勤学早2018-2019学年度七年级数学(上)期末模拟题(月考四
2019年勤学早元调模拟卷四
![2019年勤学早元调模拟卷四](https://img.taocdn.com/s3/m/08acfb97b14e852458fb57c7.png)
勤学早·2019元月调考数学模拟试卷(四)(解答参考时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.方程x 2+2x -3=0的常数项是( )A .-1B .1C .2D .-3 2.在通常情况下,下列成语描述的事件为随机事件的是( )A .刻舟求剑B .水中捞月C .守株待兔D .水涨船高 3.对于函数y =-2(x -1)2及其图象,下列说法错误的是( )A .开口向下 B.对称轴为直线x =1 C .最大值为0 D .与y 轴不相交 4.如图是我国几家银行的标志,其中中心对称图形有( )中国银行 中国工商银行 中国人民银行 中国农业银行 A .1个 B .2个 C .3个 D .4个5.在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个.如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( )A .6B .7C .8D .9 6.关于x 的方程x 2-2x -a =0有实数根,则a 的取值范围是( )A .a ≥-1B .a >-1C .a ≤-1D .a <-17.如图,∠ACB =30°,点O 是CB 上的一点,且OC =6,则以4为半径的⊙O 与直线CA 的公共点的个数有( )A .0个B .1个C .2个D .无法确定8.如图,PB 交⊙O 于A ,B 两点,且PA =2AB ,PO 交⊙O 于点C ,PC =3,OC =2,则PA 的长为( )A .BC .D9.已知三点A (-1,m ),B (3,n ),C (s ,t )都在抛物线y =(a -1)x 2+2ax +5上,且点C 是此抛物线的顶点,若t ≥n >m ,则a 的取值范围是( )A .a <1B .a <12C .12<a <1D .34≤a <l10.如图,在⊙O 中,弦AC =7,弦AE 垂直于半径OB ,AE =24,且∠CAO =∠BOA ,则⊙O 的半径为( )A .12B .12.5C .13D .14二、填空题(本大题共6小题,每小题3分,共18分)11.若x =0是方程x 2-3x +k -1=0的一个根,则常数k 的值是 .12.已知抛物线y =2x 2,若抛物线不动,把x 轴向下平移1个单位长度,把y 轴向左平移2个单位长度,则该抛物线在新的坐标系中的解析式是 .13.一个不透明的盒子里有三张完全相同的卡片,把它们分别标上数字1,2,3,摇匀后从中一次随机抽取两张卡片,则所抽取的两张卡片上的数字之积为偶数的概率是 .14.如图,扇形AOB 的面积为12π,∠AOB =120°,以此扇形作为侧面围成一个无重叠部分的圆锥,则该圆锥的底面积为 .(结果保留π)15.正六边形ABCDEF 中,M ,N 分别是CD ,DE 的中点,则AMMN的值是 .16.如图,在四边形ABCD 中,AB =AC ,∠BAC =120°,∠ADC =90°,且CD AD,则BD AB 的值为 .三、解答题(本大题共8小题,共72分)17.(本题8分)解方程:(x -3)2=2x -6.18.(本题8分)如图,在⊙O 中,直径AB 与弦CD 垂直,且AB =2,CD(1)求∠CAD 的度数;(2)若点P 是⊙O 上异于A ,D 的动点,直接写出∠APD 的度数.120°BAOCDEF A BM NBAD19.(本题8分)老师决定从4名女生(小锐,小慧,小艳和小倩)中通过抽签的方式确定2名女生去参加志愿者活动,抽签规则如下:将4名女生的姓名分别写在4张完全相同的卡片正面,把4张卡片背面朝上,洗匀后放在桌面上,李老师从中随机抽取一张卡片,记下姓名,再从剩余的卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小锐被抽中”是事件,(填“必然”或“不可能”);第一次抽取卡片“小锐被抽中”的概率为;(2)试用画树状图的方法表示这次抽签的所有可能结果,并求出“小慧和小艳同时被抽中”的概率.20.(本题8分)如图,在有每个边长为1的小正方形组成的9×9的网格中,点A、B、C都在格点上,点B绕点C旋转90°后的对应点为M,已知点B的坐标为(0,-2).(1)直接写出:点C的坐标为,点M的坐标为;(2)若平面内存在一点P,且P为△ACM的外心,直接写出点P的坐标;(3)CN平分∠BCM交y轴于点N,则N点坐标为.21.(本题8分)如图,在平行四边形ABCD中,∠A=∠B=90°,点E是AB边上一点,且∠AED=∠C,△AED 的外接圆⊙O与BC相切于点F.(1)求证:CD是O的切线;(2)已知CF=DE,AE=2,求⊙O的半径长.22.(本题10分)如图,用全长30米的材料围成一个一边靠墙的矩形菜园(墙长17米),并在平行于墙的一边上开一扇2米宽的门(门不用材料),再增加一个a米宽的入口,设垂直于墙的边长为x米,矩形菜园的面积为y平方米.(1)求S与x的函数关系式;(2)当a=2时,求S的最大值;(3)当172≤x<15时,S随着x的增大而减小,求a的取值范围.23.(本题10分)如图1,在△ABC 和△ADE 中,∠ABC =∠AED =90°,AE =DE =a ,AB =CB =b (a <b ),点D 在AC 上,且AD =2CD . (1)求ab的值; (2)把图1中的△ADE 绕A 顺时针旋转α(0°<α<90°),如图2,连接BE ,BE=连接CD ,求五边形ABCDE 的面积;(3)设CD 中点为M ,a =4,则在(2)的过程中,直接写出点M 所经过的路径长为图1图224.(本题12分)抛物线y =ax 2-4ax +5与x 轴交于A 、B 两点(点A 在B 的左边),且AB =6,已知Q (1,0),E (0,m ),F (0,m +1),点P 是第一象限的抛物线上的一点. (1)求抛物线的解析式;(2)当m =1时,求使四边形EFPQ 的面积最大的点P 的坐标; (3)若PQ =PB ,求m 为何值时,四边形EFPQ 的周长最小.E D CBAABCDE。
2018-2019学年度第一学期七年级期末数学试卷及答案
![2018-2019学年度第一学期七年级期末数学试卷及答案](https://img.taocdn.com/s3/m/05740f57eefdc8d376ee32b6.png)
2018-2019第一学期七年级数学期末试卷及答案姓名__________ 分数______一、选择题(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A .12 B .12- C .2 D .-2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A .3 B .1 C .0或2 D .1或33.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A .0. 34×108 B .3. 4×106 C .34×106 D .3. 4×107 4.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( ) A .35-B .15-C .15D .255.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。
设这种商品的标价为每件x 元,依题意列方程正确的是( )A .1900.91900.152x -=⨯B .0.91900.152x =⨯C .0.91901900.152x -=⨯D .0.1521900.9x =⨯6.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。
今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A .9 B .10 C .11 D .127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D . 8.下面等式成立的是( )A .83. 5°= 83°50′B .37°12′36″=37. 48°C .24°24′24″= 24. 44°D .41. 25°= 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。
2018-2019学年度人教版七年级上数学月考试卷含答案
![2018-2019学年度人教版七年级上数学月考试卷含答案](https://img.taocdn.com/s3/m/8c80d3726c85ec3a86c2c534.png)
○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 2018-2019学年度第一学期10月月考试卷 一、选择题 (每小题3分,共30分) 1.在下列选项中,具有相反意义的量是( ) A. 收入20元与支出20元 B. 6个老师与6个学生 C. 走了100米与跑了100米 D. 向东行30米与向北行30米 2.一个数的相反数是3,则这个数是( )A .﹣B .C .﹣3D .3 3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论错误的是 ( ) A. 0a b +< B. 22a b > C. 0ab < D. a b < 4.大于-2.5小于1.5的整数有多少个( ) A. 4个 B. 5个 C. 6个 D. 7个 5.下列算式正确的是( ) A. (﹣14)﹣5=﹣9 B. 0﹣(﹣3)=3 C. (﹣3)﹣(﹣3)=﹣6 D. |5﹣3|=﹣(5﹣3) 6.114-的倒数是( )。
A.54- B.54 C.45- D.45 7.若,则a 与b 的关系是( ) A .a =b B .a =b C .a =b =0 D .a =b 或a =-b 8.9月8日,首条跨区域动车组列车运行线——长春至白城至乌兰浩特快速铁路开通运营“满月”。
这条承载着吉林、内蒙古人民希望与企盼的铁路,自开通运营以来,安全优质高效地发送旅客930000人,这个数字用科学记数法表示为( ) A. 9.3×103 B. 9.3×105 C. 0.93×106 D. 93×104 9.下列说法正确的是( )B .近似数43.82精确到0.001C .近似数6.610精确到千分位D .近似数2.708×104精确到千分位 10.下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1。
学年度《》七年级上册期末考试模拟试题(四)
![学年度《》七年级上册期末考试模拟试题(四)](https://img.taocdn.com/s3/m/f9140f1daf1ffc4ffe47aca7.png)
2014~2015学年度《勤学早》七年级上册期末考试模拟试题(四)一、选择题(共10小题,每小题3分,共30)1.在1、-1、-2这三个数中,任意两数之和的最大值是( ) A .1B .0C .-1D .32.下列各式中运算正确的是( ) A .2(a -1)=2a -1 B .a 2+a 2=2a 2C .2a 3-3a 3=a 3D .a 2b -ab 2=0 3.太阳的半径为696000千米,把这个数据用科学记数法表示为( )A .696×103千米B .69.6×104千米C .6.96×105千米D .6.96×106千米4.下列变形中,正确的是( ) A .若a =b ,则ba 11= B .若ax =ay ,则x =y C .若ab 2=b 3,则a =bD .若cbc a =,则a =b 5.已知2x 3y 2和-x 3m y 2是同类项,则式子4m -24的值是( ) A .20 B .-20C .28D .-286.如图所示,是正方体的一个平面展开图,折叠成原来的正方体时与边a 重合的是( )A .dB .eC .fD .i7.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则ab 的值为( ) A .-1B .1C .-2D .28.如图所示的图案是由小三角形按一定规律排列而成,依此规律,第n 个图中小三角形的个数为2011个,则n 的相反数为( )A .670B .671C .-670D .-6719.如图,线段AB 和线段CD 的重合部分CB 的长是线段AB 长的三分之一,M 、N 分别是线段AB 和线段CD 的中点,若AB =12cm ,MN =10cm ,则线段AD 的长为( )A .20 cmB .21 cmC .22 cmD .24 cm10.下列说法:① 立方等于其本身的数是0、±1;② 23xy 3是7次单项式;③ 若a +b =0,则a 3+b 3=0;④ 若1||=+b a ab ,则2||||=+b ba a ,其中正确的结论是( )A .①②B .只有①③C .只有③④D .①③④二、填空题(每小题3分,共18分)11.-(-3)=_______;-32=_______;|-(-2)3|=_______ 12.若整式5x -7与-3x +3的值互为相反数,则x =_______13.有理数a 、b 、c 在数轴上的位置如图所示,且a 与b 互为相反数,化简|a -c |-|b +c |=_____ 14.在直线l 上有三点A 、B 、C ,量得AB =5cm ,BC =3cm ,如果AC 的中点为O ,那么线段OB 长为___________15.若x 2+3x -5的值为7,则2-9x -3x 2的值为________16.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2015次后,数轴上数2015所对应的点是________三、解答题(共9题,共72分)17.(本题6分)计算:(-5.28)+(-3.14)+5+5.28 (2) (-64)÷24183322÷+18.(本题6分)解方程:512152xx x -=--+19.(本题7分)先化简,再求值:(3a -2a 2)-[5a -31(6a 2-9)-4a 2],其中a =-4120.(本题7分)已知线段AB =4 cm ,延长AB 至点C ,使BC =21AB ,反向延长AB 至D ,使AD =AB(1) 按题意画出图形,并求出CD 的长(2) 若E 、F 分别是AD 、BC 的中点,求EF 的长21.(本题7分)已知一个三角形的第一条边长为(a +2b )厘米,第二条边比第一条边短(b -2)厘米,第三条边比第二条边短3厘米 (1) 请用式子表示该三角形的周长 (2) 当a =2,b =3时,求此三角形的周长(3) 当a =2,三角形的周长为27时,求此三角形各边的长22.(本题8分)如图,已知∠AOB =150°,∠COD =70°,OE 平分∠AOC ,OF 平分∠BOD ,求∠EOF 的大小23.(本题8分)生活中处处都有数学,如图是2012年元月的日历表,用一个平行四边形框出了3×3=9个数(1) 在上图中框出九个数的和最大的平行四边形(2) 若一个框框出的九个数之和是108,请你求出平行四边形右上角的数字24.(本题10分)如图1是一副三角尺拼成的图案,三角尺的3个角的顶点是A、C、B,记作“三角尺ACB”;三角尺的3个角的顶点是E、B、D,记作“三角尺EBD”,且∠ACB=∠EBD =90°,∠A=30°,∠ABC=60°,∠E=∠EDB=45°(1) 图1中∠EBC=_______(2) 如图1,三角尺BED不动,将三角尺ABC绕点B顺时针或逆时针旋转α度(0°<α<90°).①当∠ABE=2∠DBC时,求∠ABD的度数(图2,图3,图4供参考)②当∠ABD等于多少度时,这两块三角尺各有一条边所在的直线互相垂直,直接写出∠ABD角度所有可能的值_________________,不用说明理由.(提示:三角形的内角和为180°)25.(本题12分)如图,已知数轴上两点A、B分别表示数a、b,且|a+5|+(2b-6)2=0(1) 求A、B两点的距离(2) 在数轴上有一点P对应的数为x,若P A=3PB,求x的值(3) 在点B的右侧有一动点Q,AQ的中点为M,2BM+BQ的值是否发生变化?若不变,求出其值,若变化,说明理由。
2018-20 19学年七年级数学上期末考试模拟试卷含答案
![2018-20 19学年七年级数学上期末考试模拟试卷含答案](https://img.taocdn.com/s3/m/3ccdc7f6172ded630b1cb62d.png)
2018-2019学年七年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最高温度相差最大的是()A.3℃B.8℃C.11℃D.17℃2.已知数轴上C、D两点的位置如图,那么下列说法错误的是()A.D点表示的数是正数B.C点表示的数是负数C.D点表示的数比0小D.C点表示的数比D点表示的数小3.若单项式﹣的系数、次数分别是m、n,则()A.m=,n=6 B.m=﹣,n=6 C.m=,n=7 D.m=﹣,n=74.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b>0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个5.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多6.若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4 B.4 C.﹣8 D.87.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是()千米.A.0.34×108 B.3.4×106 C.34×106 D.3.4×1078.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为()A.7.49×107 B.7.49×106 C.74.9×105 D.0.749×1079.已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣2810.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角11.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用6吨以下的共有()A.18户 B.20户 C.22户 D.24户12.一艘轮船在A、B两港口之间行驶,顺水航行需要5h,逆水航行需要7h,水流的速度是5km/h,则A、B两港口之间的路程是()A.105 km B.175 km C.180 km D.210 km二、填空题(本大题共6小题,每小题3分,共18分)13.如果x,y的平均数为4,x,y,z的和为零,那么z=.14.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A所表示的数是.15.参加农村合作医疗的王大伯住院,其手术费用a元,可以报销80%;其它费用b元,可以报销60%,则王大伯此次住院可报销元.16.如下图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,该班共有名学生.17.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大干0的整数)个图形需要黑色棋子的个教是.三、计算题(共12分)19.(1)75+|(﹣81)+67|﹣73(2)﹣14﹣×[2﹣(﹣3)2](3)(﹣3)2﹣()2×+6÷|﹣|3.20.计算下列各题:(1)﹣[2m﹣3(m﹣n+1)﹣2]﹣1(2)2(ab2﹣2a2b)﹣3(ab2 a2b)+(2ab2﹣2a2b)(3)已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.