长方体和正方体的表面积奥数题2
长方体与正方体奥数题及答案
1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。
80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。
78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。
长方体正方体奥数题精编版
25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。
长方体正方体奥数题
25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积.8.一个长方体容器中注满了水,现在有大、中、小三块石头.第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中.每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积.11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积.12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。
五年级奥数之长方体和正方体的表面积
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
(完整word版)五年级奥数《长方体与正方体的表面积与体积》
长方体和正方体的表面积和体积一、方法讲解我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。
2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。
3、求一些不规则的物体的体积时,可以通过变形的方法来解决。
二、例题讲解1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?三、达标练习1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积.3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4、有一个形状如上图所示的零件,求它的体积和表面积。
(单位:厘米)5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?9 。
小学六年级奥数试题详解 长方体和正方体
第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。
解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。
(完整版)长方体和正方体表面积练习题含答案
长方体和正方体表面积练习题含答案班级:姓名:学号:成绩: 一、填空: 1、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是,占地面积是,表面积是,体积是。
3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是立方厘米。
4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水升。
5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重千克。
6、正方体的棱长扩大3倍,棱长和扩大倍,表面积扩大倍,体积扩大倍。
927 7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
8、一个长方体的长、宽、高分别 是a米、b米、h米。
如果高增加2米,体积比原来增加立方米。
2ab 二、判断: 1、正方体是由6个完全相同的正方形组成的图形。
2、棱长6厘米的正方体,它的表面积和体积相等。
3、a表示 a×。
4、一个长方体,最多有两个面面积相等。
× 3 5、体积相等的两个正方体,它们的表面积一定相等。
× 三、操作题: 右图是长方体展开图,测量所需数据,并求长方体体积。
四、解决问题: 1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?10×5×4=200 200×7.8=1560 答:这个铁块重1560kg。
2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮? ×2=88× 答:需要88cm2 3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。
制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升? 表面积:8×7+8×6×2+6×7×2=236× 容积:8×7×6=336 答:共需玻璃236dm2,能装水336升。
五年级上册奥数专题系列-长方体和正方体的体积与表面积 沪教版(2015秋)(含答案)
【考点】长方体与正方体【难度】3星【题型】填空【解析】可以将这个图形看作一个八棱柱,表面积和为:()()(平方厘米).⨯-⨯⨯+⨯+++++++=87662616661787292也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()⨯+⨯+⨯⨯=(平方厘米).8786762292【答案】292【例 8】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 9】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【考点】长方体与正方体【难度】3星【题型】填空【关键词】2006年,第四届,走美杯,4年级,决赛,第3题,8分【解析】三视图法:表面积为:()++⨯=454226【答案】26【例 10】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
