
•为材料提供淬火能力。
通过控制共渗液的温度和成分,可为材料提供合适的淬火性能,提高材料的强度和硬度。
碳氮共渗工艺碳氮共渗工艺常用的方法包括气体渗透法、电弧离子渗透法和盐浴渗透法等。
其中,气体渗透法是最为常见的方法,具体过程如下:1.准备共渗液。
将含有一定量的气体的共渗液加热至一定温度并保持一定时间,使气体分子分解并渗透到物品表面形成表面层。
2.选择适当的温度。
渗透液的温度是影响表面层厚度的重要因素,需要根据材料和要求的表面性能来确定。
3.渗透时间。
渗透时间与涂层厚度成正比,需要根据不同要求来确定。
碳氮共渗的应用碳氮共渗工艺被广泛应用于机械制造、汽车制造、航空航天等行业,如齿轮、轴承、涡轮叶片、气缸套等。
通过碳氮共渗可以改善这些零件的性能,提高它们的使用寿命和性能。
结语碳氮共渗热处理工艺的出现,极大地推动了材料科学和工业制造的进步。
通过研究和应用碳氮共渗工艺,我们可以为材料提供更优秀的性能和更可靠的保护层,同时提高工业产品的质量和市场竞争力。
注意事项在进行碳氮共渗工艺时,需要注意以下事项:1.渗透液的成分和温度需要根据材料和要求的表面性能来选择,需要遵守标准操作程序进行。
2.渗透时间需要根据需要确定,过短可能导致涂层不够厚,过长可能导致损坏物品表面。
3.在操作过程中需要严格控制温度,避免对材料产生不良影响。
4.碳氮共渗工艺需要在相应的设备和环境下进行,需要保证合适的设备和操作条件。
发展趋势碳氮共渗工艺自问世以来,不断得到完善和发展。
氮碳共渗工艺
氮碳共渗工艺氮碳共渗工艺是一种通过将氮和碳同时渗入材料表面以提高其硬度和耐磨性的表面处理技术。
该工艺在各个领域中得到广泛应用,包括机械制造、汽车工业、航空航天等。
氮碳共渗工艺的基本原理是将材料置于含氮和碳的气氛中,在高温下进行处理。
氮和碳原子会渗入材料表面并与其基体元素发生化学反应,形成氮化物和碳化物的复合层。
这种复合层的硬度和耐磨性优于材料的基体,因此能够显著提高材料的性能。
在氮碳共渗工艺中,温度和渗透时间是关键因素。
通常情况下,温度会控制在800℃到1050℃之间,而渗透时间则根据材料的要求来确定。
较长的渗透时间可以产生更深的渗层,但也会增加处理时间和成本。
因此,在实际应用中需要根据具体情况进行合理的选择。
氮碳共渗工艺的优点之一是能够提高材料的硬度和耐磨性。
由于渗层的硬度高于基体材料,可以有效地延长材料的使用寿命。
此外,渗层还能够提高材料的抗腐蚀性能,增强其耐候性和耐高温性能。
另一个优点是氮碳共渗工艺的适用范围广。
无论是钢材、铁材还是铝材等,都可以通过这种工艺进行表面处理。
而且,氮碳共渗工艺还可以与其他表面处理技术相结合,如氮化、碳化等,进一步提高材料的性能。
然而,氮碳共渗工艺也存在一些限制。
首先,该工艺只适用于可以耐受高温的材料。
对于某些低熔点材料,渗透温度可能会导致材料的变形或损坏。
其次,渗透层的厚度受到限制。
由于渗透是一个表面处理过程,渗透层的厚度通常在几微米到几十微米之间。
对于需要更深的渗层的应用来说,可能需要采用其他处理方法。
总的来说,氮碳共渗工艺是一种有效的表面处理技术,能够显著提高材料的硬度和耐磨性。
它在各个领域中得到广泛应用,并且可以与其他表面处理技术相结合,进一步提高材料的性能。
然而,该工艺也有一些限制,需要根据具体情况进行选择和应用。
通过不断的研究和发展,相信氮碳共渗工艺将在未来得到更广泛的应用。
很全面,渗碳+渗氮+碳氮共渗表面处理工艺
很全面,渗碳+渗氮+碳氮共渗表面处理工艺渗碳与渗氮一般是指钢的表面化学热处理渗碳必须用低碳钢或低碳合金钢。
可分为固体、液体、气体渗碳三种。
应用较广泛的气体渗碳,加热温度900-950摄氏度。
渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。
表面含碳量可达0.85%-1.05%。
渗碳后必须热处理,常用淬火后低温回火。
得到表面高硬度心部高韧性的耐磨抗冲击零件。
渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。
氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。
工件变形小,可防止水、蒸气、碱性溶液的腐蚀。
但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。
主要用来处理重要和复杂的精密零件。
涂层、镀膜、是物理的方法。
“渗”是化学变化,本质不同。
钢的渗碳——就是将低碳钢在富碳的介质中加热到高温(一般为900-950C),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。
随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。
渗碳钢的化学成分特点(1)渗碳钢的含碳量一般都在0.15%-0.25%范围内,对于重载的渗碳体,可以提高到0.25%-0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。
但含碳量不能太低,,否则就不能保证一定的强度。
(2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。
在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。
常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类(1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56-62HRC。
但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。
(2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。
渗碳、渗氮、碳氮共渗
渗碳、滲氮、碳氮共渗的说明
1.渗碳:渗碳后的工件经淬火和低温回火,使表面具有高硬度河耐磨性,而心部仍保持良好的塑性河韧性,从而满足工件外硬内韧的使用要求。
2.渗氮:零件渗氮后表面形成一层氮化物,不需要淬火就可以具有高的硬度、耐磨性、抗疲劳性河一定的腐蚀性,而且变形也很小,可以直接使用。
20Cr和40Cr渗碳淬火洛氏硬度HR C58-62.