四、作图题(本大题共1小题,共6分)21.如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)画线段AB;(2)连接CD,并将其反向延长至E,使得DE=2CD;(3)在平面内找到一点F,使F到A、B、C、D四点距离最短.五、解答题(共48分)22.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.23.如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.24.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.25.解下列方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)﹣=﹣1(3)关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.(1)求m的值.(2)求这两个方程的解.26.某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x 超过2000时,甲厂的收费为元,乙厂的收费为元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最高温度相差最大的是()A.3℃B.8℃C.11℃D.17℃【考点】有理数大小比较;有理数的减法.【分析】先比较出各数的大小,再求出最高温与最低温的差即可.【解答】解:∵|﹣10|=10>|﹣7|=7,∴﹣10<﹣7,∴﹣10<﹣7<1.∵1﹣(﹣10)=11,∴它们任意两城市中最高温度相差最大的是11℃.故选C.2.已知数轴上C、D两点的位置如图,那么下列说法错误的是()A.D点表示的数是正数B.C点表示的数是负数C.D点表示的数比0小D.C点表示的数比D点表示的数小【考点】数轴.【分析】根据数轴的特点进行解答即可.【解答】解:A、∵点D在原点的右侧,∴D点表示的数是正数,故本选项正确;B、∵点C在原点的左侧,∴C点表示的数是负数,故本选项正确;C、∵D点表示的数是正数,∴D点表示的数比0大,故本选项错误;D、∵C点在D点的左侧,∴C点表示的数比D点表示的数小,故本选项正确.故选C.3.若单项式﹣的系数、次数分别是m、n,则()A.m=,n=6 B.m=﹣,n=6 C.m=,n=7 D.m=﹣,n=7【考点】单项式.【分析】根据单项式系数、次数的定义来选择,单项式中数字因数叫做单项式的系数,所有字母的字数和叫做单项式的次数.【解答】解:根据单项式系数的定义,单项式的系数为﹣,根据单项式次数的定义,单项式的次数为7,故选D.4.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b>0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】绝对值;数轴.【分析】由图象可知,a<0<b且|a|>|b|,再根据有理数的加减法则、不等式的基本性质逐一判断即可.【解答】解:由图象可知,a<0<b,且|a|>|b|,故①正确;a﹣b=a+(﹣b)=﹣(|a|+|b|)<0,故②错误;a+b=﹣(|a|﹣|b|)<0,故③错误;∵a+b<0,且ab<0,∴>0,即+>0,故④正确;∵a<b,∴﹣a>﹣b,故⑤正确;故选:C.5.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多【考点】扇形统计图.【分析】根据扇形图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多.【解答】解:因为两个扇形统计图的总体都不明确,所以A、B、C都错误,故选:D.6.若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4 B.4 C.﹣8 D.8【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,将x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值.【解答】解:根据题意,得2×1+m﹣6=0,即﹣4+m=0,解得m=4.故选B.7.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是()千米.A.0.34×108 B.3.4×106 C.34×106 D.3.4×107【考点】科学记数法—表示较大的数.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.【解答】解:34 000 000=3.4×107.故选D.8.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为()A.7.49×107 B.7.49×106 C.74.9×105 D.0.749×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7 490 000用科学记数法表示为:7.49×106.故选:B.9.已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.10.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角【考点】角的计算.【分析】根据锐角的定义,即可作出判断.【解答】解:∵锐角一定大于0°,且小于90°,∴两个角的和不可能是平角.故选D.11.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用6吨以下的共有()A.18户 B.20户 C.22户 D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.12.一艘轮船在A、B两港口之间行驶,顺水航行需要5h,逆水航行需要7h,水流的速度是5km/h,则A、B两港口之间的路程是()A.105 km B.175 km C.180 km D.210 km【考点】一元一次方程的应用.【分析】可根据船在静水中的速度来得到等量关系为:航程÷顺水时间﹣水流速度=航程÷逆水时间+水流速度,把相关数值代入即可求得航程.【解答】解:设A、B两码头之间的航程是x千米.﹣5=+5,解得x=175,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.如果x,y的平均数为4,x,y,z的和为零,那么z=﹣8.【考点】有理数的减法.【分析】本题是有理数的减法与平均数的综合考题,求解时可以根据平均数的定义列式然后求解即可.【解答】解:因为x,y的平均为4,所以(x+y)÷2=4,所以x+y=8,又因为x,y,z的和为零,即x+y+z=0,所以z=0﹣(x+y)=﹣8.14.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A所表示的数是﹣6或8.【考点】数轴.【分析】由于没有说明往哪个方向移动,故分情况讨论.【解答】解:当往右移动时,此时点A表示的点为﹣6,当往左移动时,此时点A表示的点为8,故答案为:﹣6或+8;15.参加农村合作医疗的王大伯住院,其手术费用a元,可以报销80%;其它费用b元,可以报销60%,则王大伯此次住院可报销(0.8a+0.6b)元.【考点】列代数式.【分析】计算出手术报销费用、其他报销费用,得到此次住院可报销的费用.【解答】解:手术费用可以报销80%a,其他费用可以报销60%b,所以此次王大伯住院可报销80%a+60%b=0.8a+0.6b(元)故答案为:0.8a+0.6b16.如下图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,该班共有40名学生.【考点】条形统计图;扇形统计图.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数.【解答】解:根据条形图可知:乘车的人数是20人,所以总数是20÷50%=40(人).17.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为6cm.【考点】两点间的距离.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大干0的整数)个图形需要黑色棋子的个教是n(n+2).【考点】规律型:图形的变化类.【分析】根据题意,分析可得第1个图形需要黑色棋子的个数为2×3﹣3,第2个图形需要黑色棋子的个数为3×4﹣4,第3个图形需要黑色棋子的个数为4×5﹣5,依此类推,可得第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2),计算可得答案.【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3﹣3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4﹣4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5﹣5个,…则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n(n+2).故答案为:n(n+2).三、计算题(共12分)19.(1)75+|(﹣81)+67|﹣73(2)﹣14﹣×[2﹣(﹣3)2](3)(﹣3)2﹣()2×+6÷|﹣|3.【考点】有理数的混合运算.【分析】(1)原式利用绝对值的代数意义化简,结合后相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=75﹣67+81﹣73=8+8=16;(2)原式=﹣1﹣×(﹣7)=﹣1+=;(3)原式=9﹣×+6×=9﹣+=28.20.计算下列各题:(1)﹣[2m﹣3(m﹣n+1)﹣2]﹣1(2)2(ab2﹣2a2b)﹣3(ab2 a2b)+(2ab2﹣2a2b)(3)已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)去括号,合并同类项即可求解;(2)去括号,合并同类项即可求解;(3)先根据非负数的性质得到a、b、c的值,再去括号,合并同类项,再代入计算即可求解.【解答】解:(1)﹣[2m﹣3(m﹣n+1)﹣2]﹣1=﹣[2m﹣3m+3n﹣3﹣2]﹣1=﹣[﹣m+3n﹣5]﹣1=m﹣3n+5﹣1=m﹣3n+4;(2)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b)=2ab2﹣4a2b﹣3ab2+3 a2b+2ab2﹣2a2b=ab2﹣3a2b;(3)由非负性得知:a=﹣2,b=﹣1,c=,原式=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b]}=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2=+4+8=22.四、作图题(本大题共1小题,共6分)21.如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)画线段AB;(2)连接CD,并将其反向延长至E,使得DE=2CD;(3)在平面内找到一点F,使F到A、B、C、D四点距离最短.【考点】直线、射线、线段.【分析】(1)利用线段的定义得出答案;(2)利用反向延长线段进而结合DE=2CD得出答案;(3)连接AC、BD,其交点即为点F.【解答】解:(1)线段AB即为所求;(2)如图所示:DE=2DC;(3)如图所示:F点即为所求.五、解答题(共48分)22.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;加权平均数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.23.如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.【考点】两点间的距离.【分析】由已知条件知BC=3AB,BD=BC,故AD=AB+BD可求.【解答】解:∵AB=16cm,∴BC=3AB=3×16=48cm.∵D是BC的中点,∴BD=BC=×48=24cm.∴AD=AB+BD=16+24=40cm.24.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】(1)由对顶角的性质可知∠BOD=70°,从而可求得∠FOB=20°,由角平分线的定义可知∠BOE=∠BOD,最后根据∠EOF=∠BOE+∠FOB求解即可;(2)①先证明∠AOE=∠COE=x,然后由角平分线的定义可知∠FOE=;②∠BOE=∠FOE﹣∠FOB可知∠BOE=x﹣15°,最后根据∠BOE+∠AOE=180°列出方程可求得x的值,从而可求得∠AOC的度数.【解答】解:(1)由对顶角相等可知:∠BOD=∠AOC=70°,∵∠FOB=∠DOF﹣∠BOD,∴∠FOB=90°﹣70°=20°,∵OE平分∠BOD,∴∠BOE=∠BOD=×70°=35°,∴∠EOF=∠FOB+∠BOE=35°+20°=55°,(2)①∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,∴∠COE=∠AOE=x,∵OF平分∠COE,∴∠FOE=x,故答案为:;②∵∠BOE=∠FOE﹣∠FOB,∴∠BOE=x﹣15°,∵∠BOE+∠AOE=180°,∴x﹣15°+x=180°,解得:x=130°,∴∠AOC=2∠BOE=2×=100°.25.解下列方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)﹣=﹣1(3)关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.(1)求m的值.(2)求这两个方程的解.【考点】解一元一次方程.【分析】(1)先去括号,再移项后合并得到﹣2x=﹣10,然后把x的系数化为1即可;再(2)先去分母,先去括号,再移项后合并得到﹣2x=﹣10,然后把x的系数化为1即可;(3)(1)先分别两个一次方程,再利用它们的解互为相反数得到0.5m+1+2﹣m=0,然后解关于m的方程即可;(2)把m=6分别代入两个方程的解中即可.【解答】解:(1)3x﹣7x+7=3﹣2x﹣6,3x﹣7x+2x=3﹣6﹣7,﹣2x=﹣10,x=5;(2)2(2x﹣1)﹣(5﹣x)=﹣6,4x﹣2﹣5+x=﹣6,5x=1,x=0.2;(3)解:(1)第一个方程的解为x=0.5m+1;第二个方程的解为x=2﹣m,所以0.5m+1+2﹣m=0,解得m=6;(2)当m=6,第一个方程的解为x=4;第二方程的解为﹣4.26.某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 不超过2000时,甲厂的收费为0.5x+1000元,乙厂的收费为 1.5x元;(2)若x 超过2000时,甲厂的收费为1000+0.5x元,乙厂的收费为0.25x+2500元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?【考点】列代数式.【分析】(1)根据印刷费用=数量×单价可分别求得;(2)根据甲厂印刷费用=数量×单价、乙厂印刷费用=2000×1.5+超出部分的费用可得;(3)分别计算出x=8000时,甲、乙两厂的费用即可得;(4)分x≤2000和x>2000分别计算可得.【解答】解:(1)若x 不超过2000时,甲厂的收费为元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x 超过2000时,甲厂的收费为元,乙厂的收费为2000×1.5+0.25(x﹣2000)=0.25x+2500元,故答案为:1000+0.5x,0.25x+2500;(3)当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)当x≤2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.。
最新人教版2018-2019学年七年级数学上册期末模拟测试题及答案(精品试题)
![最新人教版2018-2019学年七年级数学上册期末模拟测试题及答案(精品试题)](https://img.taocdn.com/s3/m/026bb44eaf1ffc4ffe47ac7c.png)
七年级(上)期末模拟数学试卷(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1 C .1-与1 D .-12与15.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a+b>0 B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x ×80%=x -28 B .(1+50%)x ×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D6222 4 20 4 884446 ……第8题图A第8题图A.110 B.158 C.168 D.178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12xy2的系数是_________.15.若x=2是方程8-2x=ax的解,则a=_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.18.已知,a-b=2,那么2a-2b+5=_________.19.已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .共43元共94元22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x=21.24.(本小题满分7分) 解方程:513x +-216x -=1.一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)Array如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.O如图,已知线段AB 和CD 的公共部分BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元.AE DBFC第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B. 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分) 21.解:原式= -1-14×(2-9) ………………………………………………………3分=-1+47…………………………………………………………………………5分 =43 (6)分22.解:设这个角的度数为x. ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x=80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式=1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分 把x=21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x=3. …………………………………………………………6分83=x . …………………………………………………………7分 X|k |B| 1 . c|O |m25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分(3)第五次移动后这个点在数轴上表示的数是7; (3)分(4)第n次移动后这个点在数轴上表示的数是n+2; (5)分(5)54. (7)分26.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=12∠AOB=45°,………………………………………………………2分∵∠BOD=∠COD-∠BOC=90°-45°=45°,………………………………4分∠BOD=3∠DOE∴∠DOE=15,……………………………………………………………………7分∴∠COE=∠COD-∠DOE=90°-15°=75°…………………………………8分27.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.…………………………1分∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.……………………………………………3分∴EF=AC-AE-CF=2.5xcm.………………………………………………………4分∵EF=10cm,∴2.5x=10,解得:x=4. (6)分∴AB=12cm,CD=16cm. (8)分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ………………………1分由题意得:30x+45(x+4)=1755 ……………………………………………3分解得:x=21则x+4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447 (7)分解之得:y=44.5 (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分(3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.&学而不思则罔&即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗&思而不学则殆&。
