数列经典解题思路

合集下载

数学数列题型归纳解题方法

数学数列题型归纳解题方法

数列等差数列与等比数列1.根本量的思想:常设首项、〔公差〕比为根本量,借助于消元思想与解方程组思想等。

转化为“根本量〞是解决问题的根本方法。

2.等差数列与等比数列的联系1〕假设数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。

〔a>0且a≠1〕;2〕假设数列{}na是等比数列,且na>,那么数列{}loga na是等差数列,公差为loga q,其中a是常数且0,1a a>≠,q是{}n a的公比。

3〕假设{}na既是等差数列又是等比数列,那么{}na是非零常数数列。

3.等差与等比数列的比拟【题型1】等差数列与等比数列的联系例1 〔2010文16〕{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.〔Ⅰ〕求数列{an}的通项;〔Ⅱ〕求数列{2an}的前n项和Sn.解:〔Ⅰ〕由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得121d+=1812dd++,解得d=1,d=0〔舍去〕,故{an}的通项an=1+〔n-1〕×1=n. (Ⅱ)由〔Ⅰ〕知2m a=2n,由等比数列前n项和公式得Sm=2+22+23+…+2n=2(12)12n--=2n+1-2.小结与拓展:数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。

〔a>0且a≠1〕.【题型2】与“前n项和Sn与通项an〞、常用求通项公式的结合例2数列{an}的前三项与数列{bn}的前三项对应一样,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.求数列{an}与{bn}的通项公式。

解:a1+2a2+22a3+…+2n-1an=8n(n∈N*)①当n≥2时,a1+2a2+22a3+…+2n-2an-1=8(n-1)(n∈N*)②①-②得2n-1an=8,求得an=24-n,在①中令n=1,可得a1=8=24-1,∴an=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,∴数列{bn+1-bn}的公差为-2-(-4)=2,∴bn+1-bn=-4+(n-1)×2=2n-6,法一〔迭代法〕bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=8+(-4)+(-2)+…+(2n-8) =n2-7n+14(n∈N*).法二〔累加法〕即bn -bn -1=2n -8, bn -1-bn -2=2n -10, …b3-b2=-2, b2-b1=-4, b1=8,相加得bn =8+(-4)+(-2)+…+(2n -8) =8+(n -1)(-4+2n -8)2=n2-7n +14(n ∈N*).小结与拓展:1〕在数列{an}中,前n 项和Sn 与通项an 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n .是重要考点;2〕韦达定理应引起重视;3〕迭代法、累加法与累乘法是求数列通项公式的常用方法。

数列解题方法与技巧

数列解题方法与技巧

数列解题方法与技巧
解题方法和技巧有很多种,以下是一些常见的数列解题方法和技巧:
1. 找规律:观察数列中的数字是否有一定的规律或者模式,例如等差数列、等比数列等。