涂上红色的部分,面积是()平方厘米【考点】长方体与正方体【难度】3星【题型】填空【关键词】2010年,第8届,走美杯,3年级,初赛,第12题【解析】注意底面放在桌子上,不能被染到。
从上向下看有10个:从左向右看有6个;从前向后看有7个。
因此被染色的面有()++⨯=个面1067236【答案】36【例 11】用6块右图所示(单位:cm)的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【考点】长方体与正方体【难度】4星【题型】解答【解析】要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最(343334)266(cm)小,如图⑵所示,长为18,宽为2,高为1,所以最大的表面积为2(18118212)2112(cm)⨯+⨯+⨯⨯=(1)【答案】112【例 12】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b=2h时,如何打包?⑵当b<2h时,如何打包?⑶当b>2h时,如何打包?【考点】长方体与正方体【难度】5星【题型】解答【解析】图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h+6b,图3的周长是12h+4b.两者的周长之差为2(b -2h).当b=2h时,图2和图3周长相等,可随意打包;当b<2h时,按图2打包;当b>2h 时,按图3打包.【答案】当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包; 当b >2h 时,按图3打包.【例 13】 如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体,这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: : : 。
五年级奥数巧求表面积例题、试题及答案
巧求表面积教学目标掌握长方体和正方体的特征、表面积和体积计算公式,并能运用公式解决一些实际问题。
教学过程一、例题讲解我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。
如果长方体的长用a 表示、宽用b 表示、高用h 表示,那么,长方体的表面积=(ab +ah +bh )×2。
如果正方体的棱长用a 表示,则正方体的表面积=6a 2。
对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。
小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。
有了这个原则,在解决类似问题时就十分方便了。
例1 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积.( 例1图) (例2图)分析 我们把上面的小正方体想象成是可以向下“压缩"的,“压缩"后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形有表面积就可以分成这样两部分:上下方向:大正方体的两个底面;侧面: 小正方体的四个侧面 大正方体的四个侧面。
解:上下方向:5×5×2=50(平方分米) 侧面:5×5×4=100(平方分米)4×4×4=64(平方分米) 这个立体图形的表面积为:50+100+64=214(平方分米)答:这个立体图形的表面积为214平方分米。
例2 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为21厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为14厘米.那么最后得到的立体图形的表面积是多少平方厘米?分析 这道题的难点是洞里的表面积不易求.在小洞里,平行于上下表面的所有面的面积和等于边长为1厘米的正方形的面积,这个边长为1厘米的正方形再与图中阴影部分的面积合在一起正好是边长为2厘米的正方体的上表面的面积。
长方体和正方体的表面积经典应用题经典例题
长方体和正方体的表面积经典应用题一、概念:长方体或正方体6个面的总面积,叫做它们的表面积。
(1)由于长方体相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
前面面积=后面面积;左面面积=右面面积;上面面积=下面面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2或=)2 S a b a c b c⨯+⨯+⨯⨯表((2)正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
计算公式:正方体表面积=棱长×棱长×6或2 =66 S a a a⨯⨯=表二、长方体表面求法的变形在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
(1)具有6个面的长方体、正方体物品:油箱、罐头盒、纸箱、化妆品包装等;(2)具有5个面的长方体、正方体物品:抽屉、水池、鱼缸、火柴盒内盒、教室粉刷等;(3)具有4个面的长方体、正方体物品:烟囱、通风管、火柴盒外盒、产品贴标签等。
①贴商标类型:只求四周面积。
