数列经典例题

合集下载

数列专题复习之典型例题(含答案)

数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。

答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。

高一数学必修5数列经典例题(裂项相消法)

高一数学必修5数列经典例题(裂项相消法)

2.(2014•成都模拟)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6有a32=9a42,∴q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1有2a1+3a1q=1,∴a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.7.(2013•江西)正项数列{a n}满足﹣(2n﹣1)a n﹣2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0 ∴a n=2n.(2)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.6.(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.28.(2010•山东)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N*),求数列{b n}的前n项和T n.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.25.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.解:(Ⅰ)由条件有,又n=1时,,故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.3.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.解:(1)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n=3+(n﹣1)(﹣1)=4﹣n;(2)由(1)的解答有,b n=n•q n﹣1,于是S n=1•q0+2•q1+3•q2+…+n•q n﹣1.若q≠1,将上式两边同乘以q,有qS n=1•q1+2•q2+3•q3+…+n•q n.上面两式相减,有(q﹣1)S n=nq n﹣(1+q+q2+…+q n﹣1)=nq n﹣于是S n=若q=1,则S n=1+2+3+…+n=∴,S n=.4.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.解:(1)由题意,令m=2,n=1,可有a3=2a2﹣a1+2=6再令m=3,n=1,可有a5=2a3﹣a1+8=20(2)当n∈N*时,由已知(以n+2代替m)可有a2n+3+a2n﹣1=2a2n+1+8于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8 即b n+1﹣b n=8∴{b n}是公差为8的等差数列(3)由(1)(2)解答可知{b n}是首项为b1=a3﹣a1=6,公差为8的等差数列则b n=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可有a n=﹣(n﹣1)2.∴a n+1﹣a n=﹣2n+1=﹣2n+1=2n于是c n=2nq n﹣1.当q=1时,S n=2+4+6++2n=n(n+1)当q≠1时,S n=2•q0+4•q1+6•q2+…+2n•q n﹣1.两边同乘以q,可有qS n=2•q1+4•q2+6•q3+…+2n•q n.上述两式相减,有(1﹣q)S n=2(1+q+q2+…+q n﹣1)﹣2nq n=2•﹣2nq n=2•∴S n=2•综上所述,S n=.16.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.解:(1)设等差数列{a n}的公差为d,则依题意可知d>0由a2+a7=16,有,2a1+7d=16①由a3a6=55,有(a1+2d)(a1+5d)=55②由①②联立方程求,有d=2,a1=1/d=﹣2,a1=(排除)∴a n=1+(n﹣1)•2=2n﹣1(2)令c n=,则有a n=c1+c2+…+c na n+1=c1+c2+…+c n+1两式相减,有a n+1﹣a n=c n+1,由(1)有a1=1,a n+1﹣a n=2∴c n+1=2,即c n=2(n≥2),即当n≥2时,b n=2n+1,又当n=1时,b1=2a1=2∴b n=于是S n=b1+b2+b3+…+b n=2+23+24+…2n+1=2n+2﹣6,n≥2,.--。

数列的概念经典例题 百度文库

数列的概念经典例题 百度文库

一、数列的概念选择题1.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞2.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞3.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .14.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .505.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 6.数列{}n a 满足()11121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )A .1006B .1176C .1228D .23687.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-8.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( )A .1(1)n n a a n n --=>B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 11.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3D .312.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22514.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .615.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-16.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个17.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .318.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >24.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦26.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 27.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列28.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 30.已知数列{}2nn a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列31.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( )A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <33.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 34.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列35.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围. 【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=,所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.2.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.3.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.4.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A. 【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .5.C解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.6.B解析:B根据题意,可知()11121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组求和法,即可求出{}n a 的前48项和. 【详解】解:由题可知,()11121n n n a a n ++=-+-,即:()11121n n n a a n ++--=-,则有:211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,8713a a -=,9815a a +=,,474691a a +=,484793a a -=.所以,132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++++++,()()1357454724684648a a a a a a a a a a a a =+++++++++++++12111221281611762⨯=⨯+⨯+⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.7.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B.本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.8.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.C解析:C 【分析】根据题设条件,得到数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.【详解】由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得3214325436547653,3,6,3,3,a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.12.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.D解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.14.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。