通过找到规律可以推断出数列中的其他数字。

2. 列方程:将数列中的数字用变量表示,然后列出方程,通过求解方程来确定数列中的其他数字。

3. 递推关系:如果数列中的第n个数字可以通过前面的数字推断出来,可以利用递推关系来求解数列。

4. 数列求和公式:如果要求解数列的和,可以利用数列求和公式来计算。

5. 辅助数列:有些数列可以通过构造辅助数列来求解,例如斐波那契数列可以通过构造一个新的辅助数列来求解。

6. 数学工具:利用一些数学工具和技巧,例如数学归纳法、二项式定理等来求解数列。

7. 模拟计算:有时候可以通过模拟计算来求解数列,即通过计算数列中的前几个数字,找到数列中的规律,然后根据规律来计算其他数字。

8. 看题意:有时候可以根据题目中的提示和要求来判断数列的性质和规律,然后进一步求解。

以上是一些常用的数列解题方法和技巧,但具体的解题方法和技
巧还需要根据具体的数列问题来确定。

在解题过程中,还需注意审题、理清思路、细心计算等问题。

数列解题方法与技巧

数列解题方法与技巧

数列解题方法与技巧数列是数学中的一个重要概念,它在各种数学问题中都有着重要的应用。

解题时,我们常常需要掌握一些数列的解题方法和技巧,下面就来介绍一些常见的数列解题方法和技巧。

首先,我们需要了解数列的基本概念。

数列是按照一定的顺序排列的一组数,其中每个数都有着特定的位置和规律。

数列可以分为等差数列、等比数列、递推数列等多种类型,每种类型都有着不同的特点和解题方法。

对于等差数列来说,其相邻两项之间的差值是一个常数,我们可以利用这一特点来求解等差数列中的各种问题。

当我们遇到一个数列题目时,首先要判断这个数列是否是等差数列,如果是,我们就可以利用等差数列的性质来进行解题。

比如,我们可以利用等差数列的通项公式来求解数列的第n项,从而得到数列中任意一项的值。

对于等比数列来说,其相邻两项之间的比值是一个常数,我们同样可以利用这一特点来求解等比数列中的各种问题。

当我们遇到一个数列题目时,如果判断这个数列是等比数列,我们就可以利用等比数列的性质来进行解题。

比如,我们可以利用等比数列的通项公式来求解数列的第n项,从而得到数列中任意一项的值。

此外,对于递推数列来说,其每一项都是由前面的若干项按照一定的规律得到的,我们可以利用递推关系来求解递推数列中的各种问题。

当我们遇到一个数列题目时,如果判断这个数列是递推数列,我们就可以利用递推关系来进行解题。

比如,我们可以通过递推关系来求解数列的第n项,从而得到数列中任意一项的值。

在解题过程中,我们还需要注意一些常见的数列解题技巧。

比如,当我们求解数列的和时,可以利用数列的部分和公式来简化计算过程;当我们求解数列的极限时,可以利用数列的收敛性和极限定义来进行推导。

这些技巧在解题过程中都能够起到很大的帮助。

总之,数列是数学中一个非常重要的概念,解题时我们需要掌握一些数列的基本概念、解题方法和技巧。

只有通过不断的练习和总结,我们才能够更加熟练地运用数列的知识来解决各种数学问题。

希望本文介绍的数列解题方法和技巧能够对大家有所帮助,谢谢阅读!。

数列答题模板

数列答题模板

好的,以下是一个数列答题的模板:【题目描述】已知数列${a_n}$ 的通项公式为$a_n = ...$,求:1. 求该数列的前$n$ 项和$S_n$;2. 当$n \to \infty$ 时,该数列的极限值$\lim\limits_{n \to \infty} a_n$。

【解题思路】1. 求前$n$ 项和的方法是将每一项加起来,即:$S_n = \sum\limits_{i=1}^{n} a_i$。

如果数列的通项公式比较简单,可以直接将每一项带入公式计算。

如果数列的通项公式比较复杂,则需要使用数列的求和公式进行计算。

2. 当$n \to \infty$ 时,该数列的极限值可以根据数列的特性得出。

通常需要分析数列的变化规律,判断其是否趋向于某个值或者无穷大/无穷小。

如果数列的通项公式比较复杂,也可以使用夹逼定理、单调有界原理等方法进行求解。

【例题演练】例题1:已知数列${a_n}$ 的通项公式为$a_n = \dfrac{1}{n(n+1)}$,求该数列的前$n$ 项和$S_n$ 和当$n \to \infty$ 时,该数列的极限值。

【解题思路】1. 首先求前$n$ 项和:$$S_n = \sum\limits_{i=1}^{n} a_i = \sum\limits_{i=1}^{n} \dfrac{1}{i(i+1)}$$将$\dfrac{1}{i(i+1)}$ 拆分成$\dfrac{1}{i}-\dfrac{1}{i+1}$,得到:$$S_n = \sum\limits_{i=1}^{n} \dfrac{1}{i}-\dfrac{1}{i+1} = 1-\dfrac{1}{n+1}$$所以,该数列的前$n$ 项和为$S_n = 1-\dfrac{1}{n+1}$。

2. 然后求当$n \to \infty$ 时,该数列的极限值。

注意到$\dfrac{1}{n(n+1)}$ 可以表示为$\dfrac{1}{n}-\dfrac{1}{n+1}$,所以有:$$a_n = \dfrac{1}{n(n+1)} = \dfrac{1}{n}-\dfrac{1}{n+1}$$因此,当$n \to \infty$ 时,$a_n$ 的极限值为:$$\lim\limits_{n \to \infty} a_n = \lim\limits_{n \to \infty} \left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) = \dfrac{1}{n}$$所以,该数列的极限值为$0$。

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法数列是数学中常见的概念,也是高中数学中重要的内容之一。

