2017年高思杯(六年级)-数学部分-答案
六年级高斯学校竞赛应用题综合二含答案
第17讲应用题综合二内容概述各种具有较强综合性的复杂应用题.包含多种可能情况,需要进行分类讨论的问题;需要进行合理守排对策,以达到最佳效果的问题.典型问题兴趣篇1.有一批砖,每块砖的长和宽都是自然数,且长比宽长12厘米.如图17-1,若把这批砖横着铺,则可铺897厘米长;如图17-2,若竖横相间铺,则可铺657厘米长,请问:如图17-3这样铺,可铺多少厘米长?2.一种商品的定价为整数元,100元最多能买3件,甲、乙两人各带了若干张百元钞票,甲带的钱最多能买7件这种商品,乙带的钱最多能买14件,两人的钱凑在一起就能多买1件,求这件商品的定价.3.小明要写152页字,小强要写150页字.从暑假第一天起,小明一天写3页,天天写;小强第一天写4页,但是隔一天写一次,请问:第多少天写完字后,小强没写的页数是小明没写的页数的2倍?4.现有甲、乙、丙三种食盐水各200克,浓度依次为42%、36%、30%,现在要配制浓度是34%的食盐水420克,至少要取甲种食盐水多少克?5.要生产某种产品100吨,需用A种原料200吨,或B种原料200.5吨,或C种原料195.5吨,或D种原料192吨,或E种原料180吨.现知用A种原料及另外一种(指B、C、D、E 中的一种)原料共19吨生产此种产品10吨.试分析所用另外一种原料是哪一种,这两种原料各用了多少吨?6.某城出租车的计价方式为:起步价是3千米8元,之后每增加2千米(不足2千米按2千米计算)增加3元.现从甲地到乙地乘出租车共支出车费44元;如果从甲地到乙地先步行900米,然后再乘出租车只要41元,那么从甲、乙两地的中点乘出租车到乙地需支付多少钱?7.现有21块巧克力,A、B、C、D、E五个人轮流把这些巧克力吃光了,但不知道他们吃的先后顺序.A说:“我吃了剩下巧克力数量的三分之二.”B说:“我吃了剩下巧克力数量的一半,”说:“我吃了剩下巧克力数量的一半.”D说:“我吃光了剩下的巧克力,”E说:“我们每人吃的数量互不相同.”已知每人吃的数量都是正整数,请问:E吃了多少块巧克力?8.已知A、B、C、D、E、F六人分别看了5、5、6、8、8、10场演出.每场演出票价不变,成人票的票价是儿童票的2倍,且均为整数元.已知这六人买演出票共支出了1026元,求成人票单价.9.甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天生产裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服.现两厂合并后,100天最多可以生产多少套衣服?10.如图17-4,圆形湖泊周长1200米,除了A点和B之外,每隔100米就有一只蜜蜂,一共十只蜜蜂.它们按照顺时针的方向飞行,各个蜜蜂的速度均标在了图上,单位是“米/秒”,小偷从A点出发沿湖顺时针逃到位于B点的家中,只要被沿途的蜜蜂碰到,小偷就会被蜇一下.请问:小偷最少会被几只蜜蜂蜇到?拓展篇1.有8个盒子,各盒内分别装有奶糖9、17、24、28、30、31、33、44块.甲先取走了一盒,其余各盒被乙、丙、丁三人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?2.商店进了一批同样规格的袜子甩卖,为了避免找零,按40%的利润先定价,实际上收取高于“定价×双数”的最小整数元.结果买2双袜子需要5元,3双袜子需要8元,5双袜子需要12元,已知每双袜子的成本和利润都是整数分,求每双袜子的成本.3.甲站有车26辆,乙站有30辆.从上午8点开始,每隔5分钟由甲站向乙站开出一辆车,每隔7.5分钟由乙站向甲站开出一辆车,都经过1小时到达对方车站,问:最早在什么时刻,乙站车辆数是甲站的3倍?总共持续多长时间?4.有4种颜色的卡片每种各3张,每张卡片上写有一个正整数,相同颜色的卡片上写有相同的数,不同颜色的卡片上写有不同的数.把这些卡片发给6个人,每人得到2张不同色的卡片,将上面的数相加,得到了6个和:88、121、129、143、154、187.但是,其中有一个人算错了.请从小到大依次写出四种颜色卡片上所写的数,请写出所有可能.5.生产某种产品100吨,需用A 原料250吨,或B 原料300吨,或C 原料225吨,或D 原料240吨,或E 原料200吨.现知用了A 原料和另外两种原料共15吨生产该产品7吨,每种原料都用了至少1吨,且某种原料占了原料总量的一半,那么另两种原料是什么?分别用了多少吨?6.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者(包含200元)优惠5%.每次买书500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜39.4元.已经知道第一次的书价是第三次书价的85.问:这位顾客第二次买了多少钱的书?7.甲、乙两人同时从A 地出发,以相同的速度向B 地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B 地,乙到达B 地比甲迟了10分钟.已知两人最后一次的休息地点相距70米,求两人的速度.8.货运公司要用若干辆最大载重2.1吨的汽车一次性搬运总重18.6吨的货物.为方便搬运,公司把这18.6吨货物包装成若干箱,每箱重量相同.由于包装规格所限,每箱的重量不能超过320千克,且包装好后,货物只能整箱搬运,不得拆箱.请问:要保证一定能一次搬运所有货物,至少需要多少辆汽车?此时每箱货物重量为多少千克?9.某车间有30名工人,计划要加工A 、B 两种零件,这些工人按技术水平分成甲、乙、丙三类人员,其中甲类人员有6人,乙类有16人,丙类有8人.各类人员每人每天加工两种零件的个数如表17-1所示.如果要求加工A 、B 两种零件各3000个,那么最少要用几天?10.有三个一样大的桶,一个装有浓度为60%的酒精100升,一个装有水100升,还有一个桶是空的.现在要配置浓度为36%的酒精,只有5升和3升的空桶各一个可以作为量具,并且桶上无其他刻度.如果倒溶液的时候最多只允许往每个量具里倒4次,那么最多能配置出浓度为36%的酒精多少升?11.一条环形道路,周长为2千米.甲、乙、丙三人从同一地点同时出发,每人环行2周.现有自行车两辆,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑.已知甲步行的速度都是每小时5千米,乙和丙步行的速度都是每小时4千米,三人骑车的速度都是每小时20千米.请你设计一种走法,使三个人两辆车同时到达终点,环行2周最少要用多少分钟?12.幼儿园分大、中、小三个班,小班人数最少,大班比小班多61人,中班共27人.把25筐苹果分给他们,每筐苹果在50至60之间不等.已知苹果总数的个位数字是7,若每人分得19个,则苹果不够;若大班比中班每人多1个,中班比小班每人多一个,则苹果刚好分完.那么按第二种分法,大班每人分得几个苹果?小班有多少人?超越篇1.如图17-5所示,在直角三角形ABC 中,AC 长3厘米,CB 长4厘米,AB 长5厘米.有一只小虫从C 点出发,沿CB 以l 厘米/秒的速度向B 爬行;同时,另一只小虫从B 点出发,沿BA 以1厘米/秒的速度向A 爬行,请问经过多少秒后,两只小虫所在的位置D 、E 与B 组成的三角形DBE 是等腰三角形?(请写出所有答案)2.七个人围坐在圆桌周围,在每个人面前都有一个牛奶杯.第一个人把自己的牛奶都平均分到其余的杯子中去,接着第二个人照样做一遍,然后第三个人到第七个人也同样做一遍.最后发现每个杯子中的牛奶都和最开始时一样多.如果所有杯子的牛奶共有7升,那么第一个人到第七个人的杯子里开始时分别有牛奶多少升?3.甲、乙两人切蛋糕,两人轮流切,每人切走了五块.已知:①甲切了5次蛋糕,每次切走的蛋糕恰是切蛋糕时蛋糕大小的61、62、63、64和65各1次,但不全对应切蛋糕顺序;②乙切了5次蛋糕,每次切走的蛋糕恰是切蛋糕时蛋糕大小的51、52、53、54和55各1次,也是不全对应切蛋糕顺序;③切的最大的两块都是原来蛋糕的91,另外还有一块大小是原来蛋糕的2251.求切的第八块蛋糕与原来蛋糕的大小之比.4.师徒两人共同组装50台机器,每台机器组装必须经过A 、B 两道工序.对于每台机器,师傅操作A 工序需要15分钟,操作B 工序需要5分钟;徒弟操作A 工序需要45分钟,操作启工序需要20分钟,每台机器每道工序只能由一人完成,不同工序可以由不同人分别完成,但必须A 先B 后.试问:如果两人合作至少要花多少分钟才能完成工作?5.甲、乙两人在如图17-6的跑道上练习跑步,两人从A 点同时出发,甲在A 、E 之间做折返跑(转身时间不计),乙则沿着正方形跑道ABCD 顺时针跑步,已知AB=BE=100米,且两人跑步的速度都在每秒3米到每秒8米之间.如果两人出发2分钟后第一次相遇,之后隔了15秒后两人第二次相遇,那么两人第二次相遇处距离A 多远?6.某电器商场开展促销活动,每次消费超过1500元不足3000元者(含1500元)优惠5%,超过3000元者(含3000元)优惠10%.甲、乙、丙三个人各买了一件电器,如果甲、乙一起结算,比分开结算便宜130元;如果甲、丙一起结算,比分开结算便宜260元;如果三人一起结算,比三人分开结算便宜405元.请问:三人购买的电器价格分别是多少?7.某商场进行酬宾,规定现金消费每满50元返回10元礼券,多出不足50元部分不计(比如消费99元只能返回1张10元礼券),用礼券产生的消费不参与返券.妈妈看中了3件商品,分别是100多元、200多元、300多元,且都是10的倍数,更巧的是,有两件商品的价格之和正好是整百.为了充分利用返券,妈妈打算先买其中的两件,然后兑换成返券,这样买第三件商品的时候,就可以用上返券了,当然,如果返券不够买第三件,自己还得再掏一些钱,她合计了一下,这样安排的话,共有三种可能的消费结果:第一种恰好花640元,礼券也用完了;另外两种情况都要花670元,但最后又返回40元礼券.问:三种商品的价格分别是多少元?8.学校运来125个桃和若干个梨,分别平分给每位老师,最后剩下一些梨和桃不够分,这时又运来了26个水果(桃梨若干),和之前剩下的水果凑在一起,再平分给老师,每个老师多分得3个水果(每位老师的桃数相同,梨数相同).最后又运来40个水果(桃梨若干),但是发现所剩的桃和梨竞不够每位老师同时多拿一个,那么第一次分后剩下了多少个梨?第 17 讲 应用题综合二兴趣篇1、有一批砖,每块砖的长和宽都是自然数,且长比宽长 12 厘米。
2017年4月份学而思杯六年级数学试卷
5
21. 根据以下学习材料,学习梯形四条边满足的关系: 如图,梯形 ABCD,过点 D 作 AB 的平行线 DE,把梯形转化为一个平行四边形和一个 分别以两腰(AB 和 CD) 、上下底之差 BC AD 为三边的三角形 CDE. 我们考察三角形 CDE,根据几何公理之两点之间线段最短得到三角形三边关系应为任 意两边之和大于第三边,所以 CD DE CE , DE CE CD , CE CD DE ,也 就得到了梯形四条边满足的不等式关系.