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?②游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖?③抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?④占地面积问题:只求底面面积。
两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!经典例题例1(1)一个无盖的长方体鱼缸,底面是边长为0.8米的正方形,高为0.3米.请问:这个鱼缸的表面积是多少平方米?无盖的鱼缸只要计算底面积和侧面积,为0.8×0.8+0.8×0.3×4=1.6(平方米);(2)李师傅要做通风管,已知这个通风管是长方体,横截面是一个长方形,长10厘米,宽5厘米,每节长10分米.请问:做5节这样的通风管,至少需要多少平方分米的铁皮?(不考虑损耗)10厘米=1分米,5厘米=0.5分米,通风管只要计算侧面积,每节需要的铁皮为(1×10+0.5×10)×2=30(平方分米),做5节这样的通风管至少需要30×5=150(平方分米)练1(1)豆豆要用硬纸片做一个无盖的长方体盒子,长50厘米,宽20厘米,高10厘米.请问:至少需要多少平方厘米的硬纸片?(不考虑损耗)无盖的长方体盒子只要计算底面积和侧面积,为50×20+(50×10+20×10)×2=2400(平方厘米);(2)一个通风管的横截面是边长为40厘米的正方形,长为80厘米.请问:如果用铁皮做10个这样的通风管,那么至少需要多少平方分米的铁皮? (不考虑损耗)40厘米=4分米,80厘米=8分米,通风管只要计算侧面积,所以做10个这样的通风管至少需要4×4×8×10=1280(平方分米)的铁皮. 例2一间教室长10米,宽7米,高3米,现在要用涂料粉刷它的四壁和顶棚.如果扣除门、窗和黑板所占的32平方米.请问:要粉刷的面积有多少平方米?如果每平方米用涂料0.5千克,一共需要多少千克涂料? (不计损耗)解:教室的四壁和顶棚就是侧面积和顶面,扣除门、窗和黑板还剩下的总面积为10×7+(10×3+7×3)×2-32=140(平方米),共需要140×0.5=70(千克)的涂料.练2一个长方体游泳池,长30米,宽20米,深2米,现要将它的每个面抹上水泥,如果每平方米用水泥4千克.请问:要用去多少千克水泥?(不计损耗)解:游泳池的表面积只要计算底面积和侧面积,为30×20+(30×2+20×2)×2=800(平方米),要用去800×4=3200(千克)水泥.课后练习1、学校要粉刷一间教室的四壁和天花。
小学五年奥数-长方体和正方体的表面积和体积
长方体和正方体的表面积和体积【知能大展台】1.长方体和正方体的特征:(1)定义:长方体和正方体六个面的总面积叫做它们的表面积。
(2)计算公式:长方体的表面积S=2(AB+AH+BH)正方体的表面积(3)长方体和正方体的体积(1)定义:物体所占空间的大小叫做物体的体积。
(2)长方体的体积V=ABH(3)正方体的体积V=长方体或正方体的体积还可以这样计算:V=S·H【试金石】例1一个正方体的棱长5厘米,表面涂满了红漆,4它切成棱长为1厘米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【分析】先看这个正方体可以切多少块小正方体。
如图:一共可以切成=125块小正方体。
为方便起见,我们用不同的阴影表示不同涂色情况网影表示三面涂有红色的小正方体。
三面涂有的小正方体位于顶点处,每个顶点上有一块。
点影表示两面涂有红色的小正方体。
两面涂色的小正方体位于棱长,每条棱上有(5-2)块。
斜影表示一面涂有红色的小正方体。
一面涂色的小正方体位于面中,没个面中间有(5-2)2块。
没有涂上红色的小正方体位于大正方体内部,共有(5-2)3块。
【解答】三面涂有红色的正方体有8块。
两面涂有红色的小正方体有:(5-2)×12=36(块)一面涂有红色的小正方体有:没有涂上红色的小正方体有:面棱顶点面的形状面积大小棱长长方体6个12条8个都是长方形(也可能有两个相对的面是正方形)相对的两个面的面积相等相对的4条棱长度相等正方体6个12条8个都是正方形6个面的面积相等12条棱长度相等【智力加油站】【针对性训练】一个正方体的棱长4分米,表面涂满了红漆,4它切成棱长为1分米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【试金石】例2 把一块长30厘米的长方形铁皮,在四个角上剪去边长为5厘米的正方形,在焊接成一个无盖的长方体铁盒,这个铁盒的容积是1500立方厘米。
小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 例题精讲长方体与正方体(二)④实际操作法⑤画图建模法【例1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
五年级长方体和正方体奥数题(B5版本)
五年级长方体和正方体奥数题(B5版本)例题1:给定一个形状如图的零件,求它的体积和表面积。
练1:1.将一根长2米的长方体木料锯成两段,使得表面积增加了2平方分米,求原木料的体积。
2.一个长8厘米,宽1厘米,高3厘米的长方体木块,在左右两角各切掉一个正方体,求切掉正方体后的表面积和体积。
例题2:一个长方体形状的零件中间挖去了一个正方体的孔,求它的体积和表面积。
例题3:一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
求原正方体的表面积。