在数学学习中,数列题型及解题方法是学生们需要掌握的重要知识点。

本文将从数列的基本概念入手,介绍常见的数列题型及解题方法,希望能帮助学生们更好地理解和掌握数列的相关知识。

一、数列的基本概念。

数列是按照一定顺序排列的一串数,这些数之间存在着一定的规律。

数列可以分为等差数列、等比数列和其他特殊数列等多种类型。

在解题时,首先需要明确数列的类型,然后根据数列的特点和规律进行分析和计算。

二、等差数列题型及解题方法。

1. 求等差数列的通项公式。

等差数列的通项公式一般为an=a1+(n-1)d,其中an表示数列的第n项,a1为首项,d为公差,n为项数。

通过已知的首项和公差,可以利用通项公式求出数列的任意一项。

2. 求等差数列的前n项和。

等差数列的前n项和公式为Sn=n/2(a1+an),通过这个公式可以求出等差数列前n项和的数值,其中n为项数,a1为首项,an为第n项。

3. 应用等差数列解决实际问题。

在解决实际问题时,可以将问题转化为等差数列的形式,然后利用等差数列的性质进行求解。

例如,求等差数列中满足某个条件的项数,或者求解等差数列中某些项的和等问题。

三、等比数列题型及解题方法。

1. 求等比数列的通项公式。

等比数列的通项公式一般为an=a1q^(n-1),其中an表示数列的第n项,a1为首项,q为公比,n为项数。

通过已知的首项和公比,可以利用通项公式求出数列的任意一项。

2. 求等比数列的前n项和。

等比数列的前n项和公式为Sn=a1(q^n-1)/(q-1),通过这个公式可以求出等比数列前n项和的数值,其中n为项数,a1为首项,q为公比。

3. 应用等比数列解决实际问题。

同样地,可以将实际问题转化为等比数列的形式,然后利用等比数列的性质进行求解。

例如,求等比数列中满足某个条件的项数,或者求解等比数列中某些项的和等问题。

四、其他特殊数列题型及解题方法。

数列题解析常见的数学题型及解题技巧

数列题解析常见的数学题型及解题技巧

数列题解析常见的数学题型及解题技巧数列题解析:常见的数学题型及解题技巧数学中,数列是一种按照一定规律排列的数字序列。

数列题是中学数学常见的题型之一,考察学生对数列的理解和解题能力。

本文将介绍数列题的常见题型,并提供解题技巧。

一、等差数列1. 等差数列概念等差数列是指数列中相邻两项之间的差值都相等的数列。

通常用字母a表示首项,d表示公差。

等差数列的通项公式为:an = a + (n-1)d。

2. 等差数列题型及解题技巧(1) 求前n项和:可以利用等差数列的求和公式Sn = (n/2)(2a + (n-1)d)来计算。

(2) 求项数:已知等差数列的首项和公差,求第n项可以利用通项公式an = a + (n-1)d。

(3) 求公差:已知等差数列的首项和任意两项,可以利用公式d = an - a(n-1)来计算。

二、等比数列1. 等比数列概念等比数列是指数列中相邻两项之间的比值都相等的数列。

通常用字母a表示首项,q表示公比。

等比数列的通项公式为:an = a * q^(n-1)。

2. 等比数列题型及解题技巧(1) 求前n项和:可以利用等比数列的求和公式Sn = (a(1-q^n))/(1-q)来计算。

(2) 求项数:已知等比数列的首项和公比,可以利用通项公式an = a * q^(n-1)进行转化求解。

(3) 求公比:已知等比数列的首项和任意两项,可以通过求项数的方式来计算公比。

三、递推数列递推数列是指数列中的每一项都由前一项递推而来的数列。

递推数列题型比较灵活,常见的有斐波那契数列、阶乘数列等。

解决递推数列题目的关键是找到递推关系式,将问题转化为数列的求解问题。

四、复合数列复合数列是指数列中同时具有等差和等比特征的数列。

可以通过将复合数列拆分成等差数列和等比数列两部分来解决问题。

解决复合数列题目的关键是根据题目给出的条件,分别求解等差数列和等比数列的部分,然后将结果综合起来。

五、其他常见数列题型除了上述三种常见的数列题型外,还有一些其他常见的数列题型,如费马数列、幂次数列等。

数列解题方法总结

数列解题方法总结

数列解题方法总结数列是数学中一个重要的概念,它是由一组按照一定规律排列的数所组成的序列。

解决数列问题是数学学习中的一个重要内容,也是数学建模和应用问题中常常遇到的情况。

本文将总结一些常见的数列解题方法,并且展开讨论它们的应用。

一、等差数列的解题方法:等差数列是最常见的一类数列,它的特点是任意两个相邻的项之间的差值都相等。

解决等差数列问题的方法非常简单,可以利用等差数列的通项公式来求解。

通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

应用等差数列的解题方法可以解决一些简单的数学问题,如求和、确定项数等。

二、等比数列的解题方法:等比数列是一种特殊的数列,它的特点是任意两个相邻的项之间的比值都相等。

解决等比数列问题的方法也比较简单,可以利用等比数列的通项公式来求解。

通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

应用等比数列的解题方法可以解决一些和增长、衰减、利率等有关的问题。

三、斐波那契数列的解题方法:斐波那契数列是一种特殊的数列,它的特点是每一项都是前两项的和。