1 lim =0 n 5
n
(
)
1 1 lim 1 n 2 2n
(
)
(2) lim
n
1 2 3 n 的结果是( n2
).(4 分) C、
1 2
A、 0
B、
1 4
D、1n 项的和为 Sn ,
4
20. 艾迪是一个善于思考的同学,他为了探究随着 n 不断变大(我们可以记作 n ) ,
1 1 1 的结果的变化,计算了下面四个算式: 1 2 2 3 n (n 1) 1 1 1 99 ; = 1 2 2 3 99 100 100 1 1 1 250 ; = 1 2 2 3 250 251 251 1 1 1 2017 ; = 1 2 2 3 2017 2018 2018 1 1 1 100000 ; = 1 2 2 3 100000 100001 100001 1 1 1 艾迪同学总结: 随着 n 越来越大, 的结果越来越趋近于 1, 1 2 2 3 n (n 1)
六年级高斯学校竞赛数学比例解应用题含答案
第2讲比例解应用题内容概述涉及两个或多个量之闻比例的应用题.熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系.典型问题兴趣篇1.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问:圆珠笔的单价是每支多少元?2.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3千米,下坡时每小时走4.5千米.如果阿奇走完全程用了半小时.请问:这段路程一共有多少千米?3.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟,现有1170个零件,甲、乙、丙三人各加工几个零件,才能使得他们同时完成任务?4.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.5.已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14.请问: (1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克? 7.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时.问:小明去时用了多长时间?8.冬冬从家去学校,平时总是7:50到校,有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校,请问:冬冬这天是几点出发的?9.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的87就可完成;如果减少2台机器,就要推迟32小时才能完成.请问: (1)在规定时间内完成需几台机器?(2)由1台机器去完成这工程,需要多少小时?10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?拓展篇1.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元,已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?2.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?3.甲、乙、丙三人合买一台电视机,甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少? (2)这台电视机售价多少钱?4.一把小刀售价3元,如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?5.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?6.某俱乐部男、女会员的人数比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数比是3:1,乙组中男、女会员的人数比是5:3.求丙组中男、女会员的人数比.7.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1: 2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍; ③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?8.如果单独完成某项工作,甲需24天,乙需36天,丙需48天,现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作的天数比为3:5.问:完成这项工作一共用了多少天?9.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同,求猫、狗和兔的速度之比.10.星期天早晨,哥哥和弟弟都要到奶奶家去,弟弟先走5分钟,哥哥出发25分钟后追上了弟弟,如果哥哥每分钟多走5米,出发20分钟后就可以追上弟弟.问:弟弟每分钟走多少米?11.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行多少千米?12.一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的65即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?超越篇1.甲、乙两人分别同时从A 、B 两地开始,修建一条连接A 、B 两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元.而在实际施工的时候,乙每天比原计划多修l 千米,结果乙实际分得了150万元,那么乙队实际施工时,每天修多少千米?2.孙悟空有仙桃、机器猫有甜饼、米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃分别与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出88个泡泡糖与其他两位互换.请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?3.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知: ①第一包糖的粒数是第二包糖的32;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍,当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.4.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投人工作,又干了15天才完成任务.求甲种车完成的工作量与总工作量之比.5.在一个490米长的圆形跑道上,甲、乙两人从相距50米的A 、B 两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一.当乙回到B地时,甲刚好回到A地,此时他们都按现有速度与方向前进.请问:当甲再次追上乙时,甲(从开始出发算起)一共走了多少米?6.将A、B两种细菌分别放在两个容器里.在光线亮时A细菌需12小时分裂完毕,B细菌需15小时分裂完毕;在光线暗时,A细菌的分裂速度要下降40%,B细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?7.某大学本科共有四个年级,男生总人数和女生总人数的比为7:5.又已知:①一年级男生和二年级女生的比是3:2,二年级男生和一年级女生的比也是3:2;②三年级和四年级的人数相等,且三年级男生比四年级女生多100人;③三、四年级男生与女生的比为6:5;④二年级的男生占学生总数的24%.请问:一年级男生和女生的人数分别是多少?8.如图2-1所示,A、B、C、D、E、F是六个齿轮.其中A和B相互咬合,B和C相互咬合,D和E、E和F也都相互咬合;而C和D是同轴的两个齿轮,也就是说C和D转动的圈数始终相同.当A转了7圈时,B恰好转了5圈;当E转了8圈时,F恰好转了9圈;当C转了5圈时,B和E恰好共转了28圈.请问:(1)如果A、E转的总圈数总是和B、F转的总圈数相同,那么当A、F共转了100圈时,D转了多少圈?(注:图片只是示意图,并不代表实际齿数)(2)如果A、E的总齿数和B、F的总齿数相等,D的齿数是C的齿数的2倍,那么当A转了210圈时,D和F分别转了多少圈?第2讲比例解应用题兴趣篇1. 圆珠笔和铅笔的价格比是4︰3,20 支圆珠笔和21 支铅笔共用71.5 元。
六年级高斯学校竞赛计数综合三含答案
第14讲计数综合三内容概述建立递推的思想,将问题的复杂情形与简单情形联系起来;学会观察和发现递推关系;利用树形固、列表等方法处理某些递推关系,另外,综合运用各种方法处理与数字相关的复杂计数问题.典型问题兴趣篇1.一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶.走完这10级台阶,一共可以有多少种不同的走法?2.小悦买了10块巧克力,她每天最少吃一块,最多吃3块,直到吃完,共有多少种吃法?3.用l×2的小方格覆盖2×7的长方形,共有多少种不同的覆盖方法?4.如果在一个平面上画出4条直线,最多可以把平面分成几个部分?如果画20条直线,最多可以分成几个部分?5.甲、乙、丙三名同学练习传球,每人都可以把球传给另外两个人中的任意一个.先由甲发球,经过6次传球后球仍然回到了甲的手中.请问:整个传球过程共有多少种不同的可能?6.一个三位数,有相邻两个数字的和为16,那么这样的三位数共有多少个?7.由1、3、4组成的各位数字之和为9的多位数共有多少个?8.一个各位数字互不相等的五位数不含数字0,且数字和为18,这样的五位数共有多少个?9.一个十位数只含有数字l或2,且不含两个连续的数字1,一共有多少个这样的十位数?10.一个六位数由1、2、3、4、5组成,而且任意相邻两个数位的数字之差都是l,这样的六位数有多少个?拓展篇1.老师给冬冬布置了12篇作文,规定他每天至少写l篇,如果冬冬每天最多能写3篇,那么共有多少种写完作文的方法?2.用10个1×3的长方形纸片覆盖一个10×3的方格表,共有多少种覆盖方法?3.现有14块糖,如果阿奇每天吃奇数块糖,直到吃完,那么阿奇共有多少种吃法?4.如果在一个平面上画出8条直线,最多可以把平面分成几个部分?如果画8个圆,最多可以把平面分成几个部分?5.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中。
第二届高思杯 六年级综合素质测评_数学试卷解析
二、填空题
6. 【答案】144.
【简答】 8,12,18 72 , 8,12,18 2 ,乘积是 72 2 144 . 【评析】主要考察多个数的最大公约数与最小公倍数的计算.
简答天天欢欢乐乐三人总分是97分所以欢欢乐乐凯凯欣欣的总分是291279111评析这是一个与平均数有关的应用题处理时注意理清平均数与总数之间的联系可能有些同学对于四年级时候学的平均数问题已经有些忘了希望大家在以后的学习过程中一定要注意对之前所学知识的复习
第二届高思杯 六年级综合素质测评
思维部分 第一试
9. 【答案】10.
【简答】由平行的性质及等高三角形的性质,有
CD : DB AE : BE 6 : 9 2 : 3 ,所以 S ABD : S ACD BD : CD 3 : 2 ,
A E
6
D C
9
B
S ACD 6 9
2 10 . 3
【评析】综合考察平行线的性质及三角形中的比例关系,需要同学对两方面都有一定的认识.
5. 【答案】B.
【简答】取 1 元 4 张,5 元 1 张,10 元 1 张,20 元 2 张,50 元 1 张即可表示出 1 到 100 元的所 有整数元钱数. 【评析】这是一个构造的问题,只要思考清楚,不难构造出 9 张纸币的情形,但要证明 9 张纸
币就是最少的就不是那么容易了,同学们可以自己尝试着论证一下!
9. 【答案】22.28.
六年级高斯学校竞赛计数综合三含答案
第14讲计数综合三内容概述建立递推的思想,将问题的复杂情形与简单情形联系起来;学会观察和发现递推关系;利用树形固、列表等方法处理某些递推关系,另外,综合运用各种方法处理与数字相关的复杂计数问题.典型问题兴趣篇1.一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶.走完这10级台阶,一共可以有多少种不同的走法?2.小悦买了10块巧克力,她每天最少吃一块,最多吃3块,直到吃完,共有多少种吃法?3.用l×2的小方格覆盖2×7的长方形,共有多少种不同的覆盖方法?4.如果在一个平面上画出4条直线,最多可以把平面分成几个部分?如果画20条直线,最多可以分成几个部分?5.甲、乙、丙三名同学练习传球,每人都可以把球传给另外两个人中的任意一个.先由甲发球,经过6次传球后球仍然回到了甲的手中.请问:整个传球过程共有多少种不同的可能?6.一个三位数,有相邻两个数字的和为16,那么这样的三位数共有多少个?7.由1、3、4组成的各位数字之和为9的多位数共有多少个?8.一个各位数字互不相等的五位数不含数字0,且数字和为18,这样的五位数共有多少个?9.一个十位数只含有数字l或2,且不含两个连续的数字1,一共有多少个这样的十位数?10.一个六位数由1、2、3、4、5组成,而且任意相邻两个数位的数字之差都是l,这样的六位数有多少个?拓展篇1.老师给冬冬布置了12篇作文,规定他每天至少写l篇,如果冬冬每天最多能写3篇,那么共有多少种写完作文的方法?2.用10个1×3的长方形纸片覆盖一个10×3的方格表,共有多少种覆盖方法?3.现有14块糖,如果阿奇每天吃奇数块糖,直到吃完,那么阿奇共有多少种吃法?4.如果在一个平面上画出8条直线,最多可以把平面分成几个部分?如果画8个圆,最多可以把平面分成几个部分?5.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中。
高斯小学奥数六年级上册含答案第01讲比赛中的推理
A、 B、 C 三队的比赛情况如下:
场数 胜
平
负 进球 失球
A
3
2
1
0
2
0
B
2
1
1
0
4
3
C
2
0
0
2
3
6
D 问: D 赛了几场? D 所参与的各场比赛的比分分别是什么?
「分析」 对于整个表格来说总进球数等于总失球数.总胜场应当等于总负场,平局数为偶数
场.另外表格中的 A 很特别,两胜一平却只进两个球,这说明什么呢?
赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?
4. 足球甲 A 联赛共有 12 个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和 客场各比赛一场,胜一场得 3 分,平一场各得 1 分,负一场得 0 分,在联赛结束后按积分的高 低排出名次.那么,在积分榜上第一名与第二名的积分差距最多可达多少分?
其中 4.97 公斤的主体由纯金铸造.底座由两层孔雀石构成,珍贵无比.
1974 年第十届世界
杯赛, 德国队作为冠军第一次领取了该杯. 国际足联规定新杯为流动奖品, 不论哪个队获得
多少冠军,也不能永久占有此杯.在大力神杯的底座下面有能容纳镌刻
17 个冠军队名字的
铭牌 —— 可以持续使用到 2038 年.
5. A、B、 C、 D 四个足球队进行循环比赛,赛了若干场后, A、 B、 C 三队的比赛情况如下:
场数 胜
平
负 进球 失球
A
3
3
0
0
3
0
B
3
2
0
1
4
1
C
2
高斯小学奥数六年级上册含答案第07讲不定方程
第七讲不定方程前我们学习的方程一般都有唯一解,比如方程 3x 4 19只有一个解x 5,方程组x 2y 5只有一组解 2x 3y 8什么样的方程,解不唯一呢?举个简单的例子,二元一次方程唯一,因为每当y 取定一个数值时,x 就会有相应的取值和它对应,使方程成立,这样一来就会有无穷多组解.通常情况下,当未知数的个数大于方程个数时.,这个方程.(或 方程组).就会有无穷多个解.可是方程的解那么多, 究竟哪个才是正确的呢?应该说, 如果不加任何额外的限制条件, 这 无穷多个解都是正确的. 但在实际情况中,我们通常会限定方程的解必须是自然数,这样一来,往往就只有少数几个解能符合要求,甚至在某些情况下所有的解都不对.x 2y 5的解就不対刖•所以这杆的方程才 囚平处方程啊 x+y=10陕。