最新冀教版2018-2019学年数学七年级上学期期末考试模拟测试及答案解析-精编试题
![最新冀教版2018-2019学年数学七年级上学期期末考试模拟测试及答案解析-精编试题](https://img.taocdn.com/s3/m/6dde81c77f1922791688e8e1.png)
七年级上学期期末数学试卷一、选择题:(每小题2分,共24分)1.(2分)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(2分)“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”写成算式是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2 C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+43.(2分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A.B.C.D.4.(2分)下列说法正确的是()A.xyz与xy是同类项B.与2x是同类项C.﹣0.5x3y2与2x2y3是同类项D.5m2n与﹣nm2是同类项5.(2分)下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3D.(a+b)﹣(﹣c+)=a+b+c﹣6.(2分)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.﹣xy C.7xy D.+xy7.(2分)物体的形状如图所示,则从上面看此物体形状是()A.B.C.D.8.(2分)如左图所示的正方体沿某些棱展开后,能得到的图形是()A.B.C.D.9.(2分)在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A.南偏西40度方向B.南偏西50度方向C.北偏东50度方向D.北偏东40度方向10.(2分)在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)+2(2x+3)=1 C. 3(x﹣1)+2(2+3x)=6 D.3(x﹣1)﹣2(2x+3)=611.(2分)甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5 B.7x+5=6.5x C.(7﹣6.5)x=5 D.6.5x=7x﹣512.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定二、填空题(每小题3分,共24分)13.(3分)数轴上的点A到原点的距离是6,则点A表示的数为.14.(3分)开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为.15.(3分)若方程(m2﹣1)x2+(m﹣1)x+3=0是关于x的一元一次方程,则m的值是.16.(3分)地球的表面积约是510 000 000km2,可用科学记数法表示为km2.17.(3分)已知线段AB=2cm,延长AB到点C,使BC=4cm,D为AB的中点,则线段DC=.18.(3分)已知∠α=35°19′,则∠α的补角是.19.(3分)小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是.20.(3分)某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会或都不会的人数都是5人,则只会下围棋的有人.三、解答题(本大题共72分)21.(10分)计算下列各题(1)3×(﹣2)+|﹣4|﹣(﹣1)2015;(2)(﹣+)×(﹣36)22.(10分)化简与求值:①(x2﹣5x+2)﹣(4x2+2x﹣5),其中x=﹣1;②已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当a=﹣时,求3A﹣2B+2的值.23.(10分)解方程:(1)2x﹣3=x+1;(2).24.(10分)有长为l的篱笆,利用它和房屋的一面墙围成如图长方形形状的园子,园子的宽t(单位:m).(1)用关于l,t的代数式表示园子的面积;(2)当l=20m,t=5m时,求园子的面积.(3)若墙长14m.当l=35m,甲对园子的设计是:长比宽多5m;乙对园子的设计是:长比宽多2m,你认为谁的设计符合实际?按照他的设计,园子的面积是多少?25.(10分)从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6千米的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少千米?26.(10分)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.(1)∠MON=;(2)如果∠AOB=α,∠BOC=β,其它条件不变,那么∠MON= (用含α,β的式子表示);(3)若将条件变成O是直线AC上一点,OB为一条射线,OM平分∠AOB,ON平分∠BOC,请你猜想一个结论,并说明它是正确的.27.(12分)某市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元的优惠10%;超过500元的,其中500元的部分按9折优惠,超过500元部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,一共值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?参考答案与试题解析一、选择题:(每小题2分,共24分)1.(2分)﹣3的绝对值是()A.3 B.﹣3 C.D.考点:绝对值.分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.故选:A.点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2分)“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”写成算式是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2 C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4考点:数轴.分析:根据向左为负,向右为正得出算式(﹣3)+(+1),求出即可.解答:解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(﹣3)+(+1)=﹣2,∴此时笔尖的位置所表示的数是﹣2,故选B.点评:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.3.(2分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A.B.C.D.考点:绝对值;正数和负数.专题:应用题.分析:根据题意,知绝对值最小的即为最接近标准的足球.解答:解:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,故选C.点评:此题要正确理解题意,能够正确比较绝对值的大小.4.(2分)下列说法正确的是()A.xyz与xy是同类项B.与2x是同类项C.﹣0.5x3y2与2x2y3是同类项D.5m2n与﹣nm2是同类项考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同),据此即可判断.解答:解:A、所含字母不同,选项错误;B、不是整式,选项错误;C、相同字母的次数不同,选项错误;D、正确.故选D.点评:本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2015届中考的常考点.5.(2分)下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3D.(a+b)﹣(﹣c+)=a+b+c﹣考点:去括号与添括号.分析:根据去括号与添括号的法则逐一计算即可.解答:解:A、x﹣(3y﹣)=x﹣3y+,正确;B、m+(﹣n+a﹣b)=m﹣n+a﹣b,正确;C、﹣(4x﹣6y+3)=﹣2x+3y﹣,故错误;D、(a+b)﹣(﹣c+)=a+b+c﹣,正确.故选C.点评:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.6.(2分)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.﹣xy C.7xy D.+xy考点:整式的加减.专题:应用题.分析: 本即可题考查整式的减法运算,将“(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x2+y 2”中左边的整式减去右边的x 2+y 2.解答: 解:由题意得:(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)+x 2﹣y 2=﹣x 2+3xy ﹣y 2+x 2﹣4xy+y 2+x 2﹣y 2=﹣xy . 故选B .点评: 整式的加减运算实际上就是去括号、合并同类项,这是各地2015届中考的常考点.7.(2分)物体的形状如图所示,则从上面看此物体形状是()A .B .C .D .考点: 简单组合体的三视图.分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 解答: 解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形. 故选C .点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(2分)如左图所示的正方体沿某些棱展开后,能得到的图形是()A .B .C .D .考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、C都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是B.故选B.点评:解决此类问题,要充分考虑带有各种符号的面的特点及位置.9.(2分)在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A.南偏西40度方向B.南偏西50度方向C.北偏东50度方向D.北偏东40度方向考点:方向角.专题:应用题.分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.解答:解:灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的南偏西40度的方向.故选A.点评:解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.10.(2分)在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)+2(2x+3)=1 C. 3(x﹣1)+2(2+3x)=6 D.3(x﹣1)﹣2(2x+3)=6考点:解一元一次方程.专题:常规题型.分析:方程两边都乘以分母的最小公倍数即可.解答:解:两边都乘以6得,3(x﹣1)﹣2(2x+3)=6.故选D.点评:本题主要考查了解一元一次方程的去分母,需要注意,没有分母的也要乘以分母的最小公倍数.11.(2分)甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5 B.7x+5=6.5x C.(7﹣6.5)x=5 D.6.5x=7x﹣5考点:由实际问题抽象出一元一次方程.专题:行程问题.分析:等量关系为:甲x秒跑的路程=乙x秒跑的路程+5,找到相应的方程或相应的变形后的方程即可得到不正确的选项.解答:解:乙跑的路程为5+6.5x,∴可列方程为7x=6.5x+5,A正确,不符合题意;把含x的项移项合并后C正确,不符合题意;把5移项后D正确,不符合题意;故选B.点评:追及问题常用的等量关系为:两人走的路程相等.12.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定考点:一元一次方程的应用.分析:此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.解答:解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.点评:本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.二、填空题(每小题3分,共24分)13.(3分)数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6.考点:数轴.分析:根据数轴的点上到一点距离相等的点有两个,可得答案.解答:解:数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6,故答案为:6或﹣6.点评:本题考查了数轴,互为相反数的绝对值相等是解题关键.14.(3分)开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为两点确定一条直线.考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据直线的确定方法,易得答案.解答:解:根据两点确定一条直线.故答案为:两点确定一条直线.点评:本题考查直线的确定:两点确定一条直线.15.(3分)若方程(m2﹣1)x2+(m﹣1)x+3=0是关于x的一元一次方程,则m的值是﹣1.考点:一元一次方程的定义.分析:根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程可得m2﹣1=0,m﹣1≠0,再解即可.解答:解:由题意得:m2﹣1=0,m﹣1≠0,解得:m=﹣1,故答案是:﹣1.点评:此题主要考查了一元一次方程的定义,一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.16.(3分)地球的表面积约是510 000 000km2,可用科学记数法表示为5.1×108km2.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:510 000 000=5.1×108km2.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.(3分)已知线段AB=2cm,延长AB到点C,使BC=4cm,D为AB的中点,则线段DC=5cm.考点:两点间的距离.专题:计算题.分析:先根据题意找出各点的位置,然后直接计算即可.解答:解:画出图形如下所示:则DC=DB+BC=AB+BC=1+4=5cm.故答案为:5cm.点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.18.(3分)已知∠α=35°19′,则∠α的补角是144°41′.考点:余角和补角;度分秒的换算.分析:根据互为补角的两个角的和等于180°列式计算即可得解.解答:解:∵∠α=35°19′,∴∠α的补角=180°﹣35°19′=144°41′.故答案为:144°41′.点评:本题考查了余角和补角,熟记概念是解题的关键,计算时要注意度分秒是60进制.19.(3分)小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是3,4,10,11.考点:一元一次方程的应用.分析:设左上角的数字为x,其他的数为x+1,x+7,x+8,根据题意列出方程,求出方程的解即可得到结果;解答:解:设左上角的数字为x,其他的数为x+1,x+7,x+8,根据题意得:x+x+1+x+7+x+8=28,整理得:4x=12,解得:x=3,则这4个数分别为3,4,10,11;故答案为:3,4,10,11.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.(3分)某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会或都不会的人数都是5人,则只会下围棋的有10人.考点:一元一次方程的应用.分析:设会下围棋的人数是x人,则会下象棋的人数为3.5x人,又因为两种棋都会及两种棋都不会的人数都是5人,则可知:会下围棋的人数+会下象棋的人数+两种棋都不会的人数﹣两种棋都会的人数=总人数.即可列出程求解.解答:解:设会下围棋的人数是x人.根据题意得:x+3.5x﹣5+5=45,解得:x=10.答;会下围棋的人数是10人.故答案为:10.点评:考查了一元一次方程的应用,解题的关键是注意会下围棋的会下象棋的人数重复了5人,难度不大.三、解答题(本大题共72分)21.(10分)计算下列各题(1)3×(﹣2)+|﹣4|﹣(﹣1)2015;(2)(﹣+)×(﹣36)考点:有理数的混合运算.分析:(1)先算乘方,绝对值与乘法,再算加减;(2)利用乘法分配律简算.解答:解:(1)原式=﹣6+4﹣(﹣1)=﹣2+1=﹣1;(2)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣28+33﹣6=﹣1.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.22.(10分)化简与求值:①(x2﹣5x+2)﹣(4x2+2x﹣5),其中x=﹣1;②已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当a=﹣时,求3A﹣2B+2的值.