解决斐波那契数列问题的方法相对复杂一些,可以利用递推关系式来求解。

递推关系式为:an = an-1 + an-2,其中an表示第n项。

应用斐波那契数列的解题方法可以解决一些和排列组合、递归、动态规划等有关的问题。

四、其他数列的解题方法:除了上述三种常见的数列,还有一些其他类型的数列,如等差等差数列、等比等比数列、二次数列等等。

解决这些数列问题的方法也各不相同,需要根据具体情况来选择。

可以利用数列的性质、递推关系、通项公式等方法来解决问题。

总之,解决数列问题需要灵活运用数学知识和方法,理解数列的特点和规律,并且应用数列的解题方法来进行推理和计算。

通过不断的练习和探索,可以提高解决数列问题的能力,培养数学思维和解决实际问题的能力。

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。

这将有助于你选择正确的解题方法。

寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。

通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。

求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。

例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。

利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。

通过已知的前几项,推导出后续项的值。

利用数列性质:数列有许多性质和特点,例如对称性、周期性等。

利用这些性质可以简化问题,找到解题的突破口。

利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。

通过观察图像,可以得到一些有用的信息。

利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。

例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。

利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。

例如,利用等差数列的对称性可以减少计算量。

利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。

通过观察周期内的规律,可以推断出整个数列的性质。

多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。

有时,换一种思路可能会带来新的启示。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。

数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。

下面对数列题型及解题方法进行归纳总结。

一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。

2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。

通常用a1表示首项,d表示公差。

3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。

通常用a1表示首项,r表示公比。

二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。

使用通项公式a_n = a1 + (n-1)d。

(2)已知相邻两项的值,求公差。

根据 a_(n+1) - a_n = d,解方程即可。

(3)已知首项和第n项的值,求公差。

根据 a_n = a1 + (n-1)d,解方程即可。

2. 找前n项和:(1)已知首项、公差和项数,求前n项和。

使用公式S_n= (n/2)(a1 + a_n)。

(2)已知首项、末项和项数,求公差。

由于S_n =(n/2)(a1 + a_n),可以列方程求解。

(3)已知首项、公差和前n项和,求项数。

可以列方程并解出项数。

3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。

可以列方程,并解出项数。

三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。

使用通项公式a_n = a1 * r^(n-1)。

(2)已知相邻两项的值,求公比。

根据 a_n / a_(n-1) = r,解方程即可。

(3)已知首项和第n项的值,求公比。

根据 a_n = a1 * r^(n-1),解方程即可。

2. 找前n项和:(1)已知首项、公比和项数,求前n项和。

使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。

解析数学数列题中的常见解题思路

解析数学数列题中的常见解题思路

解析数学数列题中的常见解题思路数列题是数学中常见的题型之一,它要求我们根据已给出的数列的规律,推断出数列的通项公式或者求解特定项的值。