一个右程龙么含右两个木 如数啊”这样的力稈论町好 多桦1方程个数小于未知数个数怖方 程如叫不罡方4T.不定方程,顾名思义就是“不确定”的方程,这里的不确定主要体现在方程的解上.之本讲我们要学习的就是这样的一类方程(或方程组):它们所含未知数的个数往往求下列方程的自然数解:(1) x 2y 5 ;(2) 2x 3y 8 ;(4) 4x 5y 20 .本讲我们要学习的就是这样的一类方程(或方程组) :它们所含未知数的个数往往大于方程的个数, 而未知数本身又有一定的取值范围, 这个范围通常都是自然数——这 类方程就是“不定方程” .形如 ax by c ( a 、b 、c 为正整数)的方程是二元一次不定方程的标准形式.解 这样的方程, 最基本的方法就是枚举. 那怎样才能枚举出方程的全部自然数解呢?我们 下面结合例题来进行讲解.例1.甲级铅笔 7角一支,乙级铅笔 3角一支,张明用 5元钱买这两种铅笔, 钱恰好花完. 请 问:张明共买了多少支铅笔?「分析」设张明买了甲级铅笔 x 支,乙级铅笔y 支,可以列出不定方程:7x 3y 50, 其中x 和y 都是自然数.怎么求解呢?x 19 x 22 x 25、、y 4 y 2 y 0的不定方程的自然数解时,我们可以先找出一组解,之后其余的所有解都可由这一组解的次变化 a 得到(注意变化的方向相反, 一个增加, 另一个就得减少, 才能保证 ax by 的 大小不变)练习 1、(1)求 3x 5y 35的所有自然数解;(2)求11x 12y160 的所有自然数解.般地,如果m是ax nby xmax byc 的一组解,那么yn 这naam abbn abam bn c .另外,也是 ax by c 的一组解,理由相同.2x 这条性质有什么用呢?我们以求x 10一组自然数解x 10.应用上面的规律,y 10 然数),所得结果仍然是x 25都是 2x 3y y0增加 2,所得结果也是 b(当n a 时)也是3y 50的自然数解为例, 2x 3y 50的一组解, 所以y 50的自然数解.另外x 每次减少2x 是2x 3y 50的自然数解. 而且这样就已经求出了2x 是:因 b . ,(当 m b 时) a我们容易看出它有13 x 16 x 19 x 228 、 y 、 6 y 、 4 y 2 、 3(只要 x 还是自然数) ,y 每次 x 7x 4 x 1、、也都y12 y 14 y163y 50的自然数解,所以50 的所有自然数解,它们3y x 每次增加3, y 每次减少2 (只要y 还是自x x 16 y6 ax by c ( a 、b 、c 为正整数)7 x 10 x 13 、、 12 y 10 y 8 x 值每次变化 b , y 值每例2.采购员去超市买鸡蛋.每个大盒里有23 个鸡蛋,每个小盒里有16 个鸡蛋.采购员要恰好买500 个鸡蛋,他一共要买多少盒?「分析」采购员要买多少个大盒,多少个小盒?大盒个数与小盒个数之间有什么联系?练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7 个人吃,一个小蛋糕恰好够4 个人吃,现在有100 个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10 元,每个小蛋糕7 元,那么至少要花多少钱?前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.例3.甲、乙两个小队去植树.甲小队有一人植树12 棵,其余每人植树13 棵;乙小队有一人植树8 棵,其余每人植树10 棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?「分析」不妨设甲小队有X人,乙小队有y人•由“两小队植树棵数相等”,你能列出一个关于x与y的不定方程吗?所列出来的不定方程又该如何求解?练习3、天气炎热,高思学校购置了大、小空调若干.每台大空调每天耗电38 度,每台小空调每天耗电13 度.已知所有大空调日耗电量之和恰好比所有小空调日耗电量之和少 1 度.请问:单位里最少购进了多少台空调?例4.将一根长为380厘米的合金铝管截成若干根长为36厘米和24 厘米两种型号的短管,加工损耗忽略不计.问:剩余部分最少是多少厘米?「分析」不妨设已经截出了x根长36厘米的管子和y根长24厘米的管子.合金铝管如果刚好能够被用完,方程应该怎么列?列出来的方程有自然数解吗?练习4、酒店里有500 升女儿红,李一白每次路过这里就打走35 升,杜二甫每次路过这里就打走21 升.那么若干天后,酒店剩余的女儿红最少是多少升?二元一次不定方程只要找到一组自然数解,就能利用方程系数有规律地写出所有自然数解•而含有更多未知数的不定方程又当如何求解呢?例5.我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱•要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?「分析」题中有几个未知量?由这些未知量你能列出几个方程?:;《张丘建算经》■- 张丘建,北魏清河(今山东邢台市清河县)人,中国古代数学家,著有《张丘建算.经》.该书的体例为问答式,条理精密、文辞古雅,是中国古代数学史上少有的杰作.;;《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,:各种等差数列问题的解决,某些不定方程问题的求解. 百鸡问题就是其中一个著名的不定方程问题.- 张丘建所处的年代是中国古代的南北朝时期•尽管当时的中国战火连年,朝代更迭::频繁,且一直处于分裂状态,但数学发展的脚步依然没有停下•与《张丘建算经》同时代的算经还有《孙子算经》和《夏侯阳算经》,而与张丘建本人同时代的数学家还有大>名鼎鼎的祖冲之.例6.卡莉娅到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后她共花了360元,且每种糖都买了•请问:卡莉娅买了多少包奶糖?「分析」题目中出现了四种糖果,我们不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y包、z包和w包,再由已知的单价、总价可以列出方程13x 17y 7.8z 10.4w 360 .这是一个四元一次方程,如果按通常的解法枚举出所有解,势必会有太多可能性需要讨论,过于繁琐•而且题目也没要我们求出所有解,只要我们求出奶糖的数量即可.那有没有办法不求其它糖果,只求奶糖的数量呢?练习6、求22x 26y 33z 65w 194的所有自然数解.气象学家Lorenz 提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在德克萨斯州引起 龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴 蝶效应」•就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点 数也不一定是相同的.Lorenz 为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑.平时,他只 需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下 一刻可能的气象数据,因此模拟出气象变化图.这一天,Lorenz 想更进一步了解某段纪录的后续变化, 他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果•当时,电脑处理数据资料的数度不快,在结果出来之 前,足够他喝杯咖啡并和友人闲聊一阵•在一小时后,结果出来了,不过令他目瞪口呆•结 果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两 笔资讯.而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别•所以长期的准确预测天气是不可能的.蝴蝶效应课 内 外 堂作业5x 2 y 4z 601. (1)求5x 7y 31的所有自然数解;(2)求5x 2y 4z 60的所有自然数解.x 2 y z 362. 在一次植树节的活动中,参加活动的男生每个人种11 棵树,女生每个人种7棵树,最后所有人一共种了100棵树,那么参加活动的一共有多少人?3. 一张纸上写有25个1.21 和25个1.3.现在要划去其中的一些数,使留下来的数的总和为20.08,那么应划去多少个 1.3?4. 樱木同学特别喜欢吃包子,每天早上都到学一食堂买包子吃.(1)第一天早上,樱木同学花了6元买了一些冬菜包和豆香包,两种包子他都买了.已知冬菜包每个7 角,豆香包每个 5 角,那么樱木同学一共买了多少个包子?(2)第二天早上,樱木同学去学一食堂的路上遇到了晴子.于是樱木邀请晴子一起去吃包子.到学一食堂后,两人除了吃冬菜包和豆香包以外还点了几串羊肉串.已知羊肉串每串1 .2元,最后一共花了18元,所点包子与羊肉串数量总和是25.那么两人最多吃了多少串羊肉串?5. 甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1 人捐6册,有2人各捐7册,其余都各捐11 册;乙班有 1 人捐6册,3人各捐8册,其余各捐 1 0册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101 册,且每个班捐赠的册数都在400与600之间.各班各有多少人?第七讲不定方程例题:例题1. 答案:14 或10详解:由于方程两边除以 3 的余数相同, 7x 3y x mod3 , 50 2 mod3 ,所以x除以3余2 .又因为7x 50,所以x是不超过7的自然数,只能取2或5.当x 2时,y 50 2 7 3 12 , x y 14;当x 5 时, y 50 5 7 3 5 , x y 10.所以张明共买了14支或10支铅笔.例题2. 答案:26详解:设买了大盒鸡蛋x盒,小盒鸡蛋y盒,则23x 16y 500 .考虑方程两边除以16 的余数,得:7x除以16的余数是4.首先要求7x是4的倍数,所以x是4的倍数,验证x 4、8、12、……发现满足7x除以16的余数是4的最小x值是12,相应的y的值是14,即x 12.由于12 16 且14 23,所以方程没有其它自然数解,采购员一共y 14买了12 14 26 盒鸡蛋.例题3. 答案:76详解:设甲、乙两小队分别有x人和y人.则两队植树棵数分别为13x 1棵和10y 2棵.由分析得:10y 13x 1 .将y 0、1、2、……代入方程验证x是否是自然数,可以求出方程的y值最小的一组自然数解y 4,此时每队的植树棵数均为38棵.x3方程的所有其他的自然数解都可以由进行若干次的“y值增加13且同时x值增加10”得到(也就是方程的其他所有自然数解是y 17, y 30, y 43,……),每次“ yx 13 x 23 x 33值增加13且同时x值增加10”意味着每队植树棵数增加130棵,38棵要变为四百多棵,意味着要增加 3 次,符合要求的自然数解是y 43.所以甲队有33 人,乙队有x 3343 人,两队共有33 43 76 人.例题4. 答案:8详解:设已经截出了x根长36厘米的管子和y根长24厘米的管子,那么被截出的管子一共长36x 24y厘米.由36,24 12,得:36x 24y一定是12的倍数.而380不是12 的倍数,所以36x 24y 380是没有自然数解的!管子不可能刚好被用尽,那么最少会剩下多少厘米呢?由于36x 24y —定是12的倍数,小于 380且能被12整除的最大自然数是372,而36x 24y 372的自然数解是存在的,如X 1,也就是截出1根长36厘米的管子和y 1414根长24厘米的管子,能够使得截出的管子总长度达到最大值372厘米•所以剩余部分最少是380372 8厘米.x y z 100详解:设公鸡、母鸡和小鸡分别买了 x 只、y 只和z 只•依题意,得: 1•要5x 3y - z 100 3求这个方程的自然数解, 我们用“消元”的想法把它转化成二元一次不定方程求自然 数解的问题.我们选择“消去” z :将第二个方程乘以3,然后减去第一个方程, 得:例题6.答案:12详解:不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y 包、z 包和w 包,则13x 17y 7.8z 10.4w 360 .把系数都化成整数,得:65x 85 y 39z 52w 1800 .由于我们只关心奶糖的数量,我们将未知数y 分为一组,其余未知数分为另一组:65x39z 52w85y1800 .也就是 13 5x 3z 4w 85y1800 .令 u 5x 3z 4w ,则13u 85y 1800 .它的自然数解只有U 60,所以阿奇共买了 12包奶糖.y 12x 0x 4x 8x 12有自然数解是: y 25、 y 18、 y 11和 y 4 .所以我们有四种符合要求的买z 75 z 78 z 81 z 84 x y 4z 值分别为75、78、81、84都是自然数,于是原不定方程的所鸡方案:公鸡 0只,母鸡25只,小鸡75只;公鸡4只,母鸡18只,小鸡78只;公例题5.答案:有四种符合要求的买鸡方案:公鸡 母鸡18只,小鸡78只;公鸡8只,母鸡 小鸡84只 0只,母鸡25只,小鸡75只;公鸡4只, 11只,小鸡81只;公鸡12只,母鸡4只,14x 8y 200,即 7x 4y100,它的所有自然数解是x 0 x 4 x 8 、 、y25y 18y1112 .它们对应的鸡8只,母鸡 11只,小鸡81只;公鸡12只,母鸡4只,小鸡84只.练习:1. 答案: ( 1 )有三组解: x 0 ; x 5;x 1010;(2)有一组解:x8y 7 y 4y1 y6简答: ( 1)考虑方程两边除以 3 的余数; ( 2) 考虑方程两边除以11 的余数2.答案:有四种购买方案: 1 2个大蛋糕, 4个小蛋糕; 8个大蛋糕, 11 个小蛋糕; 4个大 蛋糕, 18 个小蛋糕; 0 个大蛋糕, 25 个小蛋糕;第一个方案最省钱,只要花12 10 4 7 148 元 简答:求不定方程 7x 4y 100的自然数解即可.3. 答案: 4 台简答: 38x 13y 1 的最小自然数解为x 1, 最少需要大空调 1 台,小空调 3 台y34. 答案:3简答: 注意 35x 21y 是7的倍数.x7 x 6x 55. 答案:( 1) 有三组解: y 1 、 y3 、 y5; (2) 1; 2; 6z2 x 1x简答: ( 1) 消去 x 可解;( 2)求 x yz 9的正整数解即可.16x12y 1 0z 1006 x 015 ; y 140 z 83的余数;(2)消去未知数y ,转化成二元一次不定方程.2. 答案: 12x4x 4,所以参加活动的共有 4 8 12 人. y83. 答案: 17作业:x x2 1. 答案:( 1 )x 2;( 2) yy3z 简答:( 1 )考虑方程两边除以简答:由 11x 7y 100 ,得:简答:设留下来的数中有x 个 1.21 和y 个 1.3,则 1.21x 1.3y 20.08.由于总和的百分位是8,说明x 8或18.仅当x 8相应的y 是整数,求得y 8,所以应该划去25 8 17 个 1.3.4. 答案:( 1) 10;(2) 7x5简答:( 1)设买了冬菜包x 个,豆香包y 个.由7x 5y 60,得:x 5,所以樱木同y5x24x17x10学一共买了5 5 10个包子;( 2)由7x 5y 12z 180,得:y0、y5、y10 x y z 25135z z zx3或y 15 ,所以羊肉串最多有7 串. z75. 答案:甲51 ;乙53;丙49 简答:设甲、乙、丙三个班分别有x 人、y 人、z 人,则由已知可得:20 11(x 3) 30 10(y 4) 28 11x 31 10y,即,所以可知x 是除以10 余 1 的数,y30 10(y 4) 50 9(z 8) 101 10y 89 9z是除以9余8的数.又因为每班捐书册数在400与600之间,所以x只能取51,此时才同时满足y是除以9余8的数,即为53,则z为49.x 1 x 4 x、、y 16 y 14 y 这就告诉我们,在求形如。
高斯小学奥数六年级上册含答案第12讲 复杂行程问题
第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。
第三届 高思杯 六年级综合素质测评 数学试卷
17. 有三个正整数 a、b、c.其中 a 和 c 的最大公约数是 5,b 和 c 的最小公倍数是 20.那么 c 的所有 可能取值的和是_______.
18. 李、杨、汪、池四人参加数学竞赛后,对考试结果进行预测: 李:“我考得最差.” 杨:“我不会是最差的.” 汪:“我肯定考第一.” 池:“我没有汪考得好.但也不是最差.”
28. 如图,有 A、B、C、D 四点,A、B 相距 3 千米,B、D 相距 4 千米.甲、乙两人分别从 A、B 出发 去 D 处,甲走 AC 段的速度和乙走 CD 段的速度一样,乙走 BC 段的速度和甲走 CD 段的速度一样, 某天,甲早晨 6 点从 A 出发,乙上午 9 点从 B 地出发,他们当天下午 1 点同时到达 D 处.那么 B 和 C 相距_______千米.(甲在 AC、CD 两段上的速度不同)
研究所
杨树镇
柳树镇
C B
13. 把一个面积为 4 平方厘米的正方形纸片剪成一个最大的圆形纸片,那么这个圆的面积是_______平 方厘米.(π 取 3.14)
14. 8 名选手参加象棋比赛,比赛为单循环赛制,即每两名选手之间恰好比赛一场.那么一共要进行 ______场比赛.
15. 已知两个不同的正整数 a、b 满足: a b 和 a b 都是完全平方数,那么 a 的最小值是_______.
大于
1 5
,小于
4 5
的分数只有
2 5
和
3 5
.
()
2. 正方形、长方形、梯形和菱形都是特殊的平行四边形.
()
3. 小高的速度是萱萱的 2 倍,所以小高走过的路程也是萱萱的 2 倍.