考点:整式的加减—化简求值;整式的加减.专题:计算题.分析:①原式去括号合并得到最简结果,把x的值代入计算即可求出值;②(1)把A与B代入3A﹣2B+2中,去括号合并得到最简结果;(2)把a的值代入计算即可求出值.解答:解:①原式=x2﹣5x+2﹣4x2﹣2x+5=﹣3x2﹣7x+7,当x=﹣1时,原式=﹣3×(﹣1)2﹣7×(﹣1)+7=11;②(1)3A﹣2B+2=3(2a2﹣a)﹣2(﹣5a+1)+2=6a2﹣3a+10a﹣2+2=6a2+7a;(2)当a=﹣时;3A﹣2B+2=6×(﹣)2+7×(﹣)=﹣2.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(10分)解方程:(1)2x﹣3=x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)移项得:2x﹣x=1+3,解得:x=4;(2)去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项合并得:﹣5x=﹣5,解得:x=1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.(10分)有长为l的篱笆,利用它和房屋的一面墙围成如图长方形形状的园子,园子的宽t(单位:m).(1)用关于l,t的代数式表示园子的面积;(2)当l=20m,t=5m时,求园子的面积.(3)若墙长14m.当l=35m,甲对园子的设计是:长比宽多5m;乙对园子的设计是:长比宽多2m,你认为谁的设计符合实际?按照他的设计,园子的面积是多少?考点:列代数式;代数式求值.分析:(1)表示出长,利用长方形的面积列出算式即可;(2)把数值代入(1)中的代数式求得答案即可;(3)根据墙的长度限制,注意代入计算,比较得出答案即可.解答:解:(1)园子的面积为t(l﹣2t);(2)当l=20m,t=5m时,园子的面积为5×=50;(3)甲:35﹣2t﹣t=5,t=10,35﹣2t=15>14,不合题意;乙:35﹣2t﹣t=2,t=11,35﹣2t=13,面积为11×13=143.答:乙的设计符合实际,按照他的设计,园子的面积是143.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.25.(10分)从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6千米的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少千米?考点:二元一次方程组的应用.分析:设平路x千米,山路y千米,从营地回学校用了55分钟,从学校回营地用了1小时10分钟可得出方程组,解出即可.解答:解:设平路x千米,山路y千米,由题意得,,解得:,故夏令营到学校有3+6=9千米.答:夏令营到学校有9千米.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.26.(10分)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.(1)∠MON=60°;(2)如果∠AOB=α,∠BOC=β,其它条件不变,那么∠MON=(α+β)(用含α,β的式子表示);(3)若将条件变成O是直线AC上一点,OB为一条射线,OM平分∠AOB,ON平分∠BOC,请你猜想一个结论,并说明它是正确的.考点:角的计算;角平分线的定义.专题:计算题.分析:(1)根据角平分线的定义得到∠BOM=∠AOB=45°,∠NOB=∠BOC=15°,则∠MON=∠BOM+∠BON=60°;(2)同理得到∠BOM=∠AOB=α,∠NOB=∠BOC=β,则∠MON=∠BOM+∠BON=α+β=(α+β);(3)由O是直线AC上一点得到∠AOC=180°,根据角平分线的定义得到∠BOM=∠AOB,∠NOB=∠BOC,所以∠MON=∠BOM+∠BON=(∠AOB+∠BOC)=∠AOC.解答:解(1)∵∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,∴∠BOM=∠AOB=45°,∠NOB=∠BOC=15°,∴∠MON=∠BOM+∠BON=60°;(2)∵∠BOM=∠AOB=α,∠NOB=∠BOC=β,∴∠MON=∠BOM+∠BON=α+β=(α+β);(3)∠MON=90°.理由如下:∵O是直线AC上一点,∴∠AOC=180°,∵OM平分∠AOB,ON平分∠BOC,∴∠BOM=∠AOB,∠NOB=∠BOC,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOC)=∠AOC=90°.点评:本题考查了角度的计算:∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC;∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC.27.(12分)某市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元的优惠10%;超过500元的,其中500元的部分按9折优惠,超过500元部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,一共值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?考点:一元一次方程的应用.分析:(1)根据“超过200元而不足500元的优惠10%”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x元的货物,首先享受500新课标-----最新冀教版元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可所出此人第二次购物不打折的花费;(2)节省的钱数=不打折花费﹣实际交费;(3)(用两次购物的不打折的消费﹣500元)×80%+500×90%,可算出两次购物合为一次购买实际应付费用,再与他两次购物所交的费用进行比较即可.解答:解(1)∵200×90%=180>134,∴购134元的商品未优惠…(1分)又∵500×90%=450<466,∴购466元的商品给了两项优惠设其售价为x元500×90%+(x﹣500)×80%=466,解得x=520,134+520=654(元).答:此人两次购物其物品如果不打折,一共值654元…(7分)(2)654﹣(134+466)=54(元).答:节省54元.(3)500×90%+(654﹣500)×80%=573.2(元)134+466﹣573.2=26.8(元).若此人将两次购物合为一次购物更省钱;点评:此题主要考查了一元一次方程的应用,实际生活中的折扣问题,关键是运用分类讨论的思想:分析清楚付款打折的两种情况.。
2018-2019学年七年级(上)月考数学试卷(9月份)含解析
![2018-2019学年七年级(上)月考数学试卷(9月份)含解析](https://img.taocdn.com/s3/m/14c6744a783e0912a3162a18.png)
2018-2019学年七年级(上)月考数学试卷A卷一、选择题(共10小题,每小题3分,满分30分)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.地球的表面积约是510 000 000千米2,用科学记数法表示为()A.51×107千米2B.5.1×107千米2C.5.1×108千米2D.0.51×109千米23.如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.ab>0 D.|b|<|a| 4.下列说法中,正确的是()A.在数轴上表示﹣a的点一定在原点的左边B.有理数a的倒数是C.一个数的相反数一定小于或等于这个数D.如果|a|=﹣a,那么a是负数或零5.在(﹣2),﹣22,+(﹣10),﹣,﹣0,﹣|﹣4|中,负整数有()A.4个B.3个C.2个D.1个6.下列比较大小结果正确的是()A.﹣3<﹣4 B.﹣(﹣2)<|﹣2| C.D.7.若a+b<0,ab<0,则下列判断正确的是()A.a,b都是正数B.a,b都是负数C.a,b异号且负数的绝对值大D.a,b异号且正数的绝对值大8.下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣(﹣3)2与﹣(﹣2)39.计算(﹣2)200+(﹣2)201的结果是()A.﹣2 B.﹣2200C.1 D.220010.若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1 B.1 C.﹣2 D.二.填空题(共4小题,共16分)11.﹣5的相反数是,倒数是,绝对值是.12.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是.13.比﹣1大而不大于3的所有整数的和为.14.已知|x|=|﹣3|,则x的值为.三、解答题(共54分)15.计算:(1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7)(2)(+5)+(﹣3)+(﹣6)+(﹣15)(3)|﹣6|+(﹣8)+|﹣3﹣|(4)78×(﹣)+(﹣11)×(﹣)+(﹣33)×0.6(5)(﹣2)2010×(﹣0.5)2009+(﹣6)×7(6)﹣14﹣×[2﹣(﹣3)﹣2]16.在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.17.已知a、b互为相反数,c、d互为倒数,x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.18.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.19.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?20.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了 1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油 1.5升,那么这辆货车此次送货共耗油多少升?B卷一.填空题(共5小题,每小题4分,满分20分)21.若|a|=8,|b|=5,且a+b>0,那么a﹣b=.22.22015×()2016=.23.若0<a<1,则a2,,a按从小到大排列为.24.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=.25.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有(写出所有正确结论的序号).二、解答题(共30分)26.计算:(1)(2)27.阅读下列材料:计算5÷(﹣+)解法一:原式=5÷﹣5÷+5÷=5×3﹣5×4+5×12=55解法二:原式=5÷(﹣+)=5÷=5×6=30解法三:原式的倒数=(﹣+)÷5=(﹣+)×=×﹣×+×=∴原式=30(1)上述的三种解法中有错误的解法,你认为解法是错误的(2)通过上述解题过程,请你根据解法三计算(﹣)÷(﹣﹣+)参考答案与试题解析A卷一.选择题(共10小题)1.﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.地球的表面积约是510 000 000千米2,用科学记数法表示为()A.51×107千米2B.5.1×107千米2C.5.1×108千米2D.0.51×109千米2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:510 000 000=5.1×108.故选:C.3.如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.ab>0 D.|b|<|a|【分析】先由数轴知,b<0,a>0,再根据有理数的加法、乘法法则及绝对值的定义对各选项进行判定.【解答】解:由图可知,b<0,a>0|.A、∵b<0,a>0,且|a|<|b|,根据有理数的加法法则,得出a+b<0,错误;B、正确;C、∵b<0,a>0,∴ab<0,错误;D、根据绝对值的定义,得出|a|<|b|,错误.故选:B.4.下列说法中,正确的是()A.在数轴上表示﹣a的点一定在原点的左边B.有理数a的倒数是C.一个数的相反数一定小于或等于这个数D.如果|a|=﹣a,那么a是负数或零【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【解答】解:A、如果a<0,那么在数轴上表示﹣a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a的倒数才是,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果|a|=﹣a,那么a是负数或零是正确.故选:D.5.在(﹣2),﹣22,+(﹣10),﹣,﹣0,﹣|﹣4|中,负整数有()A.4个B.3个C.2个D.1个【分析】首先化简各数,进而利用负整数的定义化简得出答案.【解答】解:(﹣2)=﹣2,﹣22=﹣4,+(﹣10)=﹣10,﹣,﹣0=0,﹣|﹣4|=﹣4中负整数有:4个.故选:A.6.下列比较大小结果正确的是()A.﹣3<﹣4 B.﹣(﹣2)<|﹣2| C.D.【分析】这道题首先要化简后才能比较大小.根据有理数大小比较的方法易求解.【解答】解:化简后再比较大小.A、﹣3>﹣4;B、﹣(﹣2)=2=|﹣2|=2;C、<﹣;D、|﹣|=>﹣.故选:D.7.若a+b<0,ab<0,则下列判断正确的是()A.a,b都是正数B.a,b都是负数C.a,b异号且负数的绝对值大D.a,b异号且正数的绝对值大【分析】依据有理数的加法和乘法法则,即可得到答案.【解答】解:因为ab<0,所以a,b异号,又a+b<0,所以负数的绝对值比正数的绝对值大.故选:C.8.下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣(﹣3)2与﹣(﹣2)3【分析】根据有理数乘方的法则对个选项的值进行逐一判断,找出数值相同的项.【解答】解:A、根据有理数乘方的法则可知,(﹣2)7=﹣27,故A选项符合题意;B、﹣32=﹣9,(﹣3)2=9,故B选项不符合题意;C、﹣3×23=﹣24,﹣32×2=﹣18,故C选项不符合题意;D、﹣(﹣3)2=﹣9,﹣(﹣2)3=8,故D选项不符合题意.故选:A.9.计算(﹣2)200+(﹣2)201的结果是()A.﹣2 B.﹣2200C.1 D.2200【分析】根据有理数乘方运算的性质,结合乘方的分配律计算.【解答】解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.10.若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1 B.1 C.﹣2 D.【分析】根据非负数的性质列出方程组求出x、y的值,代入所求代数式计算即可.【解答】解:∵|m+1|+(n﹣2)2=0,∴,解得,∴m n=(﹣1)2=1.故选:B.二.填空题(共4小题)11.﹣5的相反数是 5 ,倒数是﹣,绝对值是 5 .【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,﹣5的相反数为5,根据倒数的定义,互为倒数的两数乘积为1,﹣5×(﹣)=1,根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣5的绝对值为5.【解答】解:根据相反数、绝对值和倒数的定义得:﹣5的相反数为5,﹣5×(﹣)=1,因此倒数是﹣,﹣5的绝对值为5,故答案为5,﹣,5.12.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是1或﹣5 .【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:在数轴上与表示﹣2的点距离3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.13.比﹣1大而不大于3的所有整数的和为 6 .【分析】根据比﹣1大而不大于3的所有整数,可得0,1,2,3,再根据有理数的加法,可得答案.【解答】解:比﹣,1大而不大于3的所有整数的和0+1+2+3=6.故答案为:6.14.已知|x|=|﹣3|,则x的值为±3 .【分析】根据题意可知|x|=3,由绝对值的性质,即可推出x=±3.【解答】解:∵|﹣3|=3,∴|x|=3,∵|±3|=3,∴x=±3.故答案为±3.三.解答题(共6小题)15.计算:(1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7)(2)(+5)+(﹣3)+(﹣6)+(﹣15)(3)|﹣6|+(﹣8)+|﹣3﹣|(4)78×(﹣)+(﹣11)×(﹣)+(﹣33)×0.6(5)(﹣2)2010×(﹣0.5)2009+(﹣6)×7(6)﹣14﹣×[2﹣(﹣3)﹣2]【分析】(1)先同号相加,再异号相加即可求解;(2)先算同分母分数,再相加即可求解;(3)先算绝对值,再算同分母分数,再相加即可求解;(4)根据乘法分配律简便计算;(5)根据积的乘方简便计算;(6)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7)=(﹣5)+(﹣3)+(﹣9)﹣(﹣7)=﹣(5+3+9)+7=﹣10;(2)(+5)+(﹣3)+(﹣6)+(﹣15)=(+5﹣6)+[(﹣3)+(﹣15)]=﹣+(﹣19)=﹣19;(3)|﹣6|+(﹣8)+|﹣3﹣|=6﹣2+(﹣8)+3=6+(﹣2+3)+(﹣8)=6+1+(﹣8)=6﹣7=﹣;(4)78×(﹣)+(﹣11)×(﹣)+(﹣33)×0.6 =78×(﹣)+(﹣11)×(﹣)+(﹣33)×=×(﹣78+11﹣33)=×(﹣100)=﹣60;(5)(﹣2)2010×(﹣0.5)2009+(﹣6)×7=[(﹣2)×(﹣0.5)]2009×(﹣2)+(﹣)×7=﹣2﹣=﹣50;(6)﹣14﹣×[2﹣(﹣3)﹣2]=﹣1﹣×[2﹣9]=﹣1﹣×(﹣7)=﹣1+=.16.在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.【分析】首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.【解答】解:如图所示:,﹣|﹣4|<﹣|﹣2|<﹣1<0.5<﹣(﹣2)<﹣(﹣3)<3.5.17.已知a、b互为相反数,c、d互为倒数,x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.【分析】利用相反数,倒数的性质求出a+b,cd的值,确定出x的值,代入原式计算即可得到结果.【解答】解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵x是最小的正整数,∴x=1,∴x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008=12﹣(0+1)×1+02008+(﹣1)2008=1.18.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.【分析】(1)首先根据﹣a与a,﹣b与b互为相反数,﹣a与a,﹣b与b表示的点关于原点对称,在数轴上标出﹣a,﹣b的位置;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较a,b,﹣a,﹣b的大小即可.