在解析数学数列题中,有一些常见的解题思路可以帮助我们更好地理解和解决问题。

一、数列的性质和规律分析在解析数学数列题中,首先要对数列的性质和规律进行分析。

我们可以观察数列的前几项,寻找其中的规律。

例如,我们可以计算相邻项之间的差值或者比值,看看是否存在固定的规律。

如果存在,我们可以猜测数列的通项公式。

举个例子,假设有一个数列:1,3,5,7,9,...,我们可以观察到相邻项之间的差值都是2。

因此,我们可以猜测这个数列的通项公式为an = 2n-1。

二、递推公式的建立和求解在解析数学数列题中,递推公式是一个非常重要的概念。

递推公式可以通过前一项和后一项之间的关系来表示数列的规律。

我们可以通过观察数列的前几项,建立递推公式,并通过递推公式求解特定项的值。

例如,假设有一个数列:1,2,4,8,16,...,我们可以观察到每一项都是前一项乘以2。

因此,我们可以建立递推公式an = 2 * an-1。

如果我们要求解第n项的值,我们可以通过递推公式进行迭代计算。

三、数列的求和公式和求和方法在解析数学数列题中,有时候我们需要求解数列的前n项和。

为了简化计算,我们可以利用数列的求和公式和求和方法。

常见的数列求和公式包括等差数列的求和公式Sn = (a1 + an) * n / 2和等比数列的求和公式Sn = a1 * (q^n - 1) / (q - 1)。

这些公式可以帮助我们快速求解数列的前n 项和。

此外,还有一些特殊的数列求和方法,如Telescoping Sum法和差分法。

Telescoping Sum法通过巧妙地配对数列的相邻项,将求和问题转化为相邻项之差的问题。

差分法则通过构造差分数列,将原数列的求和问题转化为差分数列的求和问题。

四、归纳法和数学归纳法的应用在解析数学数列题中,归纳法和数学归纳法是常见的解题思路。

数列解题思路与技巧

数列解题思路与技巧

数列解题思路与技巧数列解题是高中数学中的一个重要内容。

随着中考、高考对数学知识的要求日益提高,我们需要不断提高自己的数列解题能力。

本文将分享一些数列解题的思路与技巧,希望能给大家提供一些帮助。

一、数列的定义与分类数列是一组有序的、按照某种规律排列的数字。

通常用a1、a2、a3……an 表示,其中a1 为首项,an 为末项,n 为项数。

数列可分为等差数列、等比数列、斐波那契数列等多种类型。

在解决数列问题时,要首先确定所给数列的类型。

二、等差数列的解题思路与方法等差数列常见的应用有求和、求公差、求项数等。

其中,求和是最常见的问题。

下面我们将讨论如何解决等差数列求和的问题。

1. 求和公式对于首项为a1,公差为d,末项为an,项数为n 的等差数列,它的前n 项和可以用以下公式表示:Sn=n/2(2 × a1+(n-1) × d)其中,Sn 表示前n 项的和。

这是一个经典的求和公式,掌握之后可以大幅提高求和的效率。

2. 已知首项、末项和项数,求和如果已知首项、末项和项数,我们可以通过求出公差来使用求和公式计算和。

例如,已知首项为1,末项为100,项数为20,求和。

首先,根据公式an=a1+(n-1)×d,可以求出公差为5。

然后,代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=20/2(2 ×1+(20-1) × 5)=1010。

因此,所求和为1010。

3. 已知首项、公差和项数,求和如果已知首项、公差和项数,我们可以直接使用求和公式计算和。

例如,已知首项为3,公差为2,项数为10,求和。

代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=10/2(2 ×3+(10-1) × 2)=65。

因此,所求和为65。

三、等比数列的解题思路与方法等比数列也是数列中重要的一类。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

高三复习数列知识点和经典试题的解题方法归纳(非常全)

高三复习数列知识点和经典试题的解题方法归纳(非常全)

数列知识点和常用的解题方法归纳一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d nn =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a k a b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q q q n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+=(),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144== n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法 1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

求数列通项公式的解题思路

求数列通项公式的解题思路

求数列通项公式的解题思路求解数列通项公式,是数学中重要的一种问题,解题思路可以归纳为以下几步:1.观察数列的前几项,寻找规律:首先,我们需要观察数列的前几项,寻找其中的规律。