六年级高斯学校竞赛不定方程含答案
第11讲不定方程内容概述学会求二元一次不定方程与多元一次不定方程组的整数解,通常利用整除性、大小估计等方法进行分析;注意对多个未知数进行恰当的消元,化简方程.典型问题兴趣篇1.有两种不同规格的油桶若干个,大油桶能装8千克油,小油桶能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?2.有150个乒乓球分装在大、小两种盒子里,大盒每盒装12个,小盒每盒装7个.问:需要大、小盒子各多少个才能恰好把这些球装完?3.小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫2声,波斯猫叫1声;若是晚上见面,小花狗叫2声,波斯猫叫3声,细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?4.庙里有若干个大和尚和若干个小和尚共七百多人,已知7个大和尚每天共吃41个馒头,19个小和尚每天共吃60个馒头,平均每个和尚每天恰好吃4个馒头.请问:庙里共有多少个和尚?5.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有31的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.请问:其中有多少名男职工? 6.新学期开始了,几个老师带着一些学生去搬全班的100本教科书.已知老师和学生共14人,每个老师能搬12本,每个男生能搬8本,每个女生能搬5本,恰好一次搬完,问:搬书的老师、男生、女生各有多少人?7.新发行的一套珍贵的纪念邮票共三种不同的面值:20分、40分和50分,其中面值20分的邮票售价5元,面值40分的邮票售价8元,面值50分的邮票售价9元.小明花了156元买回了总面值为8.3元的邮票,那么三种面值的邮票分别买了多少张?8.小萌在邮局寄了三种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分,那么小萌寄的这三种信的总和最少是多少封?9.有纸币60张,其中1分、1角、1元和10元各有若干张.请你判断:这些纸币的总面值能否恰好是100元?10.快餐店有三种汉堡,鱼肉汉堡每个7元,鸡肉汉堡每个9元,牛肉汉堡每个14元,小明去快餐店买汉堡.他付款100元,找回8元.请问:小明买了多少个鸡肉汉堡?拓展篇1.甲级铅笔7角一支,乙级铅笔3角一支,张明用5元钱买这两种铅笔,钱恰好花完,请问:张明共买了多少支铅笔? 2.采购员去超市买鸡蛋.每个大盒里有23个鸡蛋,每个小盒里有16个鸡蛋(盒子不能拆开).采购员要恰好买500个鸡蛋,他一共要买多少盒?3.在第二次世界大战中,苏联军队每个步兵师有9000人,每个航空兵师有8000人.在一场战役中,苏军司令部从两个集团军抽调了相同数量的师参与战斗,一共有27.1万人.如果这两个集团军都是由步兵师和航空兵师组成,那么苏军参与战斗的有多少个步兵师,多少个航空兵师?4.甲、乙两个小队的同学去植树.甲小队有一人植树12棵,其余每人都植树13棵;乙小队有一人植树8棵,其余每人都植树10棵,已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?5.将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管,加工损耗忽略不计,问:剩余部分的管子最少是多少厘米?6.某次数学比赛,用两种不同的方式判分.一种是答对1题给5分,不答给2分,答错不给分;另一种是先给40分,答对1题给3分,不答不给分,答错扣1分,某考生两种判分方法均得71分,请问:这次比赛共考了多少道题?7、我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱.要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?8.小李去文具店买圆珠笔、铅笔和钢笔,每种笔都只能整盒买,不能单买.钢笔4支一盒,每盒5元;圆珠笔6支一盒,每盒6元;铅笔10支一盒,每盒7元.小李总共花了97元,买了90支笔.请问:三种笔分别买了多少盒?9、在新年联欢会上,某班组织了一场飞镖比赛.如图11-1,飞镖的靶子分为三块区域,分别对应17分、11分和4分.每人可以扔若干次飞镖,脱靶不得分,投中靶子就可以得到相应的分数.试问:如果比赛规定恰好投中100分才能获奖,要想获奖至少需要投中几个飞镖?如果规定恰好投中120分才能获奖,要想获奖至少需要投中几个飞镖?10、阿奇到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后他共花了360元,且每种糖都买了.请问:阿奇共买了多少包奶糖?11、小悦、冬冬去超市买水果.小悦买了2千克桔子、3千克苹果和4千克梨,共花了28.5元,冬冬买了3千克桔子、5千克苹果和7千克梨,共花了47.7元.结账的时候碰到老师,老师买了6千克桔子和3千克苹果,那么老师应该花了多少钱?12、红、蓝两种笔的单价都是整数元,并且红笔比蓝笔贵.小明买红笔、蓝笔各一支,共用了23元.小强打算用109元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把109元恰好用完.求红笔的单价.超越篇1、求不定方程35x+64y=1625的所有自然数解.2、一个水果批发市场运进苹果、梨和桃子各若干筐,共1355斤.其中苹果每筐60斤,每斤定价1.5元;梨每筐55斤,每斤定价1.5元;桃子每筐45斤,每斤定价1.8元.批发市场是以定价的70%购人这些水果的,如果全部售完,将获得638.1元的利润,请问:批发市场运进三种水果各多少筐?3、雨轩图书馆内有两人桌、三人桌和四人桌共五十多张,其中两人桌的数量为四人桌数量的2倍.这天除了某张桌子坐满外,其它两人桌每桌都只坐1人,三人桌每桌都只坐2人,四人桌每桌都只坐3人,且恰好平均每11人占用17个座位.请问:图书馆两人桌、三人桌、四人桌分别有多少张?4、采购员用一张万元支票去购物,买了若干个单价590元的A种商品和若干个单价670元的B种商品,其中B种商品多于A种商品,最后找回了几张100元钞票和不到10张10元钞票.如果把A、B两种商品的数量调换,找回的100元和10元的钞票张数正好也调换,那么这两种商品分别买了多少个?5、有甲、乙、丙、丁四种货物,若购买甲1件、乙5件、丙1件、丁3件共需195元;若购买甲2件、乙l件、丙4件、丁2件共需183元;若购买甲2件、乙6件、丙6件、丁5件共需375元.现在购买甲、乙、丙、丁各一件共需多少元?6、国庆节,公司发给唐师傅一张1000元的礼券,但只允许购买A、B、C、D、E五种商品,如果唐师傅最多只能带走20千克商品,且一定要购买D商品,共有多少种不同的买法?7、现有一架天平和很多个13克和17克的砝码,用这些砝码,不能称出的最大整数克重量是多少?(砝码只能放在天平的一边)8、现有1.7升和4升的两个空桶和一个大桶里的100升汽油,用这两个空桶要倒出l升汽油,至少需要倒多少次?第11 讲不定方程兴趣篇1、有两种不同规格的油桶若干个,大油桶能装8千克油,小油桶能装5千克油,44 千克油恰好装满这些油桶。
高斯小学奥数六年级上册含答案第22讲分数、百分数应用题综合提高
⾼斯⼩学奥数六年级上册含答案第22讲分数、百分数应⽤题综合提⾼第⼆⼗⼆分数、百分数应⽤题综合提⾼、基础知识回顾:1. ⽐:(1 )⽐的概念:两个数相除叫做两个数的⽐?例如,5+6可记作5:6. “:”是⽐号,⽐号前⾯的数叫做⽐的前项,⽐号后⾯的数叫做⽐的后项,前项除以后项所得的商叫做⽐值.⽐的后项不能为0.(2)⽐的性质:⽐的前项和后项都乘以或除以⼀个不为零的数,⽐值不变.2. ⽐例基本性质:如果a:b c:d ,那么a d b c .3. 正⽐例关系和反⽐例关系:( 1 )正⽐例:两种相关联的量,⼀种量变化,另⼀种量也随着变化,如果这两种量相对应的两个数的⽐值 (也就是商) ⼀定,这两种量就叫做成正⽐例的量,它们的关系叫做成正⽐例关系,或者简写为“成正⽐” .( 2)反⽐例:两种相关联的量,⼀种量变化,另⼀种量也随着变化,如果这两种量相对应的两个数的乘积⼀定,这两种量就叫做成反⽐例的量,它们的关系叫做成反⽐例关系,或者简写为“成反⽐” .注意,正⽐例和反⽐例是两种“量”之间的关系.⽐如长度、⾯积、时间、价格、重量……这些都是⽣活中实际存在的“量”.⽽以前我们学习的⽐和⽐例则是针对具体的“数” 之间的关系. 两个量之间如果成正⽐例关系或成反⽐例关系,称为这两个量成⽐例 .、分数、百分数应⽤题相关的题⽬类型及解题⽅法:1. ⽐例互化:( 1 )部分占部分,部分占整体之间的转化;( 2)多组⽐化连⽐.2. 通过寻找不变量解题:常⽤不变量有:( 1 )总量(和)不变:给来给去的情况;( 2)差不变:同增、同减的情况;( 3)其中某⼀个量没有变化.3. 正反⽐例的概念和应⽤.4. 复合⽐.5. ⽅程法.6. 倒推法.7. 列表法.例1.甲、⼄两个⼈分别有许多苹果,如果甲买了5个苹果,则此时甲、⼄两⼈的苹果数之⽐是7:8 ;如果甲买了9个苹果,⼄丢了4个苹果,此时甲⼄两⼈的苹果数之⽐是3:2,那么两⼈原来分别有多少个苹果?「分析」本题可以利⽤“和不变”解题.练习1、⼩⾼、⼩思两个⼈分别有许多积分,如果⼩⾼⼜得了3分,则此时两⼈的积分之⽐是2:3 ;如果⼩⾼⼜得了8分,⼩思丢了5分,此时两⼈的积分之⽐是3:4,那么两⼈原来分别有多少积分?例2.甲⼄两个班的同学⼈数相等,且各有⼀些同学参加了课外数学⼩组的活动.其中甲班参加的⼈数是⼄班参加⼈数的 -.⼄班未参加⼈数是甲班未参加⼈数的-.请问:甲5 5班未参加⼈数是⼄班参加⼈数的⼏分之⼏?「分析」因为两班总⼈数相同可以采⽤设数法,设出这个总数后,就可以表⽰出所需的其它数量了.练习2、甲、⼄两⼈有相同数⽬的⽔果,⽔果有梨和苹果两种,甲的梨和⼄的苹果数⽬之⽐为4:3,甲的苹果和⼄的梨数⽬之⽐为6:7,那么甲的苹果数和⼄的苹果数之⽐是多少?例3.有三个最简真分数,其分⼦的⽐为3:2:4,分母的⽐为5:9:15 .将这三个分数相加,再28经过约分后为.那么三个分数的分母相加是多少?45「分析」可以采⽤设未知数的办法解答此题.练习3、有三个真分数(其中第⼀个是最简真分数),其分⼦的⽐为3:4:5,分母的⽐为4:9:18 ?将这三个分数相加,再经过约分后为72 ?那么三个分数的分母相加是多少?例4.某⼯⼚有A, B, C, D , E五个车间,⼈数各不相等?由于⼯作需要,把B车间⼯⼈1 1 1的—调⼊A车间,C车间⼯⼈的-调⼊B车间,D车间⼯⼈的⼀调⼊C车间,E车间2 3 41⼯⼈的-调⼊D车间.现在五个车间都是30⼈.原来每个车间各有多少⼈?6「分析」本题可以采⽤“倒推法”.练习4、五指⼭上有甲,⼄,丙,丁四队妖怪,妖怪数各不相等?为了均衡势⼒,把⼄111队妖怪的1调⼊甲队,丙队的丄调⼊⼄队,丁队的 -调⼊丙队?现在四⽀队伍都是483 5 7⼈?原来每个队伍各有多少妖怪?例5?⼩光、⼩明和⼩亮分⼀些苹果. 他们发现,苹果可以恰好按照4:3:2分配(按照⼩光、⼩明、⼩亮的顺序,下同),也可以恰好按照5:4:n分配(其中n为⾃然数),两种分配⽅法下,⼩光所分得的苹果数相差20个?那么苹果总数的最⼤值是多少?「分析」本题中哪些量是没有发⽣变化的呢?例6.甲、⼄、丙三⼈玩赢卡⽚的游戏,他们⼿中⼀共有156张卡⽚?第⼀轮,甲赢了⼄、1 1丙每⼈⼿中卡⽚的1;第⼆轮,⼄赢了甲、丙每⼈上轮结束时⼿中卡⽚的1,最后⼀轮,5 1 4丙赢了甲、⼄每⼈上轮结束时⼿中卡⽚的1,最后甲、⼄⼿中的卡⽚数之⽐是2:3,那4么结束时丙⼿中有多少张卡⽚?「分析」本题可以采⽤寻找“不变量”作为解题突破⼝.数学泰⽃——阿基⽶德阿基⽶德(约前287年—前212年)是伟⼤的古希腊哲学家、数学家、物理学家、⼒学家,静⼒学和流体静⼒学的奠基⼈. 他出⽣于西西⾥岛的叙拉古,从⼩就善于思考,喜欢辩论. 早年游历过埃及,曾在亚历⼭⼤城学习. 据说他住在亚历⼭⼤⾥亚时期发明了阿基⽶德式螺旋抽⽔机,今天在埃及仍旧使⽤着. 第⼆次布匿战争时期,罗马⼤军围攻叙拉古,最后阿基⽶德不幸死在罗马⼠兵之⼿. 他⼀⽣献⾝科学,忠于祖国,受到⼈们的尊敬和赞扬.阿基⽶德出⽣在古希腊西西⾥岛东南端的叙拉古城. 在当时古希腊的辉煌⽂化已经逐渐衰退,经济、⽂化中⼼逐渐转移到埃及的亚历⼭⼤城;但是另⼀⽅⾯,意⼤利半岛上新兴的罗马帝国,也正不断的扩张势⼒;北⾮也有新的国家迦太基兴起. 阿基⽶德就是⽣长在这种新旧势⼒交替的时代,⽽叙拉古城也就成为许多势⼒的⾓⼒场所.阿基⽶德的⽗亲是天⽂学家和数学家,所以阿基⽶德从⼩受家庭影响,⼗分喜爱数学.⼤概在他九岁时,⽗亲送他到埃及的亚历⼭⼤城念书. 亚历⼭⼤城是当时世界的知识、⽂化中⼼,学者云集,举凡⽂学、数学、天⽂学、医学的研究都很发达,阿基⽶德在这⾥跟随许多著名的数学家学习,包括有名的⼏何学⼤师—欧⼏⾥得,在此奠定了他⽇后从事科学研究的基础.在数学⽅⾯,阿基⽶德确定了抛物线⼸形、螺线、圆形的⾯积以及椭球体、抛物⾯体等各种复杂⼏何体的表⾯积和体积的计算⽅法. 在推演这些公式的过程中,他创⽴了“穷竭法”,即我们今天所说的逐步近似求极限的⽅法,因⽽被公认为微积分计算的⿐祖.他⽤圆内接多边形与外切多边形边数增多、⾯积逐渐接近的⽅法,⽐较精确的求出了圆周率. ⾯对古希腊繁冗的数字表⽰⽅式,阿基⽶德还⾸创了记⼤数的⽅法,突破了当时⽤希腊字母计数不能超过⼀万的局限,并⽤它解决了许多数学难题.浮⼒原理的发现关于浮⼒原理的发现,有这样⼀个故事:相传叙拉古赫农王让⼯匠替他做了⼀顶纯⾦的王冠.但是在做好后,国王疑⼼⼯匠,但这顶⾦冠确与当初交给⾦匠的纯⾦⼀样重.⼯匠到底有没有私吞黄⾦呢?既想检验真假,⼜不能破坏王冠,这个问题不仅难倒了国王,也使诸⼤⾂们⾯⾯相觑.经⼀⼤⾂建议,国王请来阿基⽶德检验.最初,阿基⽶德也是冥思苦想⽽却⽆计可施.⼀天,他在家洗澡,当他坐进澡盆⾥时,看到⽔往外溢,同时感到⾝体被轻轻托起. 他突然悟到可以⽤测定固体在⽔中排⽔量的办法,来确定⾦冠的⽐重. 他兴奋地跳出澡盆,连⾐服都顾不得穿上就跑了出去,⼤声喊着“尤⾥卡!尤⾥卡!”(Eureka,意思是“我知道了” ).他经过了进⼀步的实验以后,便来到了王宫,他把王冠和同等重量的纯⾦放在盛满⽔的两个盆⾥,⽐较两盆溢出来的⽔,发现放王冠的盆⾥溢出来的⽔⽐另⼀盆多. 这就说明王冠的体积⽐相同重量的纯⾦的体积⼤,密度不相同,所以证明了王冠⾥掺进了其他⾦属.这次试验的意义远远⼤过查出⾦匠欺骗国王的事实,阿基⽶德从中发现了浮⼒定律(阿基⽶德原理):物体在液体中所获得的浮⼒,等于它所排出液体的重量.⼀直到现代,⼈们还在利⽤这个原理计算物体⽐重和测定船舶载重量等. 