(2)根据有理数a,b在数轴上的位置,可得a>0>b,而且|a|<|b|,所以a+b<0,a ﹣b>0,据此化简|a+b|+|a﹣b|即可.【解答】解:(1)如图所示:,b<﹣a<a<﹣b.(2)∵a>0>b,而且|a|<|b|,∴a+b<0,a﹣b>0,∴|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b19.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?【分析】把8个数相加,然后根据有理数的加法运算法则进行计算,计算后根据正负情况判断盈亏情况.【解答】解:3﹣2﹣3+1﹣3﹣1+0﹣2=﹣7(元),60×8﹣7=473,473﹣400=73(元)所以,当他卖完这8套儿童服装后是盈利了,盈利73元.20.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了 1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油 1.5升,那么这辆货车此次送货共耗油多少升?【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.B卷一.填空题(共5小题)21.若|a|=8,|b|=5,且a+b>0,那么a﹣b=3或13 .【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.22.22015×()2016=.【分析】根据积的乘方进行逆运用,即可解答.【解答】解:22015×()2016==.故答案为:.23.若0<a<1,则a2,,a按从小到大排列为a2<a<.【分析】取a=,求出a2和的值,再比较即可.【解答】解:∵0<a<1,∴取a=,∴a2,=,=2,∴a2<a<,故答案为:a2<a<.24.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=﹣2c.【分析】由已知的等式判断出a,b及c的正负,进而确定出a+b,a﹣c与b﹣c的正负,利用绝对值的代数意义化简,即可得到结.【解答】解:∵|a|=﹣a,=﹣1,即|b|=﹣b,|c|=c,∴a≤0,b<0,c≥0,∴a+b≤0,a﹣c≤0,b﹣c≤0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c.故答案为:﹣2c.25.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有①③(写出所有正确结论的序号).【分析】根据[x]表示不超过x的最大整数,即可解答.【解答】解:①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,0<﹣x+1≤2,∴[x+1]=0或1,[﹣x+1]=0或1或2,当[x+1]=1时,[﹣x+1]=2;当[﹣x+1]=1时,[﹣x+1]=1或0;所以[x+1]+[﹣x+1]的值为1、2,故错误.故答案为:①③.二.解答题(共2小题)26.计算:(1)(2)【分析】(1)=1﹣,=﹣,=﹣,…,=﹣(2)1=2(1﹣),=2(﹣),=2(﹣),…,=2(﹣)【解答】解:(1)∵=1﹣,=﹣,=﹣,…,=﹣∴原式=1﹣+﹣+﹣+…+﹣=1﹣=;(2)∵1=2(1﹣),=2(﹣),=2(﹣),…,=2(﹣)∴原式=2(1﹣)+2(﹣)+2(﹣)+…+2(﹣)=2[(1﹣)+(﹣)+(﹣)+…+(﹣)]=2[1﹣+﹣+﹣+…+﹣]=2[1﹣]=.27.阅读下列材料:计算5÷(﹣+)解法一:原式=5÷﹣5÷+5÷=5×3﹣5×4+5×12=55解法二:原式=5÷(﹣+)=5÷=5×6=30解法三:原式的倒数=(﹣+)÷5=(﹣+)×=×﹣×+×=∴原式=30(1)上述的三种解法中有错误的解法,你认为解法一是错误的(2)通过上述解题过程,请你根据解法三计算(﹣)÷(﹣﹣+)【分析】(1)根据运算律即可判断;(2)类比解法三计算可得.【解答】解:(1)由于除法没有分配律,所以解法一是错误的,故答案为:一;(2)原式的倒数=(﹣﹣+)÷(﹣)=(﹣﹣+)×(﹣42)=×(﹣42)﹣×(﹣42)﹣×(﹣42)+×(﹣42)=﹣7+9+28﹣18=12,∴原式=.。
2018-2019学年最新冀教版七年级数学上册期末模拟试卷及答案解析-精编试题
![2018-2019学年最新冀教版七年级数学上册期末模拟试卷及答案解析-精编试题](https://img.taocdn.com/s3/m/09b28c2af111f18583d05a2d.png)
七年级上学期期末数学试卷一、单项选择题:每小题3分,共30分.1.(3分)下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)2 D.2与|﹣2|2.(3分)如果一个有理数的绝对值是5,那么这个数一定是()A.5 B.﹣5 C.﹣5或5 D.以上都不对3.(3分)实数a、b在数轴上的对应点如图所示,则下列不等式中错误的是()A.a+b<0 B.ab<0 C.a﹣b<0 D.<04.(3分)下列说法正确的是()A.任何有理数的平方都是正数B.任何有理数的立方都是负数C.若一个数的奇次幂是负数,那么这个数必定是负数D.若一个数的偶次幂是正数,那么这个数必定是正数5.(3分)若m=2,|n|=3,则m+n=()A.5 B.﹣5 C.﹣1或5 D. 1或56.(3分)在代数式,2πx2y,,﹣5,a中,单项式的个数是()A.2个B.3个C.4个D. 5个7.(3分)某商店有两种进价不同的商品都卖了60元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赔了5元C.赚了5元D.赚了20元8.(3分)若与互为相反数,则a=()A.B.10 C. D.﹣109.(3分)如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB 等于()A.50°B.75°C.100°D.120°10.(3分)若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这个几何体最多可由多少个这样的正方体组成?()A.12个B.13个C.14个D. 18个二、填空题:每小题3分,共30分.11.(3分)如果一个数的倒数等于它本身,则这个数是.12.(3分)在数轴上距2.5有3.5个单位长度的点所表示的数是.13.(3分)一个角的余角比它的补角的还少40°,则这个角的度数为度.14.(3分)若线段AB=8,BC=3,且A,B,C三点在一条直线上,那么AC=.15.(3分)如果4a2﹣a﹣3=8,则6+2a﹣8a2=.16.(3分)不大于3的所有非负整数的积是.17.(3分)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)18.(3分)已知单项式3a m b2与﹣a3b n﹣1的和是单项式,那么m=,n=.19.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是.20.(3分)下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,通过观察可以发现:第n个图形中火柴棒的根数是.三、解答题:21.(8分)计算:(1)﹣1100﹣×[3﹣(﹣3)2].(2)×(﹣5)+(﹣)×9﹣×8.22.(8分)化简求值:(1)当x=2,y=时,求x﹣2(x﹣y)+(﹣x+y)的值.(2)已知:|x+2|+(y﹣1)2=0,求代数式x3﹣2x2y+x3+3x2y+8xy2+7﹣8xy2的值.23.(10分)如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.24.(10分)某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?25.(12分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(12分)初一(1)班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,而且定价也都相同.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案与试题解析一、单项选择题:每小题3分,共30分.1.(3分)下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)2 D.2与|﹣2|考点:有理数的乘方;相反数;绝对值.分析:两数互为相反数,它们的和为0.本题可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.解答:解:A、2+=;B、(﹣1)2+1=2;C、﹣1+(﹣1)2=0;D、2+|﹣2|=4.故选C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.(3分)如果一个有理数的绝对值是5,那么这个数一定是()A.5 B.﹣5 C.﹣5或5 D.以上都不对考点:绝对值.分析:根据绝对值的性质,即可求出这个数.解答:解:如果一个有理数的绝对值是5,那么这个数一定是﹣5或5.故选C.点评:本题考查了绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.(3分)实数a、b在数轴上的对应点如图所示,则下列不等式中错误的是()A.a+b<0 B.ab<0 C.a﹣b<0 D.<0考点:实数与数轴.分析:先根据数轴判断出a、b的正负情况,然后根据有理数的加、减、乘、除运算法则对各选项分析判断利用排除法求解.解答:解:由图可知,a<0<b,且|a|<|b|.A、a+b>0,故本选项错误,符合题意;B、ab<0,故本选项正确,不符合题意;C、a﹣b<0,故本选项正确,不符合题意;D、<0,故本选项正确,不符合题意.故选A.点评:本题考查了实数与数轴,有理数的加、减、乘、除运算,熟记运算法则是解题的关键.4.(3分)下列说法正确的是()A.任何有理数的平方都是正数B.任何有理数的立方都是负数C.若一个数的奇次幂是负数,那么这个数必定是负数D.若一个数的偶次幂是正数,那么这个数必定是正数考点:有理数的乘方.专题:计算题.分析:原式各项利用乘方的意义判断即可得到结果.解答:解:A、任何有理数的平方都为非负数,错误;B、任何有理数的立方可以为正数,负数,以及0,错误;C、若一个数的奇次幂是负数,那么这个数必定是负数,正确;D、若一个数的偶次幂是正数,那么这个数不一定是正数,错误,故选C.点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.5.(3分)若m=2,|n|=3,则m+n=()A.5 B.﹣5 C.﹣1或5 D. 1或5考点:有理数的加法;绝对值.分析:根据绝对值相等的数有两个,可得n,根据m、n,可得m+n的值.解答:解:∵|n|=3,∴n=±3,m=2,n=3时,m+n=5,m=2,n=﹣3时,m+n=﹣1.故选:C.点评:本题考查了有理数的加法,先由绝对值求出数,再把数分别相加,注意不能遗漏.6.(3分)在代数式,2πx2y,,﹣5,a中,单项式的个数是()A.2个B.3个C.4个D. 5个考点:单项式.专题:常规题型.分析:单项式就是数与字母的乘积,以及单独的数与单独的字母都是单项式,根据定义即可判断.解答:解:是单项式的有:2πx2y、﹣5、a,共有3个.故选B.点评:本题主要考查了单项式的定义,根据定义可以得到:单项式中不含加号,等号,不等号.理解定义是关键.7.(3分)某商店有两种进价不同的商品都卖了60元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赔了5元C.赚了5元D.赚了20元考点:一元一次方程的应用.分析:根据题意先求出盈利50%的数值和亏本20%,然后计算两次的总数和.解答:解:设盈利50%的进价为x,则x(1+50%)=60,解得x=40元.设盈亏本20%的进价为y,则y(1﹣20%)=60,解得y=75元.所以两个商品进价和为40+75=115,卖价之和为2×60=120.所以120﹣115=5元.故在这次买卖中,这家商店赚了5元.故选C.点评:本题主要考查了不等关系的判断,利用盈利和亏本分别求出两件商品的进价是解决本题的关键.8.(3分)若与互为相反数,则a=()A.B.10 C. D.﹣10考点:解一元一次方程.专题:计算题.分析:先根据互为相反数的定义列出方程,然后根据一元一次方程的解法,去分母,移项,化系数为1,从而得到方程的解.解答:解:根据题意得,+=0,去分母得,a+3+2a﹣7=0,移项得,a+2a=7﹣3,合并同类项得,3a=4,系数化为1得,a=.故选A.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.9.(3分)如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB 等于()A.50°B.75°C.100°D.120°考点:角的计算;角平分线的定义.专题:计算题.分析:根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.解答:解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.点评:本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.10.(3分)若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这个几何体最多可由多少个这样的正方体组成?()A.12个B.13个C.14个D. 18个考点:由三视图判断几何体.分析:假设观察者面向北,此时正南方向看的就是主视图,正西方向看到的就是左视图.主视图、左视图是分别从物体正面、左面看,所得到的图形.综合这个几何体的主视图和左视图,即可得到结果.解答:解:假设观察者面向北,此时正南方向看的就是主视图,正西方向看到的就是左视图,由主视图和左视图宽度可知,该几何体的俯视图应该在如图1所示3×3的范围内.由于主视图两旁两列有两层小方格,中间一列1层小立方体,因此俯视图区域内每个方格内小正方体最多个数如图2所示.由左视图信息,可知俯视图区域内每个方格内小正方体最多个数如图3所示.综合图3、图4信息可知俯视图区域内每个方格内小正方体最多个数如图4所示.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:每小题3分,共30分.11.(3分)如果一个数的倒数等于它本身,则这个数是±1.考点:倒数.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1.故答案为:±1.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.12.(3分)在数轴上距2.5有3.5个单位长度的点所表示的数是﹣1或6.考点:数轴.分析:分在2.5的左边和右边两种情况讨论求解.解答:解:若点在2.5的左边,则2.5﹣3.5=﹣1,若点在2.5的右边,则2.5+3.5=6,所以,这个点所表示的数是﹣1或6.故答案为:﹣1或6.点评:本题考查了数轴,难点在于要分情况讨论.13.(3分)一个角的余角比它的补角的还少40°,则这个角的度数为30度.考点:余角和补角.专题:计算题.分析:根据余角、补角的定义计算.解答:解:设这个角是α,根据题意可得:90°﹣α=(180°﹣α)﹣40°,解可得α=30°点评:此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出方程求解.14.(3分)若线段AB=8,BC=3,且A,B,C三点在一条直线上,那么AC=5或11.考点:两点间的距离.分析:根据题意画出符合图形的两种情况,求出即可.解答:解:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB﹣BC=8﹣3=5;故答案为:5或11.点评:本题考查了两点之间的距离的应用,注意要进行分类讨论啊.15.(3分)如果4a2﹣a﹣3=8,则6+2a﹣8a2=﹣16.考点:代数式求值.分析:已知等式变形得到4a2﹣a的值,原式变形后代入计算即可求出值.解答:解:∵4a2﹣a﹣3=8,即4a2﹣a=11,∴原式=6﹣2(4a2﹣a)=6﹣22=﹣16.故答案为:﹣16点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.(3分)不大于3的所有非负整数的积是0.考点:有理数的乘法.专题:计算题.分析:找出不大于3的所有非负整数,求出之积即可.解答:解:不大于3的所有非负整数为0,1,2,3,之积为0,故答案为:0点评:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.17.(3分)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是n﹣m.(用含m,n的式子表示)考点:数轴.分析:注意数轴上两点间的距离等于较大的数减去较小的数,又数轴上右边的总大于左边的数,故A,B间的距离是n﹣m.解答:解:∵n>0,m<0∴它们之间的距离为:n﹣m.故答案为:n﹣m.点评:明确数轴上两点间的距离公式,同时注意数轴上右边的数>左边的数.18.(3分)已知单项式3a m b2与﹣a3b n﹣1的和是单项式,那么m=3,n=3.考点:合并同类项.分析:根据合并式单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.解答:解:由单项式3a m b2与﹣a3b n﹣1的和是单项式,得单项式3a m b2与﹣a3b n﹣1是同类项,得m=3,n﹣1=2.解得m=3,n=3,故答案为:3,3.点评:本题考查了合并同类项,合并是单项式得出同类项是解题关键.19.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是欢.考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“京”与“你”相对,面“迎”与面“北”相对,“欢”与面“空白”相对.故答案为:欢.点评:本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.20.(3分)下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,通过观察可以发现:第n个图形中火柴棒的根数是3n+1.考点:规律型:图形的变化类.专题:规律型.分析:看第n个图形中火柴棒的根数是在4的基础上增加几个3即可.解答:解:第1个图形中有4根火柴棒;第2个图形中有4+3=7根火柴棒;第3个图形中有4+3×2=10根火柴棒;…第n个图形中火柴棒的根数有4+3×(n﹣1)=(3n+1)根火柴棒,故答案为3n+1.点评:考查图形的变化规律;得到火柴棒的根数是在4基础上增加几个3的关系是解决本题的关键.三、解答题:21.(8分)计算:(1)﹣1100﹣×[3﹣(﹣3)2].(2)×(﹣5)+(﹣)×9﹣×8.考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣1﹣×(3﹣9)=﹣1+2=1;(2)原式=×(﹣5﹣9﹣8)=×(﹣22)=﹣7.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(8分)化简求值:(1)当x=2,y=时,求x﹣2(x﹣y)+(﹣x+y)的值.(2)已知:|x+2|+(y﹣1)2=0,求代数式x3﹣2x2y+x3+3x2y+8xy2+7﹣8xy2的值.