通过观察数列的前几项,我们可以尝试发现数列中的一些模式、规律或者关系。

这能够为我们后续的分析和推导提供线索。

我们可以运用一些常见的数列类型,如等差数列、等比数列、Fibonacci数列等来观察和推测数列中的规律。

2.假设通项公式:在观察数列的规律后,我们可以根据已有的信息,猜测,然后假设出一个通项公式的表达式。

这个表达式可能是一个数学算式,可以基于加减乘除、指数函数、对数函数等运算符和函数的运用。

此时,我们需要保持灵活和开放的思维态度,可以假设多个不同的表达式,以便进一步验证和分析。

3.列方程求解:有了假设的通项公式后,我们可以进一步利用这个表达式,列方程来求解。

通过代入已知的数列项,得到方程的解。

我们可以用数学方法解方程,如整理式子、配方、化简等,并运用等号两边的性质进行推导和求解。

4.验证与推导:将求得的通项公式代入数列的其他项进行验证,看是否满足数列的所有已知项。

如果满足,则说明猜测的通项公式是正确的。

如果不满足,则需要返回前一步重新考虑假设的通项公式,并进行修正和调整。

注意,验证只能证明一些候选表达式是正确的,不能证明这是唯一的通项公式。

5.退一步:数列项间的关系可能是非唯一的:如果第一次尝试没有得到正确的通项公式,不要灰心,数列项间的关系可能是非唯一的。

我们可以自己构造出数列项间的关系式,形成一个g函数,然后再试图构造出f(g)函数。

也就是说,可以考虑通过变换和组合两个或多个数列的关系去求解。

6.数学工具的应用:在一些情况下,我们可能需要更深入和复杂的数学工具进行分析和求解。

例如,可以考虑差分法、递推法、递归法、生成函数、拉格朗日插值、矩阵等方法。

这些方法可以更严谨和全面地解决数列通项问题。

但需要注意,这些方法涉及到更高级的数学知识和技巧,对于初学者可能会有一定的难度。

数列求和常见解题思路及常见公式

数列求和常见解题思路及常见公式

数列求和常见解题思路及常见公式
1.等差求和:
2.等比求和:
3.拆项求和:
思路:将第n 项 拆分再进行求解
4.并项求和:
思路:观察相邻项是否能通过简单计算后有联系(较少见)
5.裂项求和:
思路:分母中出现形如上式的基本上都可用裂项法
6.错位求和:
思路:等式左右两端同时乘以公比q 再错位相减
7.倒序求和:
思路:首项和尾项能够通过相加变得简单
常见求和公式:(最好是能够记住推导方法)
若{}n a 是公差为d 的等差数列,则 d n n na a a n S n n 2
)1(2)(11-+=+=⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n a n 1123....(1)2n n n ++++=+111111n n n n a a d a a ++⎛⎫=
- ⎪⎝⎭
1a b a b a b =-+
数列求和练习:
1.数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002
4.求数例1,3a ,5a 2,7a 3,…(2n -1)a n-1,…的前n 项和
5.数列{a n }中,11++=
n n a n , 求
7.已知lgx+lgy=a ,且Sn=lgx n +lg(x n-1y)+lg(x n-2y 2)+…+lgy n , 求 Sn.
三.
四.主要考虑分类讨论,等差乘等比的方法求解
五.99 s n。

高中数学极限问题解题思路与例题

高中数学极限问题解题思路与例题

高中数学极限问题解题思路与例题在高中数学中,极限问题是一个重要的概念,它在微积分和数学分析等领域中发挥着重要的作用。

解决极限问题需要良好的数学思维和方法,本文将介绍一些常见的解题思路,并通过例题来说明。

一、数列极限问题的解题思路1. 递推法:对于递推数列,通过递推关系式来确定极限。

例如,对于等差数列an=2n+1,可以通过推导和观察得出其极限为无穷大。

2. 逼近法:对于数列an,通过构造逼近数列bn,使得bn与an的差趋近于零,然后求出bn的极限,进而得到an的极限。

例如,在求解数列an=√n的极限时,可以构造逼近数列bn=n,通过求bn的极限等于无穷大,得出an的极限也等于无穷大。

3. 按定义法:对于给定的数列an,根据极限的定义进行证明。

例如,证明数列an=1/n的极限为零,可以通过定义极限的方式来进行推导。

二、函数极限问题的解题思路1. 代入法:当函数在某一点不存在或无法求极限时,可以尝试代入近似值进行计算。

例如,求f(x)=sinx/x在x=0处的极限时,可以通过代入x的近似值0.001、0.0001等进行计算。

2. 夹逼法:对于函数f(x),如果在某一区间内存在两个函数g(x)和h(x),且g(x)≤f(x)≤h(x),并且g(x)和h(x)的极限均为L,则可以推导出f(x)的极限也为L。