给我⼀个⽀点,我可以撬动地球阿基⽶德对于机械的研究源⾃于他在亚历⼭⼤城求学时期. 有⼀天阿基⽶德在久旱的尼罗河边散步,看到农民提⽔浇地相当费⼒,经过思考之后他发明了⼀种利⽤螺旋作⽤在⽔管⾥旋转⽽把⽔吸上来的⼯具,后世的⼈叫它做“阿基⽶德螺旋提⽔器”,埃及⼀直到⼆千年后的现在,还有⼈使⽤这种器械.这个⼯具成了后来螺旋推进器的先祖.当时的欧洲,在⼯程和⽇常⽣活中,经常使⽤⼀些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基⽶德花了许多时间去研究,发现了“杠杆原理” 和“⼒矩” 的观念,对于经常使⽤⼯具制作机械的阿基⽶德⽽⾔,将理论运⽤到实际的⽣活上是轻⽽易举的.他⾃⼰曾说:“给我⼀个⽀点和⼀根⾜够长的杠杆,我就能撬动整个地球. ”后世的评价美国的E. T. 贝尔在《数学⼤师》上是这样评价阿基⽶德的:任何⼀张开列有史以来三个最伟⼤的数学家的名单之中,必定会包括阿基⽶德,⽽另外两们通常是⽜顿和⾼斯.不过以他们的宏伟业绩和所处的时代背景来⽐较,或拿他们影响当代和后世的深邃久远来⽐较,还应⾸推阿基⽶德.作业1. 甲、⼄、丙、丁四⼈合做⼀批零件,甲做的个数是另外3个⼈所做的总数的⼀半,⼄做1 1的个数是另外3个⼈所做的总数的1,丙做的个数是另外3个⼈所做的总数的1,丁3 5做了390个?那么四个⼈共做了多少个零件?2. 甲、⼄两个⼈分别有许多包⼦,如果甲买了4个包⼦,则此时甲⼄两⼈的包⼦数之⽐是2:3;如果甲买了9个包⼦,⼄吃了5个包⼦,此时甲⼄两⼈的包⼦数之⽐是5:7,那么两⼈原来分别有多少个包⼦?3. 萱萱⼿上有语、数、英三种⾼思积分卡,分值的总和是590,英语积分卡的分值和是数5 3学的5,也是语⽂的3?萱萱⼿头的语⽂⾼思积分卡的分值是多少?8 44. 三班原计划抽20%的⼈参加⼤扫除,临时⼜有两⼈主动参加,使实际参加打扫除的⼈1数是余下⼈数的-,原计划抽出多少⼈⼤扫除?35. 甲⼄两个班的同学⼈数相等,且各有⼀些同学参加了课外数学⼩组的活动. 其中甲班未5 参加的⼈数是⼄班未参加⼈数的2倍.⼄班参加⼈数是甲班参加⼈数的⼀.请问:甲4 班未参加⼈数是⼄班参加⼈数的⼏分之⼏?第⼆⼗⼆分数、百分数应⽤题综合提⾼例7.答案:9、16详解:答案甲原有9个,⼄原有16个.前后两种情况下甲⼄两⼈的苹果总数不变,则可把前后苹果的总份数统⼀为 15份,那么两种情况下甲和⼄的苹果数之⽐分别为 7:8、9:6,由题意可知⼀份对应了 2个苹果,所以甲原有2 7 5 9个苹果,⼄原有16个苹果.例&答案:四分之三详解:设份数,按下⾯转化,可以得出最后甲⼄均为 23分的总⼈数,所以,甲班未参加⼈数是⼄班参加⼈数的四分之三.参未参未甲 2 5 和同8 15 ⼄ 51■*203例9.答案:203所以a 和b 的值分别为4和7.因此三个分数的分母相加是例10. 答案:A , B , C , D , E 五个车间分别有 11、38、33、32、36⼈详解:设A , B , C , D , E 五个车间分别有a 、b 、Godnd30=_e =_d+_e =_c+_d=_b+_c =_b+a ,所以 A , B , c , D , E 五个车间分详解:设三个分数为3a 5b、担(其中a 与b 互质),则三个分数之和为9b 15b49a 45b28 45(5 9 15) 7 203 .c 、d 、e 个⼈,则别有11、38、33、32、36 ⼈.例11 . 答案:1980时45和36 4n 的差最⼩,即两种情况⼩光的苹果数所占总数的⽐例最接近,所以苹果总数的最⼤值是1980.例12 . 答案:66:由上表最左列可知的值只可以取,则结束时丙⼿中有张卡⽚.详解:⼩光第⼀次占总数的36 4n 9(9 n)第⼆次占总数的45 9(9 n)通过枚举可知当练习1、答案:⼩⾼67分,⼩思105分简答:根据“和不变”,统⼀单位1解题即可.练习2、答案2:1简答:甲的梨:⼄的苹果=4:3,甲的苹果:⼄的梨=6:7,设甲共10份的⽔果,则⼄也是10份的⽔果,发现单位1相同,不需进⾏⽐例计算,甲的苹果:⼄的苹果=6:3=2:1 .练习3、答案62简答:设三个分数为3a-、4a- 、5a(其中a与b互质),则三个分数之和为4b9b18b27a 16a 10a53a53所以a和b的值分别为1和2 .因此三个分数的分母相加36b36b72,练习4、答案:甲,⼄,丙,丁四队各有29、57、50、56 个妖怪是(4 9 18) 262 . 简答:同例4,⽤倒推法.作业6. 答案:1560.7. 答案:甲有116个,⼄有180个.简答:由已知条件发现,前后两种情况下包⼦的总量不变,所以可以把前后两个⽐的化为相同份数来分析,即化为 24:36和25:35,由于⼄在两种情况下相差 5个包⼦,所以⼀份对应5个包⼦,因此可求出甲原来有116个,⼄原来有180个.& 答案:200.简答:以英语积分作为前后两个⽐的桥梁,5和5可分别化为15和毎,此时⼀共分为8 4 24 20了 59份,⽽总积分为590,所以⼀份对应10分,因此语⽂积分有 200分.9.答案:&简答:两⼈加⼊后,打扫卫⽣的⼈数占总⼈数的 25%,即与原来相差总数的 5%,所以原来有2 4 8⼈.10.答案:五分之⼆.简答:直接例2的⽅式写出⽐例后,发现甲⼄之和相等,不需统⼀单位 1,直接可以看出甲班未参加⼈数是⼄班参加⼈数的五分之⼆.简答:已知条件即告诉⼤家甲、⼄、丙做的零件个数分别占总个数的完成的个数占总个数的1 1 1 1 1,所以总个数为390 -3 4 6 44 1560 ?〕,则丁6。
第三届 高思杯 六年级综合素质测评 数学试卷
第三届 高思杯 六年级综合素质测评思维部分(总分:150分 时间:90分钟)【学生注意】本试卷共30题,请务必将前28题的答案和后2题的解答填在答题纸...上,只填在原题上不得分!一、判断题(请在答题纸上写上“√”或“×”,本大题共10道小题,每小题2分,共20分)1. 大于,小于的分数只有和. ( )2. 正方形、长方形、梯形和菱形都是特殊的平行四边形. ( )3. 小高的速度是萱萱的2倍,所以小高走过的路程也是萱萱的2倍. ( )4. 把5克糖放入100克水中,得到的糖水浓度是. ( )5. 半径是1的圆的面积不等于3.14. ( )6. 一天,蓝精灵说:“如果今天不下雨,那么我就去森林书店买书”,结果这天下雨了,从而可以断定,蓝精灵一定没有去森林书店买书. ( ) 7. 已知小高的钱比萱萱多,那么萱萱的钱比小高少. ( ) 8. 两个大于0的自然数,如果它们只有一个公约数,那么它们一定互质. ( ) 9. 甲、乙、丙三个工程队单独完成同一项工程所用时间比是1:2:3,那么这三个工程队的效率比是3:2:1. ( )10. 在平面上,有一个角是的等腰三角形一定是等边三角形. ( )二、填空题I (本大题共8道小题,每小题5分,共40分)11. 计算:. 12. 把6~11各一个填入图中的小圆圈内,使每个圆上三个数的和为27,三角形每条边上三个数的和是24.那么._______A B C ++=2387_______71111⨯+÷=60︒15155%3525451513. 把一个面积为4平方厘米的正方形纸片剪成一个最大的圆形纸片,那么这个圆的面积是_______平方厘米.(π取3.14)14. 8名选手参加象棋比赛,比赛为单循环赛制,即每两名选手之间恰好比赛一场.那么一共要进行______场比赛.15. 已知两个不同的正整数a 、b 满足:和都是完全平方数,那么a 的最小值是_______.16. 墨莫卖一个功夫熊猫玩具,如果卖120元,利润率是60%;如果卖100元,墨莫可赚_______元.17. 有三个正整数a 、b 、c .其中a 和c 的最大公约数是5,b 和c 的最小公倍数是20.那么c 的所有可能取值的和是_______.18. 李、杨、汪、池四人参加数学竞赛后,对考试结果进行预测:李:“我考得最差.” 杨:“我不会是最差的.” 汪:“我肯定考第一.”池:“我没有汪考得好.但也不是最差.”成绩公布后,只有一个人猜错.那么四人的实际成绩从高到低的顺序是________________.三、填空题II6分,共42分)19. _______. 20. 甲、乙两水管同时打开,10分钟可以注满一个空水池.先打开甲管,9分钟后打开乙管,再过4分钟也可以注满这个空水池.已知甲管比乙管每分钟多注入2升水.那么这个水池的容积是________升.21. 若干年后,爷爷的年龄比小高年龄的12倍多1岁;再过几年,爷爷的年龄比小高年龄的8倍多4岁.已知今年小高4岁,那么爷爷今年_______岁.(今年爷爷年龄不到100岁)22. 已知右图中两个正六边形的面积分别是20和4,则阴影部分的面积是_______.()()()()()246810Θ+Θ+Θ+Θ+Θ=a b -a b +23. 把自然数中的平方数去掉后得到数列2,3,5,6,7,8,10,11,……,其中第2011项是______.24. 现有A 、B 、C 三个桶,A 桶中有糖水60千克,B 桶中有糖水40千克(两桶糖水浓度不同),C 是空的.先从A 桶中取出若干千克糖水倒入C 桶,再从B 桶中取出同样重量的糖水倒入A 桶,最后把C 桶中的糖水全部倒入B 桶,这时A 、B 两桶糖水浓度相同,那么开始时从A 桶取出的糖水重______千克.25. 用4种颜色给右图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有_______种不同的染法.四、填空题III (本大题共3道小题,每小题7分,共21分)26. 如图,斜边为6的等腰直角三角形ABC 放在半径为5的圆内,现在保持B 、C 和圆接触,让三角形ABC 沿箭头方向在圆内旋转一周,那么三角形ABC 扫过的图形面积是________.(π取3.14)27. 在只由数字1,2,3组成的多位数中,含有数字3且在3的左边不含1的数称为“高思杯数”,比如31,231,22331,33333是“高思杯数”,而222、13233,21223,3213不是“高思杯数”.两位“高思杯数”共4个,分别是:31,32,33,23,那么四位“高思杯数”共_______个.28. 如图,有A 、B 、C 、D 四点,A 、B 相距3千米,B 、D 相距4千米.甲、乙两人分别从A 、B 出发去D 处,甲走AC 段的速度和乙走CD 段的速度一样,乙走BC 段的速度和甲走CD 段的速度一样,某天,甲早晨6点从A 出发,乙上午9点从B 地出发,他们当天下午1点同时到达D 处.那么B 和C 相距_______千米.(甲在AC 、CD 两段上的速度不同)C五、解答题(本大题共2道小题,29小题12分,30小题15分,共27分)29. 从1至9中选出8个数字,填入图中的竖式,使等式成立,其中不同字母代表不同数字,那么:(1)1至9中没有被选出来的那个数字是多少?(3分) (2)在这个加法竖式中,共进位多少次?(3分) (3)的最大值是多少?(3分) (4)题目中的加法竖式共有多少种不同的填法?(3分)30. 杨教授住在杨树镇,柳教授住在柳树镇.两人都在一个研究所上班,三个地点的位置如图所示.杨树镇距研究所20千米,距柳树镇10千米.每天早上研究所派班车去接两位教授.每天班车准时从研究所出发,先到杨树镇,再到柳树镇,然后在9点整返回研究所.有一天班车晚了15分钟出发,于是直接去柳树镇接柳教授,然后立刻返回,恰好仍在9点整返回研究所.如果杨教授比平时坐上班车的时间早20分出发,骑车去柳树镇,正好在柳树镇与班车会合.已知班车的速度是杨教授骑车速度的3倍.请问:(1)如果杨教授骑车,和班车同时从杨树镇出发,沿最短的路线去柳树镇,那么班车到达多少分钟后杨教授才到达?(3分)(2)班车和杨教授骑车的速度分别是多少?(3分) (3)柳树镇与研究所的距离是多少?(4分)(4)平时班车的出发时间是几点几分?平时杨教授离开家的时间是几点几分?(5分)AE BF CG DH +++ 研究所杨树镇柳树镇A B C D + E F G H 1 6 5 07。
高斯竞赛数学六年级
第1讲 分数数列计算内容概述建立抵消的思想,特别是灵话运用裂项的方法求解一些分数数列的计算问题.典型问题兴趣篇1.计算:⋅⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯1091981871761651541431321211 2.计算:⋅⨯++⨯+⨯+⨯99972752532312 3.计算:⋅⨯++⨯+⨯+⨯100981861641421 4.计算:.90172156142130120112161+++++++ 5.计算:⋅+++++97001130170128141 6.计算:⋅⨯++⨯+-⨯++⨯+-⨯+1091099898878776766565 7.计算:⋅+-+-+-+-901972175615421330112091276523 8.计算:⋅⨯⨯++⨯⨯+⨯⨯+⨯⨯10099982543243223212 9.计算:⋅++++++240239210209201912116521 10.计算:⋅+⨯-⨯⨯+⨯-⨯+⨯-)911()911()311()311()211()211(拓展篇1.计算:⋅⨯++⨯+⨯+⨯+⨯+⨯200820071651541431321211 2.计算:⋅⨯++⨯+⨯+⨯+⨯101983141131183853523 3.计算:⋅⨯-⨯+⨯-⨯+⨯-⨯1311241192097167512538314 4.计算:;90117721155611342111301920171215613211)1(++++++++ ⋅⨯-⨯-⨯+⨯++⨯+⨯-⨯-⨯+⨯+⨯-⨯-⨯+⨯42408241398040387839377611920108189716861475126410538426314)2( 5.计算:)10921()921(10)4321()321(4)321()21(3)21(121++++⨯++++++++⨯+++++⨯+++⨯+ 6.计算:⋅++++++83975939231137.计算:⋅⨯⨯++⋅⨯⨯+⨯⨯+⨯⨯10097999810798746541328.计算:⋅+++++++++++++++206421864216421421219.计算:⋅⨯⨯++⨯⨯+⨯⨯+⨯⨯504948154314321321110.计算:⋅⨯⨯++⨯⨯+⨯⨯+⨯⨯109811543643253214 11.计算:⋅-⨯⨯⋅-⨯-)9911()311()211(222 12.计算:⋅⨯+⨯⨯⨯+⨯⨯+⨯⨯+)2009200711()5311()4211()3111(超越篇1.计算:⋅⨯++⨯+++⨯++⨯+201920191918191832322121222222222.计算:.1201201181181414121222222222⋅-++-+++-++-+3.已知算式)19189()17168()542()321(+⨯+⨯⨯+⨯+ 的结果是一个整数,那么它的末两位数字是多少?4.计算:⋅⨯⨯++⨯⨯+⨯⨯+⨯⨯201918375437432532135.计算:!10099!43!32!21++++ (最后结果可以用阶乘表示)6.已知22226411019181,81++++==B A ,请比较A 和B 的大小。