考点:整式的加减—化简求值.分析:(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据非负数的性质,可得x、y的值,根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)原式=x﹣2x+y﹣x+y=﹣3x+2y,当x=2,y=时,原式=﹣3×2+2×=﹣6+=﹣;(2)由|x+2|+(y﹣1)2=0,得x=﹣2,y=1,原式=x3+x2y+7,当x=﹣2,y=1时,原式=(﹣2)3+(﹣2)2×1+7=1.点评:本题考查了整式的化简求值,去括号是解题关键,括号前是正数去括号不变号,括号前是负数去括号要变号.23.(10分)如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.考点:比较线段的长短.专题:计算题.分析:因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC可求.解答:解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.点评:利用中点性质转化线段之间的倍分关系是解题的关键,本题点M是AC的中点,则有MC=AM=AC,还利用了两条线段成比例求解.24.(10分)某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?考点:一元一次方程的应用.专题:应用题.分析:先判断出4月份所用煤气一定超过60m3,等量关系为:60×0.8+超过60米的立方数×1.2=0.88×所用的立方数,设4月份用了煤气x立方米,从而得出方程求解即可.解答:解:由4月份煤气费平均每立方米0.88元,可得4月份用煤气一定超过60m3,设4月份用了煤气x立方米,由题意得:60×0.8+(x﹣60)×1.2=0.88×x,解得:x=75(立方米),则所交煤气费=75×0.88=66元.答:4月份这位用户应交煤气费66元.点评:本题考查用一元一次方程解决实际问题,判断出煤气量在60m3以上是解决本题的突破点,得到煤气费的等量关系是解决本题的关键.25.(12分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为3;(2)写出第二次移动结果这个点在数轴上表示的数为4;(3)写出第五次移动后这个点在数轴上表示的数为7;(4)写出第n次移动结果这个点在数轴上表示的数为n+2;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.考点:规律型:数字的变化类;数轴.专题:规律型.分析:(1)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位,实际上点A最后向左移动了1个单位,则第一次后这个点表示的数为1+2=3;(2)第二次先向左移动3个单位,再向右移动4个单位,实际上点A最后向左移动了1个单位,则第二次后这个点表示的数为2+2=4;(3)根据前面的规律得到第五次移动后这个点在数轴上表示的数是5+2=7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)由(4)得到第m次移动后这个点在数轴上表示的数为m+2,则m+2=56,然后解方程即可.解答:解:(1)第一次移动后这个点在数轴上表示的数是3;(2)第二次移动后这个点在数轴上表示的数是4;(3)第五次移动后这个点在数轴上表示的数是7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)m+2=56,解得m=54.故答案为3,4,7,n+2,54.点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.26.(12分)初一(1)班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,而且定价也都相同.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?考点:一元一次方程的应用.专题:应用题.分析:(1)设该班购买乒乓球x盒,根据乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.解答:解:(1)设购买x盒乒乓球时,两种优惠办法付款一样…1´根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9…4´解得x=20所以,购买20盒乒乓球时,两种优惠办法付款一样.…6’(2)当购买15盒时:甲店需付款30×5+(15﹣5)×5=200(元),乙店需付款(30×5+15×5)×0.9=202.5(元).因为200<202.5所以,购买15盒乒乓球时,去甲店较合算.…8´当购买30盒时:甲店需付款30×5+(30﹣5)×5=275(元);乙店需付款(30×5+30×5)×0.9=270(元).因为275>270所以,购买30盒乒乓球时,去乙店较合算.…10´点评:此题考查的知识点是一元一次方程的应用,解决本题的关键是理解两家商店的优惠条件,能用代数式表示甲店的费用即乙店的费用.。
勤学早2018年武汉市四月调考数学模拟试卷(一)
![勤学早2018年武汉市四月调考数学模拟试卷(一)](https://img.taocdn.com/s3/m/88f96b50a9956bec0975f46527d3240c8447a142.png)
勤学早2018年武汉市四⽉调考数学模拟试卷(⼀)勤学早2018年武汉市四⽉调考数学模拟试卷(⼀)⼀、选择题(共10⼩题,每⼩题3分,共30分) 1.计算-7+1的结果为() A .-6 B .6 C .-8 D .82.使分式33x 有意义的x 取值范围是() A .x >3B .x <3C .x ≠3D .x ≠-3 3.计算a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 44.某校男⽣中,若随机抽取若⼲名同学做“是否喜欢⾜球”的问卷调查,抽到喜欢⾜球的同学的概率是53,这个53的含义是() A .只发出5份调查卷,其中必有三份是喜欢⾜球的答卷 B .在答卷中,喜欢⾜球的答卷与总问卷的⽐为3∶8 C .在答卷中,喜欢⾜球的答卷占总答卷的53D .在答卷中,每抽出100份问卷,恰有60份答卷不喜欢⾜球 5.计算(2x -1)(2x +1)的结果是() A .2x 2-1 B .2x 2+1C .4x 2+1D .4x 2-16.如图,四边形ABCD 是平⾏四边形,点A 、B 、C 的坐标分别为(2,0)、(0,1)、(1,2),则a +b 的值为() A .2B .3C .4D .57.如图,⽔杯的杯⼝与投影⾯平⾏,投影线的⽅向如箭头所⽰,它的正投影是()8.如图,是根据九年级某班50名同学⼀周的锻炼情况绘制的条形统计图,下⾯关于该班50名同学⼀周锻炼时间的说法错误的是() A .平均数是6 B .中位数是6.5 C .众数是7D .平均每周锻炼超过6⼩时的⼈数占该班⼈数的⼀半 9.O 为等边△ABC 所在平⾯内⼀点,若△OAB 、△OBC 、△OAC 都为等腰三⾓形,则这样的点O ⼀共有() A .4B .5C .6D .1010.点G 为△ABC 的重⼼(△ABC 三条中线的交点),以点G 为圆⼼作G 与边AB 、AC 相切,与边BC 相交于点H .若AB =4,BC =6,则HK 的长为() A .335 B .3132C .235D .213⼆、填空题(本⼤题共6个⼩题,每⼩题3分,共18分) 11.计算:36=___________ 12.计算:555---x x x =___________ 13.甲盒装有3个兵乓球,分别标号为1、2、3;⼄盒装有2个兵乓球,分别标号为1、2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是___________ 14.在□ABCD 中,AC =CD ,∠ACB =2∠ACD ,则∠B 的度数为___________15.如图,O 是△ABC 内⼀点,∠OBC =60°,∠AOC =120°,OA =OC =13,OB =1,则AB 边的长为___________ 16.抛物线y =a (x -1)(x +3)与x 轴交于A 、B 两点,抛物线与x 轴围成的封闭区域(不包含边界),仅有4个整数点时(整数点就是横纵坐标均为整数的点),则a 的取值范围___________ 三、解答题(共8题,共72分)17.(本题8分)解⽅程:?=-=-82352y x y x18.(本题8分)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)1.为了了解全校1800名学⽣对学校设置的体操、球类、跑步、踢毽⼦等课外体育活动项⽬的喜爱情况,在全校范围内随机抽取了若⼲名学⽣.对他们最喜爱的体育项⽬(每⼈只选⼀项)进⾏了问卷调查,将数据进⾏了统计并绘制成了如图所⽰的频数分布直⽅图和扇形统计图(均不完整) (1) 补全频数分布直⽅图(2) 求扇形统计图中表⽰“踢毽⼦”项⽬扇形圆⼼⾓的度数 (3) 估计该校1800名学⽣中有多少⼈最喜爱球类活动?20.(本题8分)母亲节前⼣,某淘宝店主从⼚家购进A 、B 两种礼盒.已知A 、B 两种礼盒的单价⽐为2∶3,单价和为200元(1) 求A 、B 两种礼盒的单价分别是多少元?(2) 该店主进这两种礼盒花费不超过9720元,B 种礼盒的数量是A 种礼盒数量的2倍多1个,且B 种礼盒的数量不低57个,共有⼏种进货⽅案?21.(本题8分)如图,四边形ABCD 是平⾏四边形,以AB 为直径的⊙O 与CD 切于点E ,AD 交⊙O 于点F(1) 求证:∠ABE =45°(2) 连接CF ,若CE =2DE ,求tan ∠DFC 的值22.(本题10分)如图,在平⾯直⾓坐标系中有三点A (2,4)、B (3,5)、P (a ,a ),将线段AB 绕点P 顺时针旋转90°得到CD ,其中A 、B 的对应点分别为C 、D (1) 当a =2时①在图中画出线段CD ,保留作图痕迹,并直接写出C 、D 两点的坐标②将线段CD 向上平移m 个单位,点C 、D 恰好同时落在反⽐例函数xky =的图象上,求m 和k 的值(2) 若a =4,将函数xy 4=(x >0)的图象绕点P 顺时针旋转90°得到新图象,直线AB 与新图象的交点为E 、F ,则EF 的长为___________(直接写出结果)23.(本题10分)在△ABC 中,D 是CB 延长线上⼀点,∠BAD =∠BAC (1) 如图1,求证:ACADBC DB =(2) 如图2,在AD 上有⼀点E ,∠EBA =∠ACB =120°.若AC =2BC =2,求DE 的长 (3) 如图3,若AB =AC =2BC =4,BE ⊥AB 交AD 于点E ,直接写出△BDE 的⾯积24.(本题12分)如图,已知直线:y =kx +3k 与x 轴交于A 点,与抛物线1412+=x y 交于点B 、C 两点(1) 若k =1,求点B 、C (点B 在点C 的左边)的坐标(2) 过B 、C 分别作x 轴的垂线,垂⾜分别为点D 、E ,求AD ·AE 的值 (3) 将抛物线1412+=x y 沿直线y =mx +1(m >1)向上平移,直线y =mx +1交y 轴于S ,交新抛物线于MT ,N 是新抛物线与y 轴的交点,试探究为何值时,NT ∥x 轴?。
2018-2019学年第一学期人教版七年级数学期末测试题(含答案)
![2018-2019学年第一学期人教版七年级数学期末测试题(含答案)](https://img.taocdn.com/s3/m/3126bceaba0d4a7302763ae2.png)
2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
2018-2019学年度(上)七年级数学期末模拟测试卷
![2018-2019学年度(上)七年级数学期末模拟测试卷](https://img.taocdn.com/s3/m/9632cb100912a21614792981.png)
12018-2019学年度(上)七年级数学期末模拟测试卷一、选择题 1.-2019的相反数是A.2019B.2019-C.20191D.20191- 2.下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣43.若一个整数12500…0用科学记数法表示为,101025.1⨯则原数中“0”的个数为 A.5 B.8 C.9 D.10 4.下列利用等式的性质,错误的是( ) A .由a =b ,得到5﹣2a =5﹣2b B .由=,得到a =b C .由a =b ,得到ac =bcD .由a =b ,得到=5.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数。
如图①表示的是(+2)+(-2),根据刘徵的这种表示法,可推算图②中所表示的算式为A.(+3)+(+6)B.(-3)+(-6)C.(-3)+(+6)D.(+3)+(-66.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是( )2A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .两点确定一条线段7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,则∠2的度数是A.30°B.45°C.60°D.75° 8.如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为28块时,白色瓷砖块数为( )A .27B .28C .33D .359.如图,A 是直线l 外一点,过点A 作AB ⊥l 于点B,在直线l 上取一点C,连结AC,使AC=2AB,P 在线段BC 上连结AP.若AB=3,则线段AP 的长不可能是A.3.5B.4C.5.5D.6.5 10.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都3平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .5二、填空题(每小题3分,共18分)11.比较大小:-11______-12(填“<”、或“>”).12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,…则第8个代数式是 .13.计算:=-+-121212______.14.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2018年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为 .15.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第n 个图案中等边三角形的个数为____________个.16.如果一个角的补角是150°,那么这个角的余角的度数是 度. 三.解答题417.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.先化简,再求值:()(),221212a a a a +--+-其中.12-=a 19.解下列方程:(1)2(x +3)=5(x ﹣3) (2)=﹣x20.某面粉加工厂加工的面粉,用每袋可装10g 面粉的袋子装了200袋经过称重,质量超过标准质量10kg 的用正数表示,质量低于标准质量10kg 的用负数表示,结果记录如下表:(1)求这批面粉的总质量;(2)如果100kg 小麦加工80kg 面粉,那么这批面粉是由多少千克小麦加工的?21.如图所示,几何体是由小正方体堆积而成的,其中每个正方体的棱长都是2cm ,(1)画出三视图; (2)求这个立体图形的表面积.22.如图,点A 、B 、C 依次在同一条直线上,AB=4,BC=2,D 是AB 的中点,E 是BC 的中点.(1)AE 的长为______;5(2)求DE 的长。
2018_2019学年七年级数学上学 期期末复习检测试卷
![2018_2019学年七年级数学上学 期期末复习检测试卷](https://img.taocdn.com/s3/m/02780b4b7cd184254b3535b1.png)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共45分)1.(3分)已知4个数中:(﹣1)2005,|﹣2|,﹣(﹣1.5),﹣32,其中正数的个数有()A.1 B.2 C.3 D.42.(3分)下列命题中,正确的是()A.任何有理数的平方都是正数B.任何一个整数都有倒数C.若a=b,则|a|=|b|D.一个正数与一个负数互为相反数3.(3分)下列各式中是一元一次方程的是()A.B.3x2=2 C.3x+y=1 D.0.3﹣0.2=﹣x 4.(3分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.54°,36°B.36°,54°C.72°,108°D.60°,40°5.(3分)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱6.(3分)若线段AB=7cm,BC=2cm,那么A、C两点的距离是()A.9cm B.5cm C.不能确定D.10cm7.(3分)多项式3x2﹣2xy3+y﹣1是()A.三次二项式B.三次四项式C.四次三项式D.四次四项式8.(3分)下列变形正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=﹣2+3B.3x=2变形得:x=C.2(3x﹣2)=3(x+1)变形得:6x﹣2=3x+3D. x﹣1=x+3变形得:4x﹣6=3x+189.(3分)在数轴上到﹣2点的距离等于2个单位的点所表示的数是()A.0 B.﹣4 C.2或﹣2 D.0或﹣410.(3分)把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短11.(3分)由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A.B.C.D.12.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元13.(3分)如图,钟表8时30分时,时针与分针所成的角的度数为()A.30°B.60°C.75°D.90°14.(3分)如果单项式x2y m+2与x n y的和仍然是一个单项式,则(m+n)2012等于()A.1 B.﹣1 C.2012 D.﹣201215.(3分)某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A.18℃~20℃B.20℃~22℃C.18℃~21℃D.18℃~22℃二、填空题(每小题3分,共15分)16.(3分)﹣的相反数的倒数是.17.(3分)已知:(a+2)2+|b﹣3|=0,则(a+b)2009= .18.(3分)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于.19.(3分)观察,依照上述方法计算= .20.(3分)写出一个满足下列条件的一元一次方程:(1)未知数的系数﹣2;(2)方程的解是,则这样的方程可写为.三、解答题(共60分)21.(16分)计算:(1)6+(﹣)﹣2﹣(﹣1.5);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣4)2÷(﹣2);(3)先化简,再求值: x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣.(4)解方程:﹣1=2+.22.