例如,在证明函数f(x)=xsin(1/x)在x=0处的极限为零时,可以构造函数g(x)=-|x|和h(x)=|x|,并证明f(x)被夹在g(x)和h(x)之间。

3. 导数法:对于某些特殊的函数,可以通过求导数来求极限。

例如,对于函数f(x)=e^x/x,在x趋近于正无穷时,可以通过求导数得到f'(x)=e^x/x^2,在取极限时,可以得到极限为无穷大。

三、综合例题例题1:求极限lim(n→∞) (√n+1-√n)。

解:对于这个极限问题,我们可以利用有理化的方法进行求解。

首先,我们将式子进行分子有理化,得到(√n+1-√n)×(√n+1+√n)/(√n+1+√n)。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结数列在数学中是一个非常重要的概念,它在各种数学问题中都有着重要的应用。

在学习数列的过程中,我们需要了解不同的数列题型及相应的解题方法,这样才能更好地掌握数列的知识,提高解题能力。

下面,我们将对数列题型及解题方法进行归纳总结,希望能对大家的学习有所帮助。

一、等差数列。

等差数列是最基本的数列之一,它的通项公式为:$a_n = a_1 + (n-1)d$。

在解等差数列的问题时,我们需要注意以下几种情况:1. 求前n项和,$S_n = \frac{n}{2}(a_1 + a_n)$;2. 求首项、公差或项数,$a_n = a_1 + (n-1)d$;3. 已知前几项求第n项,$a_n = a_m + (n-m)d$。

二、等比数列。

等比数列也是常见的数列类型,它的通项公式为:$a_n = a_1 \cdot q^{n-1}$。

解等比数列的问题时,需要注意以下几点:1. 求前n项和,$S_n = \frac{a_1(1-q^n)}{1-q}$;2. 求首项、公比或项数,$a_n = a_1 \cdot q^{n-1}$;3. 已知前几项求第n项,$a_n = a_m \cdot q^{n-m}$。

三、特殊数列。

除了等差数列和等比数列外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。

在解题时,需要根据具体情况选择合适的方法,不能生搬硬套。

四、解题方法。

在解数列题时,我们可以采用以下几种方法:1. 找规律法,观察数列的前几项,找出它们之间的规律,从而得出通项公式或前n项和的表达式;2. 递推法,根据数列的递推关系,逐步求解出数列的各项;3. 通项公式法,如果数列是等差数列或等比数列,可以直接利用其通项公式进行求解;4. 常用公式法,对于常见的数列题型,可以直接利用其前n项和的公式进行求解。

五、总结。

通过以上的归纳总结,我们可以看出,数列题型及解题方法是一个比较系统的知识体系,需要我们掌握一定的基本原理和方法。

数学高中数列10种解题技巧

数学高中数列10种解题技巧

数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。

它在数学和实际应用中都有着广泛的应用。

但是,数列的解题方法非常多,有时候我们可能会感到困惑。

为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。

1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。

例如,等差数列和等比数列的求和公式是非常常见和重要的。

2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。

有些数列通过递推式很容易得到通项公式,进而求解问题。

3. 归纳法归纳法是数列题目解题的常用方法。

通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。

4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。

5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。

有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。

6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。

常见的数列有等差数列、等比数列、斐波那契数列等等。

7. 变形技巧变形技巧是数列解题过程中常用的一种方法。

它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。

8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。

9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。

通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。

10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。

如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。

(完整)数列题型及解题方法归纳总结,推荐文档

(完整)数列题型及解题方法归纳总结,推荐文档

1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列经典解题思路求通项公式一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2),17164,1093,542,211(3),52,21,32,1解:(1)110-=nn a (2);122++=n nn a n (3);12+=n a n二、公式法 例1. 等差数列{}na 是递减数列,且432a a a⋅⋅=48,432a a a++=12,则数列的通项公式是( D ) (A) 122-=n a n(B) 42+=n a n(C) 122+-=n an(D) 102+-=n an例2. 已知等比数列{}na 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}nb 的通项公式。

)1()1(1+=⋅+=-q q qq q bnn n当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、叠加法 例3:已知数列6,9,14,21,30,…求此数列的一个通项。

)(52N n na n ∈+=点评:一般地,对于型如)(1n f a an n +=+类的通项公式,只要)()2()1(n f f f +++能进行求和,则宜采用此方法求解。