六年级高斯学校竞赛数学方程解应用题含答案
第3讲方程解应用题内容概述掌握一元一次方程的解法,多元一次方程组的解法,以及具有对称性的多元一次方程的特殊解法.能从已知条件中寻找出等量关系,列出方程或方程组并求解。
典型问题兴趣篇1. 解下列方程:;52221)1(+-=--x x x ;65)521(31)2(x x =-⨯⋅=+-312311)3(x x2.在一次选举中,有甲、乙、丙三位候选人,乙的选票比甲的2倍还多5张,丙的选票比甲的一半还少4张.如果甲、乙、丙三人的选票一共有36张,请问:甲得了多少张选票?.3.有若干名学生上体育课,体育老师规定每两人合用一个排球,每三人合用一个足球,每四人合用一个篮球,已知排球、足球、篮球共用了26个.问:有多少名学生上体育课?4.唐老师给幼儿园大班的小朋友每人发17张画片,小班每人发13张画片.已知大班人数是小班的⋅53,小班比大班总共多发126张画片,求小班的人数.5.明知小学六年级一班男生的人数占全班总人数的70%,六年级二班的男生比一班男生少2名,而女生人数为一班女生的2倍.如果两班合在一起,则男生所占的比例为60%.请问:二班有多少名女生?6.甲、乙两车同时从A 、B 两地出发,相向而行,在A 、B 之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A 、B 两地相距多少千米?7.解下面的方程组:⎩⎨⎧=+=+;80717,2224)1(y x y x ⎩⎨⎧=-=+.24812,14474)2(x y y x8.冬冬与小悦一起在水果店买水果,冬冬买了3千克苹果和2千克梨,共花了18.8元.小悦买了2千克苹果和3千克梨,共花了18.2元,你能算出1千克苹果多少元,1千克梨多少元吗?9.2个蟹将和4个虾兵能打扫龙宫的103,8个蟹将和10个虾兵就能把龙官全部打扫完.如果只让蟹将打扫龙宫,需要多少个?只让虾兵打扫龙宫,需要多少个?10.如图3-1,小玲有两种不同形状的纸板,一种是正方形的,一种是长方形的.正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.那么在小玲所做纸盒中,竖式纸盒的总数与横式纸盒的总数之比是多少?拓展篇1.解下列方程:;11276143)1(+=-+++x x x x ;3227]2)141(32[23)2(x x =-++⨯⨯ ;251453)3(=++x x .5)2()7)(1)(4(2++=++x x x2.一个分数,分子与分母的和是122.如果分子、分母都减去19,得到的分数约分后是51,那么原来的分数是多少?3. 130克含盐5%的盐水,与若干含盐9%的盐水混合,配成含盐6.4%的盐水.请问:最后配成的盐水有多少克?4.如图3-2中的短除式所示,一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到的商是以.图3-3中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的商是a 的2倍,求这个自然数.5.给六年级五班的同学分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果,问:该班一共有多少名学生?6.解下面的方程组:⎩⎨⎧=-=+;17313,49911)1(y x y x ⎩⎨⎧=-=-;59813,12)2(y x x y ⎩⎨⎧=+=+.2842816,3072918)3(y x y x7.商店里有大盒、中盒、小盒共27盒筷子,其中大盒中装有18双筷子,中盒中装有12双筷子,小盒中装有8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍,问:三种包装的筷子各有多少盒?8.甲、乙两人从相距36千米的两地相向而行.如果甲比乙先出发2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先出发2小时,那么他们在甲出发3小时后相遇.问:甲、乙两人每小时各走多少千米? 9.一台天平,右盘上有若干重量相等的白球,左盘上有若干重量相等的黑球,这时两边平衡.如果从右盘中取走一个白球置于左盘上,再把左盘的两个黑球置于右盘上,同时给左盘加20克砝码,这时两边也平衡.如果从右盘移两个白球到左盘上,从左盘移一个黑球到右盘上,那么需要再给右盘加50克砝码,两边才能平衡.问:白球、黑球每个各重多少克?10.奥运指定商品零售店里的福娃有大号、中号和小号三种.小悦买了一个大号的、三个中号的和两个小号的,共花了360元;冬冬买了两个大号的、一个中号的和一个小号的,共花了270元;阿奇买了一个大号的、两个中号的和两个小号的,共花了300元.请问:商店里的大号、中号和小号福娃的单价各是多少?11.如图3-4,墙边放着一块木板,一只猫淘气,爬了上去,使得木板向下滑动了 一段距离,现在已知图中的三段长度(单位:厘米),你能求出这块木板的长度吗?12.甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29, 23,21和17.这四人中最大年龄与最小年龄的差是多少?超越篇1.丙看到甲、乙两人正在解下面这个方程组:⎩⎨⎧=+=+.704 □ □,2536 □ □y x y x其中未知数前面的系数被甲和乙遮住了.甲计算得出方程的解是x=7,y=3;而乙误把“2536”看作“1536”,得到的解是x=4,y=4.试问:方程组四个被遮住的系数中最小的一个是多少?2.幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣;乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班总共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共分了多少个枣?3.下表显示了一次钓鱼比赛的结果:nO1 2 3 … 13 14 15 钓了n 条鱼的人数 95723…521已知:①冠军钓到15条鱼;②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?4.A、B两地相距2400米,甲、乙两人分别从A、B两地同时出发,相向而行,两人在途中某处相遇后,甲又继续行进18分钟到达B地,乙又继续行进50分钟到达A地,请问:甲比乙每分钟多走多少米?5.甲、乙两车运一堆货物,甲车单独运比乙车单独运要少运5次;如果一起运,各运6次就刚好运完.问:甲车单独运要几次运完?6.一个从小到大排列的等差数列,如果把这个数列的首项除以2,末项乘以2,这些数的平均数就增加了7;如果把首项乘以2,末项除以2,平均数就少了2.已知这个等差数列中所有数的和等于245,求这个数列的末项.7.一个水池,顶部有一个进水管,底部有一个出水管.如果只打开进水管,50分钟可以把水池灌满;如果只打开出水管,60分钟可以把一池水放完,现在水池在中间的某个位置出现了一条与池底平行的裂缝,如果只打开进水管,需要80分钟才能放满一池水,而只打开出水管只需46.5分钟即可放完一池水,请问:裂缝出现在离池底几分之几高度的地方?8.“太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向潜航,“北冰洋号”在前,“太平洋号”在后.在某个时刻,“太平洋号”发出声波,间隔2秒后,再次发出声波,当声波传到“北冰洋号”时,“北冰洋号”会反射声波.已知“太平洋号”的速度是每小时54千米,第一次和第二次探测到“北冰洋号”反射的回波的间隔时间是2.01秒,声波传播的速度是每秒1185米.请问:“北冰洋号”的速度是每小时多少千米?⎪ 第3讲方程解应用题兴趣篇1、解下列方程:(1)x-x -1=2-x +2;2 51 2 5(2)⨯(1- x) =x ;3 5 6(3)x -11=1. x +23 3[分析](1)10x -5(x -1)=20 -2(x+2)10x -5x +5 =20 -2x -47x =11 ;11x =7(2)2⎛1-2x ⎫=5x⎝ 5 ⎭2 -4x =5x 529x =2 ;510x =29(3)3(x-11)=x +233x -33 =x +232x =56x =282、在一次选举中,有甲、乙丙三位候选人,乙的选票比甲的2 倍还多5张,丙的选票比甲的一半还少4 张.如果甲、乙、丙三人的选票一共有36 张.请问:甲得了多少张选票?[分析]设甲有选票x票,那么乙有2x+ 5 票,丙有1 x - 4 票.依题意有2x + 2x +5+1x - 4 = 36 2解得,x=10答:甲得了5票.3、有若干名学生上体育课,体育老师规定每两人合用一个排球,每三人合用一个足球,每四人合用一个篮球,已知排球、足球、篮球共用了26 个.问:有多少名学生上体育课?[分析]设一共有x名学生上课.那么有1 1 x +x +3 4 x = 26解得,x= 26答:一共有26 名学生上体育课.4、唐老师给幼儿园大班的小朋友每人发17 张画片,小班每人发13 张画片.已知大班人数⎨ ⎨是小班的 3,小班比大班总共多发 126 张画片,求小班的人数.5[分析]设小班有 x 人,那么大班有 3x 人.依题意有517 ⨯ 3x +13 x =1265 解得, x = 45 答:小班有 45 人.5、明知小学六年级一班男生的人数占全班总人数的 70%,六年级二班的男生比一班男生少 2 名,而女生人数为一班女生的 2 倍.如果两班合在一起,则男生所占的比例为 60%.请 问:二班有多少名女生? [分析]设一班男生有 7 x 人,那么一班女生有 3x 人,二班男生 7 x - 2 人,二班女生3 x ⨯ 2 = 6 x人.依题意有: 7 x + 7 x - 2 = 3x + 6x6 4 解得, x = 4 ,那么二班女生有 4 ⨯ 6 = 24 (人) 答:二班有 24 名女生.6、甲、乙两车同时从 A 、B 两地出发,相向而行,在 A 、B 之间不断往返行驶.甲车到达 B 地后,在 B 地停留了 2 个小时,然后返回 A 地;乙车到达 A 地后,马上返回 B 地;两车 在返回的途中又相遇了,相遇的地点距离 B 地 288 千米.已知甲车的速度是每小时 60 千 米,乙车的速度是每小时 40 千米.请问: A 、 B 两地相距多少千米? [分析]设 A 、 B 两地相距 x 千米.那么相遇时甲走了 x + 288 千米,乙走了2 x - 288 千米.根 据题意列方程 x + 288 + 2 = 2x - 28860 40 解得, x = 420 答: A 、 B 两地相距 420 千米7、解下面的方程组:(1) ⎧4x + 2y = 22, ⎩17x + 7y = 80; (2) ⎧ 4x + 7y = 144, ⎩12x - 8y = 24. [分析](1)x=1,y =(2) x = 15 , y = 128、冬冬与小悦一起在水果店买水果,冬冬买了 3 千克苹果和 2 千克梨,共花了 18.8 元, 小悦买了 2 千克苹果和 3 千克梨,共花了 18.2 元.你能算出 1 千克苹果多少元,1 千克 梨多少元吗? [分析]设 1 千克苹果 x 元,1 千克梨 y 元,由题意 ⎧3 x + 2 y =18.8 ⎨ ⎩ 2 x + 3 y = 18.2 ⎧ x = 4 ⇒ ⎨ ⎩ y = 3.4 答:苹果 4 元,梨 3.4 元. 9、2 个蟹将和 4 个虾兵能打扫龙宫的 3 10,8 个蟹将和 10 个虾兵就能把龙宫全部打扫完.如 果只让蟹将打扫龙宫,需要多少个?只让虾兵打扫龙宫,需要多少个? [分析]设只让蟹将打扫龙宫,需要 x 个;只让虾兵打扫龙宫,需要 y 个.⇒ 2⎧ 2 + 4= 3 ⎪ x y 10 ⎨⎧ x = 12⎨ ⎪ 8 + 10 = 1 ⎪⎩ x y⎩ y = 30 答:只让蟹将打扫龙宫,需要 12 个;只让虾兵打扫龙宫,需要 30 个.10、如图,小玲有两种不同形状的纸板,一种是正方形的,一种是长方形的.正方形纸板的 总数与长方形纸板的总数之比是 1:2.她用这些纸板做成一些竖式和横式的无盖纸盒, 正好将纸板用完.那么在小玲所做纸盒中,竖式纸盒的总数与横式纸盒的总数之比是多 少?[分析]设做了竖式纸盒 x . 方形纸板 x + 2 y 个,长方形纸板 4 x + 3 y 个. x + 2 y =14 x + 3 y 2 解得, x : y = 1 : 2答:竖式纸盒的总数与横式纸盒的总数之比是1: 2 .拓展篇1、解下列方程:(1) x + x + 3 + x - 1 = 7x+ 1 ;4 6 123 ⎡ 2 1 (2) ⨯ ⨯ ( x + 1) + ⎤ - 7 = 2 x ;2 ⎢⎣3 42 3 3x + 5 5 (3) = ;4x + 1 2( x + ( x + 7 ) = ( x + 2)2 + 5.[分析](1 )12x + 3( x + 3) + 2( x - 1) = 7 x + 1212x + 3x + 9 + 2x - 2 = 7 x +12 10x = 5x = 12(2) 1 x +1 + 3 - 7 = 2x4 2 35 x = 1 12 26 x = 5 (3) 2 (3x + 5) = 5 (4 x + 1) 6 x + 10 = 20 x + 5 (4) x 2 + 8x +7 = x 2 + 4x + 4 + 54 x = 2x = 5 ; x = 114 22、一个分数,分子与分母的和是 122.如果分子、分母都减去 19,得到的分数约分后是 1,5那么原来的分数是多少?17 ⎨ 3x - 3y = 17; ⎨3x - 8y = 59; ⎨6x + 28 y = 284. 8[分析]设原分数是x 122 - x,那么 x -19 = 1 ,解得 x = 33 ,原来的分数是 33.122 - x - 19 5 893、130 克含盐 5%的盐水,与若干含盐 9%的盐水混合,配成含盐 6.4 %的盐水.请问:最后配 成的盐水有多少克? [分析]设 9%的盐水有 x 克,依题意 5% ⨯ 130 + 9% x = 6.4% ⨯ (130 + x )解得, x = 70 ,因此最有有盐水 200 克. 