(6分)如图所示:在无阴影的方格中选出两个画出阴影,使它们与图中的4个有阴影正方形一起可以构成一个正方体的表面展示图.(填出两种答案)23.(8分)如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.24.(8分)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上,已知轮船行驶的速度为每小时20千米(1)在图中自己画出图形;(2)求∠ASB的度数及AB的长度.25.(10分)某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?怎样选择优惠?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?26.(12分)如图1所示:已知,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON═;(2)如图2,∠AOB=90°,∠BOC=x°,仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON 的度数若能,求出其值;若不能,说明理由.(3)如图3,若∠AOB=α,∠BOC=β(α、β均为锐角,且α>β),仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数.若能,求∠MON的度数.(4)从(1)、(2)、(3)的结果中,你发现了什么规律?参考答案一、选择题(每小题3分,共45分)1.(3分)已知4个数中:(﹣1)2005,|﹣2|,﹣(﹣1.5),﹣32,其中正数的个数有()A.1 B.2 C.3 D.4【分析】根据有理数的乘方求出(﹣1)2005和﹣3,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣32的值即可作出判断.【解答】解:∵(﹣1)2005=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9.可见其中正数有|﹣2|、﹣(﹣1.5),共2个.故选:B.【点评】此题考查了有理数的乘方、绝对值的性质、相反数的定义等实数基本概念,要熟悉这些概念,并能灵活运用.2.(3分)下列命题中,正确的是()A.任何有理数的平方都是正数B.任何一个整数都有倒数C.若a=b,则|a|=|b|D.一个正数与一个负数互为相反数【分析】根据有理数,绝对值,倒数的定义,特点及分类,分别讨论判断,找出反例,注意0是特例,要熟记.【解答】解:A、0既不是正数也不是负数,其平方也为0,不是正数.B、0是整数,但没有倒数.C、正确,正数的绝对值为其本身,负数的绝对值为其相反数,0的绝对值为0,只要a=b,则|a|=|b|.D、﹣1与2一个正数一个负数,但不是互为相反数.故选:C.【点评】认真掌握正数、负数、0、绝对值、倒数、相反数的定义与特点,注意类似的题千万别忘记0这个特殊的数.3.(3分)下列各式中是一元一次方程的是()A.B.3x2=2 C.3x+y=1 D.0.3﹣0.2=﹣x【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:A、不是整式方程,故错误;B、最高次数是2,故不是一元一次方程,故错误;C、含两个未知数,故不是一元一次方程,故错误;D、正确.故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(3分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.54°,36°B.36°,54°C.72°,108°D.60°,40°【分析】设α,β的度数分别为3x,2x,再根据余角的性质即可求得两角的度数.【解答】解:设α,β的度数分别为3x,2x,则3x+2x=90°∴x=18°∴∠α=3x=54°,∠β=2x=36°故选:A.【点评】此题主要考查学生对余角的性质的理解及运用.5.(3分)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱【分析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.【解答】解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故选:D.【点评】本题主要考查圆柱的定义,根据圆柱体的形成可作出判断.6.(3分)若线段AB=7cm,BC=2cm,那么A、C两点的距离是()A.9cm B.5cm C.不能确定D.10cm【分析】直接利用两点之间距离求法得出答案.【解答】解:线段AB=7cm,BC=2cm,但是A,B,C有可能不在同一直线上,故A、C两点的距离是不能确定.故选:C.【点评】此题主要考查了两点之间的距离,正确掌握两点之间距离求法是解题关键.7.(3分)多项式3x2﹣2xy3+y﹣1是()A.三次二项式B.三次四项式C.四次三项式D.四次四项式【分析】根据多项式次数的定义求解.多项式的次数是多项式中最高次项的次数,据此即可求解.【解答】解:多项式3x2﹣2xy3+y﹣1是四次四项式,故选:D.【点评】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.8.(3分)下列变形正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=﹣2+3B.3x=2变形得:x=C.2(3x﹣2)=3(x+1)变形得:6x﹣2=3x+3D. x﹣1=x+3变形得:4x﹣6=3x+18【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、4x﹣3=3x+2变形得:4x﹣3x=2+3,错误;B、3x=2变形得:x=,错误;C、2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3,错误;D、x﹣1=x+3变形得:4x﹣6=3x+18,正确;故选:D.【点评】本题主要考查了等式的基本性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.9.(3分)在数轴上到﹣2点的距离等于2个单位的点所表示的数是()A.0 B.﹣4 C.2或﹣2 D.0或﹣4【分析】首先画出数轴,然后再确定答案即可.【解答】解:如图:,在数轴上到﹣2的距离为2个单位长度的点所表示的数是:0或﹣4.故选:D.【点评】此题主要考查了数轴,关键是正确画出数轴,根据数轴可以直观的得到答案.10.(3分)把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短【分析】根据两点之间线段最短即可得出答案.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【点评】本题考查了线段的性质,关键是掌握两点之间线段最短.11.(3分)由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到三列正方形的个数依次为2,1,1.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.12.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(3分)如图,钟表8时30分时,时针与分针所成的角的度数为()A.30°B.60°C.75°D.90°【分析】本题考查了钟表里的旋转角的问题,钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()度,逆过来同理.【解答】解:∵8时30分时,时针指向8与9之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,∴8时30分时分针与时针的夹角是2×30°+15°=75度.故选:C.【点评】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.14.(3分)如果单项式x2y m+2与x n y的和仍然是一个单项式,则(m+n)2012等于()A.1 B.﹣1 C.2012 D.﹣2012【分析】根据同类项的定义,单项式x2y m+2与﹣3x n y的和仍然是一个单项式,意思是x2y m+2与﹣3x n y 是同类项,根据同类项中相同字母的指数相同得出.【解答】解:∵关于x、y的单项式x2y m+2与x n y的和仍然是一个单项式,∴单项式x2y m+2与x n y是同类项,∴n=2,m+2=1,∴m=﹣1,n=2,∴m+n=1,故选:A.【点评】此题主要考查了同类项定义,同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.(3分)某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A.18℃~20℃B.20℃~22℃C.18℃~21℃D.18℃~22℃【分析】药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,据此即可求得温度的范围.【解答】解:20﹣2=18℃,20+2=22℃,则该药品在18℃~22℃范围内.故选:D.【点评】本题考查了正负数表示相反意义的量,关键是正确理解标明保存温度是(20±2)℃的含义.二、填空题(每小题3分,共15分)16.(3分)﹣的相反数的倒数是.【分析】根据相反数和倒数的概念求解.【解答】解:﹣的相反数为,倒数为:.故答案为:.【点评】本题考查了倒数和相反数的知识,乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数.17.(3分)已知:(a+2)2+|b﹣3|=0,则(a+b)2009= 1 .【分析】根据绝对值和平方的非负性可知,(a+2)2≥0,|b﹣3|≥0,所以两个非负数相加为0,意味着每个式子都为0,求出a和b,代入即可.【解答】解:根据题意得:a+2=0且b﹣3=0,解得a=﹣2,b=3.∴(a+b)2009=(﹣2+3)2009=12009=1.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0,根据这个结论可以求解这类题目.18.(3分)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于 2 .【分析】由已知等式求出2y2﹣y的值,代入原式计算即可得到结果.【解答】解:∵4y2﹣2y+5=7,∴2y2﹣y=1,则原式=1+1=2.故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.(3分)观察,依照上述方法计算= .【分析】观察后,发现式中只留下了1﹣,因此,要计算的代数式等于1﹣.【解答】解:由题意得,原式=1﹣=.【点评】要认真分析规律,中间的数被抵消了.20.(3分)写出一个满足下列条件的一元一次方程:(1)未知数的系数﹣2;(2)方程的解是,则这样的方程可写为﹣2x+=0(答案不唯一).【分析】根据一元一次方程的概念以及解的概念即可求出答案.【解答】解:根据题意可知:﹣2x+=0故答案为:﹣2x+=0(答案不唯一)【点评】本题考查一元一次方程的概念,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.三、解答题(共60分)21.(16分)计算:(1)6+(﹣)﹣2﹣(﹣1.5);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣4)2÷(﹣2);(3)先化简,再求值: x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣.(4)解方程:﹣1=2+.【分析】(1)先将括号去掉,再进行加减混合运算即可;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算;(4)去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤.【解答】解:(1)6+(﹣)﹣2﹣(﹣1.5);=6﹣﹣2+1.5=6﹣2+1.5﹣=5;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣4)2÷(﹣2);=﹣8+(﹣3)×(16+2)﹣16÷(﹣2)=﹣8﹣54+8=﹣54;(3)x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2=x﹣2x﹣x+y2+y2=﹣3x+y2当x=﹣2,y=﹣时,原式=﹣3×(﹣2)+(﹣)2=6+=6;(4)﹣1=2+.去分母,可得2(x+1)﹣4=8+(2﹣x)去括号,可得2x+2﹣4=8+2﹣x移项,可得2x+x=8+2+4﹣2合并同类项,可得3x=12系数化为1,可得x=4【点评】本题主要考查了有理数的混合运算以及解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.22.(6分)如图所示:在无阴影的方格中选出两个画出阴影,使它们与图中的4个有阴影正方形一起可以构成一个正方体的表面展示图.(填出两种答案)【分析】直接利用立方体侧面展开图的形状分析得出答案.【解答】解:如图所示:答案不唯一.【点评】此题主要考查了应用设计与作图,正确掌握立方体侧面展开图的形状是解题关键.23.(8分)如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.【分析】理解线段的中点及三分点的概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系.【解答】解:∵C、D为线段AB的三等分点,∴AC=CD=DB(1分)又∵点E为AC的中点,则AE=EC=AC(2分)∴CD+EC=DB+AE(3分)∵ED=EC+CD=9(4分)∴DB+AE=EC+CD=ED=9,则AB=2ED=18.(6分)【点评】此题考查的知识点是两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.(8分)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上,已知轮船行驶的速度为每小时20千米(1)在图中自己画出图形;(2)求∠ASB的度数及AB的长度.【分析】(1)根据方向角的表示方法得出S的位置;(2)利用∠ASB=∠ASC+∠BSC进而求出即可,再利用时间乘以速度得出AB的长.【解答】解:(1)如图所示:(2)如图所示:∠ASB=∠ASC+∠BSC=60°+30°=90°,AB=20×(12﹣8)=20×4=80(km),答:∠ASB的度数为90°,AB的长为80km.【点评】此题主要考查了方向角以及其应用,根据已知得出正确图象是解题关键.25.(10分)某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?怎样选择优惠?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?【分析】(1)全球通使用者根据话费等于基础费加上通话费列式整理即可;神州行使用者根据话费等于通话费列式即可;(2)根据费用相同列出方程、或不等式求解即可;也可以画出函数图象,通过观察图象得到结论.(3)先计算出通话250分钟时的费用,然后再与(2)结合得到结论.【解答】解:(1)y1=50+0.2x,y2=0.4x;(2)∵50+0.2x=0.4x,解得x=250即当x=250分钟时,两种通话方式的费用相同;∵50+0.2x>0.4x,解得x<250即x<250时,y1>y2,所以一个月内通话少于250分钟时,“神州行”优惠;∵50+0.2x<0.4x,解得x>250即x>250时,y1<y2,所以一个月内通话多于250分钟时,“全球通”优惠.(3)当x=250时,应缴纳话费100元,由于某人预计一月使用话费120元,其通话时长超过250分钟,使用“全球通”比较合算.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息,理解两种方式的通话费用的组成部分是解题的关键.26.(12分)如图1所示:已知,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON═45°;(2)如图2,∠AOB=90°,∠BOC=x°,仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON 的度数若能,求出其值;若不能,说明理由.(3)如图3,若∠AOB=α,∠BOC=β(α、β均为锐角,且α>β),仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数.若能,求∠MON的度数.(4)从(1)、(2)、(3)的结果中,你发现了什么规律?【分析】(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC﹣∠CON,即∠MON=45°;(2)根据(1)的求解思路,先利用角平分线的定义表示出∠MOC与∠NOC的度数,然后相减即可得到∠MON的度数;(3)用α、β表示∠MOC,∠NOC,根据∠MON=∠MOC﹣∠NOC得到.(4)由(1)、(2)、(3)的结果中,∠MON的度数与∠BCO无关,∠MON=.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45;(2)能.∵∠AOB=90°,∠BOC=x°,∴∠AOC=90°+x°∵OM、ON分别平分∠AOC,∠BOC,∴∠MOC=∠AOC=(90°+x°)=45°+x,∴∠CON=∠BOC=x,∴∠MON=∠MOC﹣∠CON=45°+x﹣x=45°.(3)∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM平分∠AOC,∴∠MOC=∠AOC=(α+β),∵ON平分∠BOC,∴∠NOC=∠BOC=,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣=.(4)规律:∠MON的度数与∠BCO无关,∠MON=.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM平分∠AOC,∴∠MOC=∠AOC=(α+β),∵ON平分∠BOC,∴∠NOC=∠BOC=,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣=.【点评】本题考查角的和差定义、角平分线的定义,利用∠MON=∠MOC﹣∠NOC是解决问题的关键.。
2018-2019学年最新冀教版七年级数学上学期期末模拟试卷及答案解析-精编试题
![2018-2019学年最新冀教版七年级数学上学期期末模拟试卷及答案解析-精编试题](https://img.taocdn.com/s3/m/e0974b3ec281e53a5802ffef.png)