渗氮用钢常常要求含有:Al、Cr、Mo等合金元素的钢,如果没有含上述元素(或含很少),因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。
45钢的化学成分:
C=0.42 -0.50%;Si=0.17-0.37%;Mn=0.50-0.80%;Cr≤0.2%;Ni≤0.30%;Cu≤0.25%
故45#钢一般不能氮化。
适合氮化的钢有:38CrMoAlA,40Cr、42CrMo、50CrV等含有Al、Cr、Mo等合金元素的钢。
中高碳钢都可以淬火,锰钢也可以淬火。
3.碳氮共渗:又称氰化。
碳氮共渗是将钢件表面同时渗入碳原子河氮原子,形成碳氮共渗层,以提高工件的硬度、耐磨性河疲劳强度的处理方法。
渗碳、渗氮、碳氮共渗
渗碳、渗氮、碳氮共渗三者有什么不同?反映在材料题上具体有什么不一样的效果
渗碳:渗碳后的工件经淬火和低温回火,使表面具有高硬度和耐磨性,而心部仍保持良好的塑性和韧性,从而满足工件外硬内韧的使用要求。
渗氮:零件渗氮后表面形成一层氮化物,不需要淬火就可以具有高的硬度、耐磨性、抗疲劳性和一定的腐蚀性,而且变形也很小。
碳氮共渗:又称氰化。
碳氮共渗是将钢件表面同时渗入碳原子和氮原子,形成碳氮共渗层,以提高工件的硬度、耐磨性和疲劳强度的处理方法。
渗碳淬火、渗氮与碳氮共渗外观区别
三种热处理工艺处理的工件外观上差别不大,都有氧化色。
通过外观观察即可判定其热处理工艺的可能性不大。
渗氮是为什么。
渗碳是因为低碳钢含碳量不够。
那渗氮是为什么。
渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
常见有液体渗氮、气体渗氮、离子渗氮。
传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。
渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。
这
些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。
另外渗碳的最终目的是使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
很全面,渗碳+渗氮+碳氮共渗表面处理工艺
很全面,渗碳+渗氮+碳氮共渗表面处理工艺很全面,渗碳+渗氮+碳氮共渗表面处理工艺渗碳与渗氮一般是指钢的表面化学热处理渗碳必须用低碳钢或低碳合金钢。
可分为固体、液体、气体渗碳三种。
应用较广泛的气体渗碳,加热温度900-950摄氏度。
渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。
表面含碳量可达0.85%-1.05%。
渗碳后必须热处理,常用淬火后低温回火。
得到表面高硬度心部高韧性的耐磨抗冲击零件。
渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。
氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。
工件变形小,可防止水、蒸气、碱性溶液的腐蚀。
但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。
主要用来处理重要和复杂的精密零件。
涂层、镀膜、是物理的方法。
“渗”是化学变化,本质不同。
钢的渗碳——就是将低碳钢在富碳的介质中加热到高温(一般为900-950C),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。
随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。
渗碳钢的化学成分特点1)渗碳钢的含碳量一般都在0.15%-0.25%范围内,对于重载的渗碳体,可以提高到0.25%-0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。
但含碳量不能太低。
否则就不能保证一定的强度。
2)合金元素在渗碳钢中的感化是进步淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及构造。
在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。
常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处置惩罚后外表硬度可达56-62HRC。
但因为淬透性较低,只适用于心部强度要求不高、受力小、蒙受磨损的小型零件,如轴套、链条等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
很全面,渗碳+渗氮+碳氮共渗表面处理工艺
渗碳与渗氮一般是指钢的表面化学热处理
渗碳必须用低碳钢或低碳合金钢。
可分为固体、液体、气体渗碳三种。
应用较广泛的气体渗碳,加热温度900-950摄氏度。
渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。
表面含碳量可达0.85%-1.05%。
渗碳后必须热处理,常用淬火后低温回火。
得到表面高硬度心部高韧性的耐磨抗冲击零件。
渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。
氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。
工件变形小,可防止水、蒸气、碱性溶液的腐蚀。
但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。
主要用来处理重要和复杂的精密零件。
涂层、镀膜、是物理的方法。
“渗”是化学变化,本质不同。
钢的渗碳——就是将低碳钢在富碳的介质中加热到高温(一般为900-950C),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。
随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。
渗碳钢的化学成分特点
(1)渗碳钢的含碳量一般都在0.15%-0.25%范围内,对于重载的渗碳体,可以提高到0.25%-0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。
但含碳量不能太低,,否则就不能保证一定的强度。
(2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。
在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。
常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类
(1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56-62HRC。
但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。
(2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。
(3)中合金渗碳钢如20Cr2Ni4、18Cr2N4W、15Si3MoWV等,由于具有很高的淬透性和较高的强度及韧性,主要用以制造截面较大、承。