答:最后配成的盐水有 200 克.4、如图 1 中的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,再把第二次 所得的商被 8 除后余 7,最后得到的商是a .如图 2 中的短除式表明:这个自然数被 17 除余 4,所得的商被 17 除余 15,最后得到的商是 a 的 2 倍.求这个自然数.8所求的自然数 … … 余1 8 第一次商… … 余1 17 所求的自然数 … … 余48第二次商 a图1… … 余7 17第二次商 … … 余152 a 图2[分析]原数可以表示成 (a 711)= a ⨯ 83 + 7 ⨯ 82 + 1 ⨯ 8 + 1 = 512a + 457 也可表示成 ((2a ) (15) 4) = 2a ⨯172 + 15 ⨯17 + 4 = 578a + 259 那么512a + 457 = 578a + 259 ,解得 a = 3 那么原数为 512 ⨯ 3 + 457 = 19935、给六年级五班的同学分苹果,第一组每人 3 个,第二组每人 4 个,第三组每人 5 个,第 四组每人 6 个.已知第二组和第三组共有 22 人,第一组人数是第二组的 2 倍,第三组和 第四组人数相等,总共分出去 230 个苹果.问:该班一共有多少名学生? [分析]设第二组有 x 名学生,那么,第三组、第四组有 22 - x 名,第一组有 2 x 名. 依题意: 2 x ⨯ 3 + x ⨯ 4 + (22 - x ) ⨯ 5 + (22 - x )⨯ 6 = 230 ,解得 x = 12 那么一共有:12 ⨯ 2 +12 + 2 ⨯ (22 -12) = 56 (名)学生. 答:该班一共有 56 名学生.6、解下面的方程组: (1) ⎧11x + 9 y = 49,⎩1(2) ⎧2y - x = 1, ⎩1(3) ⎧18 x + 29 y = 307,⎩1 [分析](1)x = 2 ,7、商店里有大盒、中盒、小盒共 27 盒筷子,其中大盒中装有 18 双筷子,中盒中装有 12 双筷子,小盒中装有 8 双筷子,一共装有 330 双筷子,其中小盒数是中盒数的 2 倍.问: 三种包装的筷子各有多少盒? [分析]设有 x 个中盒,那么有 2 x 个小盒, 27 - 3x 个大盒. 18 ⨯ (27 - 3x ) + 12 x + 8 ⨯ 2 x = 330 ,解得, x = 6 那么,大盒数 9,中盒数 6,小盒数 12 答:共有大盒 9 个,中盒 6 个,小盒 12 个. 8、甲、乙两人从相距 36 千米的两地相向而行.如果甲比乙先出发 2 小时,那么他们在乙出⇒发 2 .5 小时候相遇;如果乙比甲先出发 2 小时,那么他们在甲出发 3 小时候后相遇.问: 甲、乙两人每小时各走多少千米? [分析]设甲速每小时 x 千米,乙速每小时 y 千米.那么依据题意列方程组: ⎧ 4.5x + 2.5y = 36 ⎧x = 6⎨⎨ ⎩3 x + 5 y = 36 ⎩ y = 3.6答:甲每小时走 6 千米,乙每小时走 3 .6 千米.9、一台天平,右盘上有若干重量相等的白球,左盘上有若干重量相等的黑球,这时两边平 衡.如果从右盘中取走一个白球置于左盘上,再把左盘的两个黑球置于右盘上,同时给 左盘加 20 克砝码,这时两边也平衡.如果从右盘两个白球到左盘上,从左盘移一个黑球 到右盘上,那么需要再给右盘加 50 克砝码,两边才能平衡.问:白球、黑球每个各重多 少克?[分析]设白球重 x g ,黑球重 y g , 因为,原来天平是平衡的,在进行调整后天平重新达到平衡,但总重量增加了一个砝码 的重量.对于第一次调整,增加了 20g ,对于第二次调整,增加了 50g .那么实际上,第一次调整,天平两边各重了 10g ,第二次调整各重了 25g . 通过天平一侧的重量变化建立方程:所以,白球重 20g ,黑球重 15g . [分析]白球 20 克,黑球 15 克⎧2 y - x = 10 ⎨⎩2 x - y = 25 ⎧ x = 20 ⇒ ⎨ ⎩ y = 1510、奥运指定商品零售店里的福娃有大号、中号和小号三种.小悦买了一个大号的、三个中 号的和两个小号的,共花了 360 元;冬冬买了两个大号的、一个中号的和一个小号的, 共花了 270 元;阿奇买了一个大号的、两个中号的和两个小号的,共花了 300 元.请问: 商店里的大号、中号和小号福娃的单价各是多少? [分析]设大、中、小 3 种型号的福娃单价分别是 x , y , z .那么有 ⎧ x + 3y + 2z = 360 ⎪ 2 x + y + z = 270 ⎧x = 80⇒ ⎪y = 60 ⎨ ⎨⎪ x + 2 y + 2z = 300 ⎪z = 50⎩ ⎩ 答:大号 80 元,中号 60 元,小号 50 元11、如图,墙边放着一块木块,一只猫淘气,爬了上去,使得木块向下滑动了一段距离, 现在已知图中的三段长度(单位:厘米),你能求出这块木板的长度吗?[分析]设下滑后,木块低端距离地面 x 厘米.那么根据勾股定理可以列式: 2002 + x 2 = 702 + ( x + 90 )2,解得 x = 1502002 +1502 = 2502 ,因此木块长 250 厘米.⎪ ⎪ ⎪ ⇒ ⎪⎩答:木块的长度为 250 厘米12、甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为 29,23,21 和 17. 这四人中最大年龄与最小年龄的差是多少? [分析]设四个人的年龄分别为 a , b , c , d ,那么有⎧ a + b + c+ d = 29 ⎪ 3⎪⎪ a + b + d + c = 23 ⎪ 3 ⎨ ⎪ a + c + d + b = 21 四试相加,得 2 (a + b + c + d ) = 90 ⇒ a + b + c + d = 45 ⎪ 3 ⎪ ⎪ b + c + d + a = 17⎩ 3⎧ 2d = 29 - 15 = 14 ⎪ 3 ⎪ ⎪ 2 c = 23 - 15 = 8⎪ 3 ⎨⎧ a = 21 ⎪b = 12 ⇒把上式代入方程组,有 ⎪ 2 ⎪ 3 ⎪ b = 21- 15 = 6⎨ c = 9 ⎪⎩ d = 3,因此,最大与最小之差为 18 ⎪ 2a = 17 - 15 = 2 ⎩ 3另解:四个人的年龄分别为 a > b > c > d ,那么 b + c + d + a = 29, a + b + c+ d = 17 ,两式相3 3减得: b + c + d + a - a + b + c - d = 12 ⇒ 2 ( a - d ) = 12 ⇒ a - d = 183 3 3即最大年龄与最小年龄的差是 18 岁超越篇1、丙看到甲、乙两人正在解下面这个方程组:⎧ x + y = 2536 ⎨ x + y =704其中未知数前面的系数被甲和乙遮住了.甲计算[分析]把 x ,y 的值代入方程,以方框为未知数,重新建立方程,得: ⎧7 a + 3b = 2536 ⎪7 c + 3d = 704 ⎨ 4a + 4b = 1536 ⎧a = 346 ⎪b = 38⎨c = 44 ⎪ ⎪ 最小的是 38. 4c + 4d = 704 d = 132 2、幼儿园有三个班,甲班比乙班多 4 人,乙班比丙班多 4 人.老师给小孩分枣,甲班每个 小孩比乙班每个小孩少分 3 个枣;乙班每个小孩比丙班每个小孩少分 5 个枣.结果甲班 比乙班总共多分 3 个枣,乙班比丙班总共多分 5 个枣.问:三个班总共分了多少个枣? [分析]设丙班有 x 人,则乙班 x +4 人,甲班 x +8 人.丙班每个小孩共分了 y 个枣,则乙班分⎩了 y -5 个枣,甲班分了 y -8 个枣.则: ⎧ (x + 8)( y - 8) - (x + 4)( y - 5) = 3 ⎨⎩ (x + 4)( y - 5) - xy = 5 ⎧ 4 y - 3x = 47 ⇒ ⎨ ⎩4 y - 5x = 25⎧ x = 11⇒ ⎨ ⎩ y = 20 则三班总共分了 (x + 8)( y - 8) + (x + 4)( y - 5) + xy = 19 ⨯ 12 + 15 ⨯ 15 + 11⨯ 20 = 673 个枣 答:三个半总共分了 673 个枣3②钓到 3 条或 3 条以上的选手平均每人钓到了 6 条鱼; ③钓到 12 条或者 12 条以下的选手平均每人钓到了 5 条鱼. 请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼? [分析]设共有 x 人参加比赛,则钓到 3 条及以上的人数为 x - 9 - 5 - 7 = x - 21 ,掉到 12 条及 以下的人数为 x - 5 - 2 - 1 = x - 8 . 依题意列方程: (x - 21) ⨯ 6 + 1 ⨯ 5 + 2⨯ 7 = (x - 8) ⨯ 5 + 13 ⨯ 5 + 14 ⨯ 2 + 15 ⨯ 1 解得 x = 175 . 则共钓鱼: (175 - 21) ⨯ 6 + 1 ⨯ 5 + 2 ⨯ 7 = 943 条. 答:一共有 175 名选手;一共钓上 943 条鱼.4、A 、B 两地相距 2400 米.甲、乙两人分别从 A 、B 两地同时出发,相向而行.两人在途中 某处相遇后,甲又继续行进 18 分钟到达 B 地,乙又继续行进 50 分钟到达 A 地.请问: 甲比乙每分钟多走多少米? [分析]设甲速为 x ,乙速为 y .那么,甲走乙 50 分钟的路程和乙走甲 18 分钟的路程需要的时 间相同(都为两者相遇时对方走的路程).那么可以建立方程:⎧18x + 50 y = 2400⎪⎨ 50 y = 18 x⎧ x = 50 ⇒ ⎨y = 30 ,甲比乙每分钟多走 20 米. ⎪ x y⎩ 答:甲比乙每分钟 多走 20 米.5、甲、乙两车运一堆货物,甲车单独运比乙车单独运要少运 5 次;如果一起运,各运 6 次 就刚好运完.问:甲车单独运要几次运完? [分析]设甲效 x ,乙效 y ,建立方程 ⎧ 1 - 1 = 5 ⎪ y x ⎧ x =⇒ ⎪ 110,甲单独运要 10 次. ⎨ ⎨⎪ x + y = 1= ⎪ y = 1 615 答:驾车单独运要 10 次运完.6、一个从小到大排列的等差数列,如果把这个数列的首项除以 2,末项乘以 2,这些数的 平均数就增加了 7;如果把首项乘以 2,末项除以 2,平均数就少了 2.已知这个等差数 列中所有数的和等于 245,求这个数列的末项. [分析]题目出错7、一个水池,顶部有一个进水管,底部有一个出水管.如果只打开进水管,50 分钟可以把 水池灌满;如果只打开出水管,60 分钟可以把一池水放完.现在水池在中间的某个位置 出现了一条与池底平行的裂缝,如果只打开进水管,需要 80 分钟才能放满一池水,而 只打开出水管只需 46.5 分钟即可放完一池水.请问:裂缝出现在离池底几分之几高度的 地方?⇒[分析]设裂缝出现在离池底 x 处,裂缝漏水的效率为 1 .那么可以建立方程: y⎧ 1 ⨯ 80 - (80 - 50 x ) ⨯ 1 = 1 ⎧ 2 ⎪ 50 ⎨ y ⎪ x = ⎨ 5 .⎪ 1 ⨯ 46.5 + (46.5 - 60 x ) ⨯ 1 = 1 y = 10060 y答:裂缝出现在离池底 2 高的地方. 5 “太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向“北冰洋号”在前,“太 平洋号”在后.在某个时刻,“太平洋号”发出声波,间隔 2 秒后,再次发出声波.当声 波传到“北冰洋号“北冰洋号”会反射声波.已知“太平洋号”的速度是每小时54 千米,第一次和第二次探测到“北冰洋号C D B E M P Q N O [分析]用上图示意太平洋号、北冰洋号和声波运动的情况:A 、D 分别是第一次发出声波时 太平洋号和北冰洋号的位置,M 和 Q 分别是第二次发出声波时太平洋好和北冰洋号的位 置;C 和E 分别是太平洋好接收到北冰洋号第一次反射声波时太平洋好和北冰洋号的位 置,P 和 O 分别是太平洋好接收到北冰洋号第二次反射声波是太平洋好和北冰洋号的位 置;B 是北冰洋号收到第一次声波时的位置,N 是北冰洋号收到第二次声波时的位置. 太平洋好的速度是 54 千米/小时,相当于 15 米/秒.声波的速度是 1185 米/秒,设北冰洋 号的速度为 x 米/秒. 设 t 为太平洋好第一次发出声波的时刻, t + 2 为太平洋好第二次发出声波的时刻,设 0 0 t + t 0 为太平洋号收到第一次发出声波返回的时刻, t + t 0 + 2.01 是太平洋号收到第二次发出 声波返回的时刻. (1)如图,AC 是太平洋号第一次发出声波到接收反射回的声波潜航的距离, A C = 15t , AB + BC 是 第 一 次 声 波 传 导 的 距 离 , AB + BC = 1185t , 他 们 的 和 等 于AC + AB + BC = 2 A B = 1200t ; ( 2 ) 类 似 的 , MP = 15(t + 0.01), MN + NP 是 第 二 次 声 波 传 导 的 距 离 , MN + NP = 1185 (t + 0.01) ,他们的和等于 M P + MN + NP = 2MN = 1200 (t + 0.01) ; ( 3 ) 由 ( 1 ),( 2 ) 得 : BC - NP = 6 - 1185 ⨯ 0.01 MN - AB = 6, M N - AB + NP - BC = 1185 ⨯ 0.01 , 也 有 (4)由于 D B 是北冰洋号从太平洋好第一次发出声波到北冰洋号接收到声波时潜航的距离, DB = tv - BC 1185 v ;QN 是北冰洋号从太平洋好第二次发出声波到北冰洋号接收到声波时的潜 航距离, Q N = (t + 0.01)v - NP v ; 1185 (5)由(4)得到: Q N - DB = 0.01v + ( 6 -1185 ⨯ 0.01) ⨯ v . 1185 (6) AD 是太平洋好第一次发出声波时两艘潜艇之间的距离,是太平洋好第二次发出声波 时两艘潜艇之间的距离, M D - AD = 2 ( v - 15) .因为 A D = AB - DB , MQ = MN - QN ,所以, MQ - AD = ( MN - AB ) - ( Q N - DB ) = 6 - 0.01v - (6 -1185 ⨯ 0.01) ⨯ v = 6 - 6v1185 1185于是:6- 6v=2(v -15)1185解得v =17 2122因此北冰洋号潜航的速度是每小时17 21 = 64 7 千米.22 11答:北冰洋号潜航的速度是每小时64 7 千米.11。
第一届六年级“高思杯”数学试题详解