练3:1.将两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?2.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?3.将4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?例题4:将11块相同的长方体砖拼成一个大长方体,已知每块砖的体积是288立方厘米,求大长方体的表面积。
练4:1.一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?2.一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
3.有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
例题5:一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为单位的数都是质数。
求这个长方体的体积和表面积。
练5:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?2.一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。
小学六年级奥数重点长方体和正方体知识点带试题解析
小学六年级奥数重点长方体和正方体知识点带试题解析长方体和正方体知识点(一)长方体和正方体的特征(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。
2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【题目1】:一个长方体和一个正方体的棱长之和相等。
已知长方体的长是6分米,宽是4分米,高是2分米,求正方体的表面积和体积?【解析】:要求出正方体的表面积和体积,必须先求出正方体的棱长。
长方体有12条棱分为3组:4条长、4条宽、4条高;正方体有12条棱,每条棱的长度都相等。
设这个正方体的棱长为x分米,根据题意,可以列出方程:12x=(6+4+2)×4解得:x﹦4正方体的棱长为4分米。
所以正方体的表面积为:42×6﹦96(平方分米)。
正方体的体积为:43﹦64(立方分米)。
【题目2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。
已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。
【解析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。
厚度不计,铁皮盒的容积也就相当于它的体积。
铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。
所以,铁皮盒底面的宽为:546÷2.8÷15.6﹦12.5(分米)。
则铁皮原来的宽为:12.5+2.8×2﹦18.1(分米)。
由长方形铁皮原来的长、宽,可以求出它的面积为:21.2×18.1﹦383.72(平方分米)。
(完整)三年级长方体和正方体的表面积奥数题训练
(完整)三年级长方体和正方体的表面积奥数题训练三年级长方体和正方体的表面积奥数题训练- 题目一:长方体的长、宽和高分别为6厘米、4厘米和3厘米,求其表面积。
解答:长方体的表面积可以通过公式2*(长*宽 + 长*高 + 宽*高)来求得。
带入具体数值,表面积=2*(6*4 + 6*3 + 4*3) = 2*(24 + 18 + 12) = 2*(54) = 108平方厘米。
- 题目二:正方体的边长为5厘米,求其表面积。
解答:正方体的表面积可以通过公式6*边长^2来求得。
带入具体数值,表面积=6*5^2 = 6*25 = 150平方厘米。
- 题目三:长方体的表面积为96平方厘米,其中长为8厘米,宽和高之积为12平方厘米,求宽和高的值。
解答:假设宽为x,高为y,则由题意得 x*y = 12。
长方体的表面积可以用公式2*(长*宽+ 长*高+ 宽*高)来表示。
带入具体数值,96 = 2*(8*x + 8*y + x*y) = 2*(8*x + 8*y + 12) = 16x + 16y + 24。
化简得 16x + 16y = 96 - 24 = 72。
又由 x*y = 12 得 x = 12/y,代入上式,16*(12/y) + 16y = 72,化简得 192 + 16y^2 - 72y = 0,移项得 16y^2 - 72y + 192 = 0,化简得 y^2 - 4.5y + 12 = 0。
利用求根公式,得y ≈ 2.61 或y ≈ 1.84。
根据题意,宽和高的值应为正数,所以取y ≈ 2.61。
代入x = 12/y ≈ 4.59。
因此,宽和高的值约为4.59和2.61。
以上是关于三年级长方体和正方体的表面积奥数题训练的解答。
来源:数学奥数题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体的表面积奥数题
一、将两个都是7厘米,宽都是5厘米,高都是3厘米的长方体拼成一个大长方体。
那么大长方体表面积最大是多少平方厘米?
二、有一个长方体,长是12厘米,宽是9厘米,高是6厘米,把它截成棱长是3厘米的若干个小正方体表面积之和比原来长方体的表面积增加了多少平方厘米?
三、正方体木块的表面积是96平方分米,把它沿虚线截成体积相等的8个正方体木块,这时表面积增加多少平方米?
四、在一个棱长是6分米的正方体上放一个棱长为3分米的小正方体,求这个立方体的表面积?
五、一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又任意按尺寸锯成3块,共得到大大小小的长方体36块,问这36块长方体表面积的和是多少平方米?
如有侵权请联系告知删除,感谢你们的配合!。