七年级(上)期末数学模拟试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分)1.2017的相反数是( )A .2017B .﹣2017C .D .﹣2.下列说法正确的是( )A .的次数是2B .﹣2xy 与4yx 是同类项C .4不是单项式D .的系数是3.方程去分母后,正确的是( )A .4x ﹣1=3x ﹣3B .4x ﹣1=3x+3C .4x ﹣12=3x ﹣3D .4x ﹣12=3x+34.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1065.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于自身的有理数,则a ﹣b+c ﹣d 的值为( )A .1B .3C .1或3D .2或﹣1 6.下列说法正确的是( )A .经过已知一点有且只有一条直线与已知直线平行B .两个相等的角是对顶角C.互补的两个角一定是邻补角D.直线外一点与直线上各点连接的所有线段中,垂线段最短7.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为()A.a(a﹣1)B.(a+1)a C.10(a﹣1)+a D.10a+(a﹣1)8.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为()A.6a2b+ab B.﹣4a2b+7ab C.4a2b﹣7ab D.6a2b﹣ab 9.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>0 10.如图,下列说法不正确的是()A.直线AC经过点AB.BC是线段C.点D在直线AC上D.直线AC与线段BD相交于点A11.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4 12.某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票x枚,则依题意得到方程为()A.0.8x+(x﹣2)=16B.0.8x+(x+2)=16C.80x+(x﹣2)=16D.80x+(x+2)=1613.下列几何体中,俯视图是三角形的几何体是()A.长方体B.圆柱C.三棱柱D.球14.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天15.某测绘装置上一枚指针原来指向南偏西55°,把这枚指针按逆时针方向旋转80°,则结果指针的指向()A.南偏东35°B.北偏西35°C.南偏东25°D.北偏西25°16.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561……通过观察,用你所发现的规律写出32017的末尾数字是()A.3B.9C.7D.1二、填空题(本题共4个小题,每小题3分,共12分,把答案写在题中的横线上)17.﹣的倒数是,﹣5的相反数是,绝对值大于2而小于4的整数有.18.在2x2y,﹣2xy2,3x2y,﹣xy四个代数式中,找出两个同类项,并合并这两个同类项得.19.如图,将一副三角板叠放在一起,使直角顶点重合于O点,则∠AOC+∠BOD= 度.20.如图是某超市中某种洗发水的价格标签,一名服务员不小心将标签损坏,使得原价无法看清,请帮忙算一算该种洗发水的原价是元/瓶.三、解答题(本大题共7小题,共66分。
2018-2019学年七年级数学上期末模拟卷含答案
![2018-2019学年七年级数学上期末模拟卷含答案](https://img.taocdn.com/s3/m/ec6b33c902768e9950e73825.png)
2018-2019学年七年级数学上册期末模拟卷一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106C.34×106D.3.4×1072.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BC B.PD,DC,BC,ABC.PA,AD,PC,BC D.PA,PB,PC,AD3.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣284.方程4(a-x)-4(x+1)=60的解是x=-2,则a的值是()A.22 B.-14 C.18 D.125.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁6.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x37.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处D.生产线上任何地方都一样11.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是 ( )A. 5(x+21-1)=6(x-l) B. 5(x+21)=6(x-l)C. 5(x+21-1)=6x D. 5(x+21)=6x12.观察算式,探究规律:当n=1时,S1=13=1=12;当n=2时,;当n=3时,;当n=4时,;…那么S n与n的关系为()A.B.C.D.二、填空题:13.已知:|x|=3,|y|=2,且xy<0,则x+y的值为等于.14.35.36度= 度 分 秒.15.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定 条直线.16.如图所示,∠AOB 是平角,∠AOC=30°,∠BOD=60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于 度.17.已知∠α=36°14′25″,则∠α的余角的度数是 .18.有一列数﹣,,﹣,,…那么第9个数是 .三、解答题:19.2(-3xy+x 2)-[2x 2-3(5xy-2x 2)-xy] 20.解方程:21.计算:32°45′48″+21°25′14″. 22.化简:5(3x 2y-xy 2)-4(-xy 2+3x 2y)23.已知,x y y x -=-且3,4x y ==,试求3()x y +的值24.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?25.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=__________.(2)若|x﹣2|=5,则x=__________(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是__________.参考答案1.A2.B3.D4.C5.B6.A7.C8.答案为:A.9.B10.A11.C12.C13.解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵xy<0,∴xy符号相反,①x=3,y=﹣2时,x+y=1;②x=﹣3,y=2时,x+y=﹣1.14.答案为:35度21分36秒;15.答案为:120.16.答案为135.17.答案为53°45′35″.18.答案为:﹣.19.10xy-6x220.-3421.原式=53°70′62″=54°11′2″.22.3x2y-xy2;23.33333,43,4203,43,423,4()(34)13,4()(34)343x y x y x y y xx y x y x y x y x y x y x y ==∴=±=±-=-∴-<∴==-=-=-==-+=-=-=-=-+=--=-解:分或分当时,当时,24.25.解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x ﹣2|=5表示x 与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x ﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x ﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4), ∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.。
2019年七年级数学上期末模拟试卷及答案
![2019年七年级数学上期末模拟试卷及答案](https://img.taocdn.com/s3/m/d83285a6b90d6c85ec3ac6be.png)
2019年七年级数学上期末模拟试卷及答案一、选择题1.若x =5是方程ax ﹣8=12的解,则a 的值为( )A .3B .4C .5D .6 2.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是22a bc -D .它的常数项是1 3.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-4 4.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折5.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( )A .1个B .2个C .3个D .4个6.下列结论正确的是( )A .c>a>bB .1b >1cC .|a|<|b|D .abc>0 7.钟表在8:30时,时针与分针的夹角是( )度.A .85B .80C .75D .70 8.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .89.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)10.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补; ③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③11.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+612.已知:式子x ﹣2的值为6,则式子3x ﹣6的值为( )A .9B .12C .18D .24二、填空题13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.15.-3的倒数是___________16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____18.用科学记数法表示24万____________.19.已知关于x的一元一次方程1999(x+1)﹣3=2(x+1)+b的解为x=9,那么关于y的一元一次方程1999y﹣3=2y+b的解y=_____.20.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n个图案中正三角形的个数是__________.三、解答题21.小明乘坐家门口的公共汽车前往西安北站去乘高铁,在行驶了三分之一路程时,小明估计继续乘公共汽车到北站时高铁将正好开出,于是小明下车改乘出租车,车速提高了一倍,结果赶在高铁开车前半小时到达西安北站.已知公共汽车的平均速度是20千米/小时(假设公共汽车及出租车保持匀速行使,途中换乘、红绿灯等待等情况忽略不计),请回答以下两个问题:(1)出租车的速度为_____千米/小时;(2)小明家到西安北站有多少千米?22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.已知∠a=42°,求∠a的余角和补角.24.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?25.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x=5代入方程ax-8=12得出5a-8=12,求出方程的解即可.【详解】把x =5代入方程ax ﹣8=12得:5a ﹣8=12,解得:a =4.故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.2.C解析:C【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc ,常数项为-1.故选C.3.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.4.A解析:A【解析】【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勤学早七年级数学(上)期末模拟题(月考四)
一、选择题(每小题3分,共30分) 1.(2018湖南)-5的相反数是( ) A .5
B .-5
C .15
D .-15
2.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离为15000000千米,将15000000千米用科学记数法表示为( ) A .15×710千米 B .1.5×710千米 C .0.15×910千米 D .1.5×810千米
3.(2018广东)下列方程中,不是一元一次方程的是( ) A .2x -1=0
B .2x -3=0
C .2x -1=0
D .x -3=0
4.下列等式成立的是( ) A .a +(b -c )=a +b -c B .a -(b +c )=a -b +c C .a -(b +c )=a +b -c
D .a +(b +c )=a -b +c
5.下列各图不是正方体表面展开图的是( )
D
C
B
A
第6题图
6.(2018桂林)如图,下列说法错误..的是( ) A .OD 方向是东南方向 B .OC 方向是南偏西25° C .OB 方向是北偏西15°
D .OA 方向是北偏东30°
7.如图,在数轴上有三个点A ,B ,C ,现C 点不动,点A 以每秒3个单位长度向点C 运动,同时点B 以每秒1个单位长度向点C 运动,先到达点C 的点是( ) A .点A
B .点B
C .同时到达
D .无法判断
-5
5
C B A y x
z
1
0 b a A
B –1
1
第7題图
第8題图
第9題图
8.x ,y ,z 在数轴上的位置如图所示,则化简|x -y |+|y +z |的結果是( ) A .x -z
B .z -x
C .2y -x +z
D .以上都不对
9.如图,数轴上A ,B 两点分別对应实数a ,b ,则下列结论正确的是( ) A .a +b >0
B .ab >0
C .
1a +1
b
>0 D .
1a -1
b
<0 10.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为a cm ,宽为b cm )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阻影表示,则图2中两块阴影部分的周长和是( )
A.4b cm
B.(3a+b)cm
C.(2a+2b)cm
D.(a+3b)cm
二、填空题(每小题3分,共18分)
11.计算:2×3+(-4)=.
12.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=36°,则∠AOD的度数为.
D
C
B
O
A
13.若x=1是关于x的方程2(x-a)+b=0的解,则6a-3b+1的值为.
14.(2018南昌)a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<一2时,▽a=a;当a=-2时,▽a=0.根据这种运算,则▽[2+▽(3-5)]的值为.
15.延长线段AB到点C,使BC=2AB,取AC中点D,BD=1,则AC=.
16.数轴上依次排列着四个点,它们表示的数分别为a,b,c,d,若|a-c|=6,|a-d|=10,|b-d|=5,则|b-c|=.
三、解答題(共8題,共72分)
17.(本題8分)(1)解方程:2(x+3)=3x+8;
(2)化简:3(y+1
3
x)-2[x-
1
2
(x-y)]-2x.
18.(本題8分)若关于x的方程3x-7=5x+a的解与方程1
2
x+4=5的解互为相反数,求a的值.
19.(本题8分)某商店有一种商品每件成本a元,原来按成本加价b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售160件.
(1)该商店销售200件这种商品的总销售额为多少元?
(2)销售200件这种商品共盈利了多少元?
20.(本题8分)如图,∠AOB =44°,∠BOC =78°,OD ,OE 分别是∠AOB 和∠BOC 的平分线,求∠DOE 的度数.
E
A
O
B C
D
21.(本题8分)某中学开学初到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.求购买一个A 种品牌和一个B 种品牌的足球各需多少元.
22.(本题10分)已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a -b |=14.
(1)若b =-6,则a 的值为 ; (2)若OA =3OB ,求a 的值
.
23.(本题10分)如图1,一副三角板的直角边沿水平线PQ 放置,其中∠AOB =60°,∠DOC =45°. (1)求∠AOD 的度数;
(2)如图2,将三角板AOB 绕O 点顺时针转动一定的角度,保持三角板DOC 不动,分别作∠AOD 的平分线OM ,∠BOD 的平分线ON ,求∠MON 的度数;
图1
Q
A
D
B
P C O 图2
A
O C
N B
D
M
24.(本题12分)如图,已知数轴上点A 表示的数为8,B 是数轴上位于A 点左侧一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.
8
A B
(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的式子表示);
(2)动点Q 从点B 出发,以每秒3个单位长度的速度向左匀速运动,若点P ,Q 同时出发,向点P 运动多少秒时,BQ =BP 成立?
(3)在(2)中P ,Q 两点运动的过程中,若M 为AP 的中点,在P 点运动的过程中,QP QA
QM
的值在某一个时间段t 内为定值,求出这个定值,并直接写出t 在哪一个时间段内.
1-5ABCAB 6-10DACCA
11. 2 .
12.108°.
13.7 .
14.-2 .
15. 6 .
16. 1 .
17.解:(1)r=-2;(2)2y-2x.
18解:a=-3.
19.解:(1)168a+168b;(2)168b-32a.
20.解:∠DOE=61°.
21.解:设购买一个A种品牌的足球需x元,则购买一个B种品牌的足球需(x+30)元,由题意,得50x+25(x+30)=4500,
解得x=50,则x+30=50+30=80.
答:购买一个A种品牌的足球需50元,购买一个B种品牌的足球需80元.
22.解:(1)8;
(2)分两种情况:①B在原点左侧,A在原点右侧,
则OA=a,OB=-b,∴a=-3b,将a=-3b代入|a-b|=14得:b=-3.5,a=10.5;
②B在原点右侧,A在原点左侧,
则OA=-a,OB=b,∴-a=3b,将a=-3b代入|a-b|=14得:b=3.5,a=-10.5,综上所述:a=10.5或a=-10.5.
23.解:(1)∠AOD=180°-∠AOB-∠DOC=75°;
(2)∠MON=1
2
(∠BOD-∠AOD)=
1
2
∠AOB=30°.
24.解:(1)-6,8-5t;
(2)设运动时间为t,则P在数轴上所对应的数为:8-5t,Q在数轴上所对应的数为:-6-3t.∴BQ=3t,BP=|8-5t-(-6)|=|14-5t|,
当BQ=BP时,3t=|14-5t|.解得t=7
4
或7.答:当点P运动
7
4
秒或7秒时,BQ=BP成立;
(3)运动t秒后,P:8-5t,M:885
2
t
+-
=8-
5
2
t,Q:-6-3t,
∴QP=|8-5t-(-6-3t)|=|14-2t|,QA=14+3t,QM=14+5
2
,
当0≤t≤7时,QP=14-2t,QP QA
QM
+
=
142143
14
2
t t
t
-++
+
=2,为定值.
当t≥7时,QP=2t-14,QP QA
QM
+
=
214143
14
2
t t
t
-++
+
=
5
14
2
t
t
+
,
∴当0≤t≤7时,QP QA
+
=2,为定值.。