高思杯六年级试卷评析第一试一、 填空题Ⅰ1. 计算:321456123654×−×=__________.「答案」 65934.「简答」 本题考验的是学生的计算能力.这道题虽然也有速算的方法,但是速算方法本身并不容易想到.如果对分配律运用不熟练,速算也就不那么“速”了.而直接计算只需要计算两次三位数的乘法,并不难做到.速算方法如下:原式()()()321123333123321333321333123333321123333=×+−×+=×−×=−×()19833320023336660066665934=×=−×=−=.2. 计算:0.10.20.30.10.20.3++=×× __________. 「答案」 81. 「简答」 本题考验的是循环小数与分数的转化.只要知道10.19= ,20.29= ,310.393== ,解决这道题目就不成问题.3. 小明上周去百货商店用30元买了2支钢笔和4支铅笔.这周去百货商店时,他发现钢笔降价10%,铅笔加价20%.于是小明花30元买了3支钢笔和1支铅笔.现在..买1支钢笔和1支铅笔一共需要__________元.「答案」 12.「简答」 本题考验的是解应用题的能力.不管利用和差倍分问题的解法还是利用方程,都能很轻松的解决.这里推荐大家采用方程的解法.和小学不同,中学时绝大多数应用题要求必须用方程来解,直接列算式是不合要求的.4. 把2000分解为若干互不相等的自然数的乘积,这些自然数的总和最小是__________.「答案」 37.「简答」 将2000分解质因数4325×,然后对不同的分解状况讨论就可以了.显然这些自然数越多越接近,总和就越小.但具体怎样分解是最好的,很难直接推理出来.不妨把最后几种情况列举出来,分别求和比较一下就可以了.2000251020=×××这种情况是最好的.5. 如图,在一个4厘米×4厘米的方格纸内画了一个格点八边形,那么这个八边形内部所有阴影部分的面积之和是________平方厘米.「答案」 2.「简答」 仔细看图,容易发现这个八边形中的阴影部分是8个直角三角形,每个直角三角形的面积都是14平方厘米,故总面积为2平方厘米.6. 今年6月份的挂历如右图所示,明年__________月份的挂历恰好和它是一模一样的.「答案」 11.「简答」 本题综合考察了周期问题和数表问题.依次计算2011年每月的1号是星期几,其中2月1日、3月1日和11月1日是星期二,那么排列情况就和图中所示情况相同.还应该注意到该月应该恰有30天,故答案为11月.本大题难度一般,但解题时需要仔细,不少题目很容易因为粗心导致错误.第一题错误的同学必须练习计算基本功,上了初中,基础运算题的正确率就应该做到100%.第四题和第六题都涉及多种情况讨论比较,中学非常重视思维的严谨性和过程的周密性,做题时绝对不能想当然.二、 填空题Ⅱ7. 360可以分解为两个自然数m ,n 的乘积,已知m 有a 个约数,n 有b 个约数,且a b >,如果13a b +=,那么a b −=__________.「答案」 5.「简答」 将360分解质因数得32360235=××,讨论m ,n 的所有情况即可.这里有一个简单一点的方法:由于13a b +=,故a ,b 中一定有一个奇数,即m ,n 中一定有一个完全平方数,故只需讨论1360×,490×,940×,3610×这四种情况.最后发现36m =,10n =,9a =,4b =,故5a b −=8. 将3个相同的红球和5个相同的绿球分给三个人(允许有人没有分到球),有___________种分法. 「答案」 210.「简答」 由于允许有人没有分到球,故红球和绿球可以分开考虑,再利用乘法原理即可.将3个相同的红球分给三个人,利用插板法,共有2510C =种方法(也可直接枚举出来).将5个相同的绿球分给三个人,利用插板法,共有2721C =种方法(也可直接枚举出来).故一共有210种方法.9. 右图中的每一块都是正方形,已知正方形A 的边长为1,那么正方形B 的边长为__________.「答案」 138125. 「简答」 依次考虑各块正方形的边长比.因为正方形A 的边长为1,故A 右侧正方形边长为12,再往右的大正方形边长为45.设正方形B 的边长为x ,故B 左侧大正方形边长为34x ,再往左的正方形边长为13x .于是311414325x x x ++=++,解得138125x =. 星期日星期一星期二星期三星期四 星期五 星期六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3010. 小赵是铁人三项运动的爱好者,如果他用2小时骑自行车,用3小时长跑,用4小时游泳则行进总路程为74公里;如果他用4小时骑自行车,用2小时长跑,用3小时游泳则行进总路程为91公里.又知道他进行三个项目的速度都是整数公里每小时.则他三个项目速度之和为__________公里/小时.「答案」 28.「简答」 本题考察了不定方程的知识.设骑自行车每小时x 公里,长跑每小时y 公里,游泳每小时z 公里,可得2347442391x y z x y z ++=⎧⎨++=⎩,解不定方程,整数解只有1774x y z =⎧⎪=⎨⎪=⎩,故答案为28.11. 下列算式中每个字母都代表3、4、6、8、9这五个数字中的一个,不同的字母代表不同的数字,那么五位数ABCDE =________.157122A B C D E ++=××× 「答案」 43689(或43698,46389,46398,填对任意一个均可).「简答」 注意到3、6均含有一个质因子3,而9含有两个质因子3.要想最后约去3,只可能把3、6放在一起,再和9通分时约去,分别对每种情况验算即可.12. 甲从A 地,乙丙从B 地同时出发,相向而行.甲乙先相遇.甲乙相遇后,乙又行了3.2小时到达A 地,相遇后甲又行了2小时后遇见丙.甲丙相遇后,甲继续前进,3小时后到达B 地;丙12小时后到达A 地.如果乙比丙每小时多行40千米,则AB 两地相距________千米.「答案」 480.「简答」 由题意,甲乙相遇后,乙又行了3.2小时到达A 地,甲又行了5小时到达B 地.这个时间比为22::v v v v v v ××=甲乙乙甲乙甲相遇时间相遇时间,故甲乙的速度比为4:5,同样可以求得甲丙的速度比为2:1,故甲乙丙的速度比为4:5:2.再根据“乙比丙每小时多行40千米”算出他们的速度,并求出AB 的距离为480千米.这道大题难度较大,要求对各种技巧能够灵活运用.第8题只要能想到乘法原理,其实不用插板法也可通过枚举得到,但大多数同学没有注意到红球和绿球可以分开考虑.第9题本身涉及到的知识并不难,但形式比较特别,不少同学无法从图中发现数量关系,导致这道题得分偏低.第12题是难度最大的一道,从时间比转化为速度比的平方,很多同学一时无法想到,或是直接把时间比当成了速度比.另外这道题目中三人的速度也均不是整数,这也进一步加深了难度.三、 解答题13. L 博士乘坐飞行器要到正东方向1公里处的地方,他将飞行器交由机器人控制,自己去睡觉了.但是机器人出了故障,飞行器每行进3米,机器人就会将飞行器向左转动90°,每行进n 米就会将飞行器向右转动90°,如果里程是3和n 的公倍数,则两次操作抵消,飞行器保持航向.假设飞行器的速度是每秒1米,问:(1)当6n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由; (2)当7n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由; (3)当8n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由. 「简答」 解:(1)按题目所说过程画出飞行器前进路线(图1),发现每24秒,飞行器绕过一个正方形回到出发点,故L 博士不可能到达目的地.(2)由于[]3,721=,画出飞行器前进路线(图2),发现每21秒,飞行器向正东前进1米.故L 博士可以到达目的地.一共要前进1000米,注意到每个周期的最开始飞行器可以向正东先前进3米,故L 博士一共需要()1000321320940−×+=秒.(3)由于[]3,824=,画出飞行器前进路线(图3),发现每24秒,飞行器向前飞2米,向左飞2米.继续下去,每过96秒飞行器回到出发点,故L 博士不可能到达目的地.本题严格说来只是一个周期问题,只要能理解题意,顺利作出飞行器的路线图,这道题可以说已经解决了一大半.但是在做题时有很多地方都容易粗心犯错误.最明显的错误是对“向左转动”和“向右转动”理解不对,误以为飞行器越开越偏,实际上飞行器只是在绕圈子而已.最可惜的错误是第二问中,有些同学已经画对了图,但是发现飞行器20秒后回到出发点,就误以为飞行器一直在绕圈子了,没有按照21秒的周期进行计算.另外在这一问中,很多同学没有注意到每个周期的头3秒一直向东,只注意到每21秒向东飞行1米,于是结果算成了21000秒.本题总体得分情况并不太理想,可见对于处理这种题干很长且叙述语言较多的问题,大多数同学缺乏经验. 出发点图1出发点图2出发点图3。
六年级高斯学校竞赛几何综合一含答案
第7讲几何综合一内容概述复杂的长度、角度计算;复杂的直线形比例关系;具有一定综合性的直线形计算问题.典型问题兴趣篇1.图7-1中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.2.如图7-2所示,∠l+∠2+∠3+∠4+∠5+∠6等于多少度?3.如图7-3,平行四边形ABCD 的周长为75厘米,以BC 为底时高是14厘米,以CD 为底时高是16厘米.求平行四边形ABCD 的面积。
4.如图7-4,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是103平方米、52平方米、51平方米和101平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?5.如图7-5,红、黄、绿三块大小一样的正方形纸片,放在一个正方体盒内,它们之间相互重叠,已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是10.那么,正方体盒子的底面积是多少?6.如图7-6,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行.已知AG :GF :FC =4:3:2,那么AH: HI: IB 和BD: DE: EC 分别是多少?7.如图7-7,已知三角形ABC 的面积为1平方厘米,D 、E 分别是AB 、AC 边的中点,求三角形OBC 的面积.8.在图7-8的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?9.如图7-9,ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为边AB 、BC 的中点,则阴影部分的面积为多少平方厘米?10.如图7-10,在三角形ABC 中,CE=2AE ,F 是AD 的中点,三角形ABC 的面积是1,那么阴影部分的面积是多少?拓展篇1.如图7-11,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图7-11中的字母表示相应部分的长度,问:A、B中阴影部分的周长哪个长?长多少?2.如图7-12.ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?3.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图7-13所示,问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?4.在图7-14中大长方形被分为四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?5.三个面积都是12的正方形放在一个长方形的盒子里面,如图7-15,盒中空白部分的面积已经标出,求图中大长方形的面积.6.如图7-16,三角形ABC的面积为1.D、E分别为AB、AC的中点.F、G是BC边上的三等分点.请问:三角形DEF的面积是多少?三角形DOE的面积是多少?7.如图7-17,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?8.如图7-18,正六边形的面积为6,那么阴影部分的面积是多少?9.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?10.如图7-19,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?11.如图7-20,在三角形ABC中,AE= ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?12.如图7-21,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?超越篇1.如图7 - 22,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?2.如图7-23,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?3.如图7 -24所示,正方形ABCD的面积为1.E、F分别是BC和DF的中点,DE与BF交于M点,DE与AF交于Ⅳ点,那么阴影三角形MFN的面积为多少?4.如图7 -25,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.5.如图7-26,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?6.如图7-27,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB =45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?7.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH =3,EF =4,求线段AD与AB的长度比.8.如图7-28,在长方形ABCD中,AE: ED= AF:AB= BG: GC.已知△EFC的面积为20,△FGD 的面积为16,那么长方形ABCD的面积是多少?第7讲几何综合一兴趣篇1. 图中八条边的长度正好分别是1、2、3、4、5、6、7、8 厘米。