例4. 若在数列{}n a 中,31=a ,na a n n +=+1,求通项n a 。

na =32)1(+-n n四、叠乘法 例:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

na n 1=点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采用此方法。

五、Sn 法利用1--=n n nS S a(n ≥2)例5:已知下列两数列}{na 的前n 项和sn 的公式,求}{na 的通项公式。

(1)13-+=n n S n 。

(2)12-=n s n∴na =3232+-n n 为所求数列的通项公式。

⎩⎨⎧≥-==)2(12)1(0n n n a n点评:要先分n=1和2≥n 两种情况分别进行运算,然后验证能否统一。

数列求和方法: 1.公式法:等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2等比数列求和公式:Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an ×q)/(1-q) (q ≠1)2.错位相减法适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 3.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个(a1+an)Sn =a1+ a2+ a3+...... +an Sn =an+ a(n-1)+a(n-3)...... +a1前后相加得到2Sn 即 Sn= (a1+an)n/2 4.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1 5.裂项法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

[例] 求数列an=1/n(n+1) 的前n 项和.此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。

只剩下有限的几项。

注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。

2余下的项前后的正负性是相反的。

7.通项化归先将通项公式进行化简,再进行求和。

如:求数列1,1+2,1+2+3,1+2+3+4,……的前n 项和。

此时先将an 求出,再利用分组等方法求和。

8.并项求和:例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项) 求出奇数项和偶数项的和,再相减。

方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]高考例题1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =(B ) A.21 B.22 C. 2 D.2【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以q =故212a a q ===,选B2.(2009广东卷理)已知等比数列{}n a 满足0,1,2,n a n >= ,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 【解析】由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31lognn a n =-+⋅⋅⋅++=-,选C.3.(2009安徽卷文)已知为等差数列,,则等于 ( B )A. -1B. 1C. 3D.7【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B 。

4.(2009江西卷文)公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于 (A. 18 B. 24 C. 60 D.90 .【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得1278a d +=则12,3d a ==-,所以1019010602S a d =+=,. 选C5.(2009湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于【 C 】A .13B .35C .49D . 63 解: 172677()7()7(311)49.222a a a a S +++====故选C.或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯= 所以1777()7(113)49.22a a S ++===故选C.6.(2009福建卷理)等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( C) A .1 B 53 C.- 2 D 3[解析]∵31336()2S a a ==+且3112 =4 d=2a a d a =+∴.故选C .7.(2009辽宁卷文)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = (A )-2 (B )-12(C )12(D )2【解析】a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 ⇒ d =-12【答案】B8.(2009辽宁卷理)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则69S S =(A ) 2 (B )73(C ) 83(D )3【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2于是63693112471123S q q S q++++===++ . 【答案】B9.(2009宁夏海南卷理)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。

若1a =1,则4s =(A )7 (B )8 (3)15 (4)16 解析: 41a ,22a ,3a 成等差数列,22132111444,44,440,215a a a a a q a q q q q ∴+=+=∴-+=∴==即,S ,选C.10.(2009四川卷文)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 【答案】B【解析】设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100 11.(2009湖北卷文)设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列 【答案】B【解析】可分别求得22=⎪⎪⎩⎭1]12=.则等比数列性质易得三者构成等比数列.14.(2009重庆卷文)设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .2744nn +B .2533nn +C .2324nn +D .2n n +【答案】A解析设数列{}n a 的公差为d ,则根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =(舍去),所以数列{}n a 的前n 项和2(1)1722244n n n nn S n -=+⨯=+15.(2009安徽卷理)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(A )21 (B )20 (C )19 (D ) 18[解析]:由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =,选B17.(2009四川卷文)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 . 【答案】B【解析】设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100 二、填空题1.(2009全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 。

解: {}n a 是等差数列,由972S =,得599,S a ∴=58a =∴2492945645()()324a a a a a a a a a a ++=++=++==.2.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .答案:15 【解析】对于4431444134(1)1,,151(1)a q s qs a a q qa q q --==∴==--3.(2009北京文)若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = ;前8项的和8S = .(用数字作答)1213243541,22,24,28,216a a a a a a a a a ========,易知882125521S -==-,∴应填255.4.(2009山东卷文)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a . 【解析】:设等差数列}{n a 的公差为d ,则由已知得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=. 答案:13.5.(2009全国卷Ⅱ文)设等比数列{n a }的前n 项和为n s 。

相关文档
最新文档