因此,前项和为。

⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。

8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。

1) 求 $a_5$ 和 $a_{10}$。

2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。

考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。

答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。

解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。

2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。

根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)数列裂项相消求和的典型题型1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .1011002.数列,)1(1+=n n a n 其前n 项之和为,109则在平⾯直⾓坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为( )A .-10B .-9C .10D .93.等⽐数列}{n a 的各项均为正数,且6223219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和. 4.正项数列}{n a 满⾜02)12(2=---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ;(Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设数列}{n b 满⾜,,211*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满⾜:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 211)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令,211n n n a a b -=+求数列}{n b 的前n 项和n S ;(Ⅲ)求数列}{n a 的前n 项和n T .8.已知等差数列}{n a 的前3项和为6,前8项和为﹣4.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设),,0()4(*1N n q q a b n n n ∈≠-=-求数列}{n b 的前n 项和n S .9.已知数列}{n a 满⾜,2,021==a a 且对*,N n m ∈?都有211212)(22n m a a a n m n m -+=+-+--.(Ⅰ)求53,a a ;(Ⅱ)设),(*1212N n a a b n n n ∈-=-+证明:}{n b 是等差数列;(Ⅲ)设),,0()(*11N n q q a a c n n n n ∈≠-=-+求数列}{n c 的前n 项和n S .10.已知数列}{n a 是⼀个公差⼤于0的等差数列,且满⾜16,557263=+=a a a a .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 和数列}{n b 满⾜等式),(2222*33221N n b b b b a n n n ∈++++= 求数列}{n b 的前n 项和n S . 11.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等⽐数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a n b 求数列}{n b 的前n 项和n T . 12.正项数列}{n a 的前n 项和n S 满⾜:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈?都有6451.A ;2.B3.解:(Ⅰ)设数列{a n }的公⽐为q ,由a 32=9a 2a 6有a 32=9a 42,∴q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1有2a 1+3a 1q=1,∴a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{a n}满⾜:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0∴a n=2n.(Ⅱ)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.5.解:(Ⅰ)设等差数列{a n}的⾸项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.⼜T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.6.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.7.解:(Ⅰ)由条件有,⼜n=1时,,故数列构成⾸项为1,公式为的等⽐数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.8.解:(Ⅰ)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n=3+(n﹣1)(﹣1)=4﹣n;(Ⅱ)由(Ⅰ)的解答有,b n=n?q n﹣1,于是S n=1?q0+2?q1+3?q2+…+n?q n﹣1.若q≠1,将上式两边同乘以q,有qS n=1?q1+2?q2+3?q3+…+n?q n.上⾯两式相减,有(q﹣1)S n=nq n﹣(1+q+q2+…+q n﹣1)=nq n﹣于是S n=若q=1,则S n=1+2+3+…+n=∴,S n=.9.解:(Ⅰ)由题意,令m=2,n=1,可有a3=2a2﹣a1+2=6再令m=3,n=1,可有a5=2a3﹣a1+8=20(Ⅱ)当n∈N*时,由已知(以n+2代替m)可有a2n+3+a2n﹣1=2a2n+1+8于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8即b n+1﹣b n=8∴{b n}是公差为8的等差数列(Ⅲ)由(Ⅰ) (Ⅱ)解答可知{b n}是⾸项为b1=a3﹣a1=6,公差为8的等差数列则b n=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可有a n=﹣(n﹣1)2.∴a n+1﹣a n=﹣2n+1=﹣2n+1=2n于是c n=2nq n﹣1.当q=1时,S n=2+4+6++2n=n(n+1)当q≠1时,S n=2?q0+4?q1+6?q2+…+2n?q n﹣1.两边同乘以q,可有qS n=2?q1+4?q2+6?q3+…+2n?q n.上述两式相减,有(1﹣q)S n=2(1+q+q2+…+q n﹣1)﹣2nq n=2?﹣2nq n=2?∴S n=2?综上所述,S n =.10.解:(Ⅰ)设等差数列{a n }的公差为d ,则依题意可知d >0由a 2+a 7=16,有,2a 1+7d=16①由a 3a 6=55,有(a 1+2d )(a 1+5d )=55②由①②联⽴⽅程求,有d=2,a 1=1/d=﹣2,a 1=(排除)∴a n =1+(n ﹣1)?2=2n ﹣1(Ⅱ)令c n =,则有a n =c 1+c 2+…+c n a n+1=c 1+c 2+…+c n+1两式相减,有a n+1﹣a n =c n+1,由(1)有a 1=1,a n+1﹣a n =2∴c n+1=2,即c n =2(n ≥2),即当n ≥2时,b n =2n+1,⼜当n=1时,b 1=2a 1=2∴b n =于是S n =b 1+b 2+b 3+...+b n =2+23+24+ (2)n+1=2n+2﹣6,n ≥2,. 11.解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n 2n +1. 当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n = 2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1) 12.(1)解由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *). n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=1161n 2-1(n +2)2 T n =116?? ????1-132+122-142+132-152+… ?+? ????1(n -1)2-1(n +1)2+? ????1n 2-1(n +2)2 =1161+122-1(n +1)2-1(n +2)2<1161+122=564(n ∈N *).即对于任意的n ∈N *,都有T n <564.。

数列分专题经典练习-题型大全-典型例题

数列分专题经典练习-题型大全-典型例题

数列专题一.等差数列练习题1.设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。

2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列3.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .514.首项为-24的等差数列,从第10项起开始为正数,则公差的范围是______。

5.如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么6.已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则公差为( )A .3或-3B .3或-1C .3D .-37.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.8.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-9.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.2410.设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 11.设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则12.{}n a 是公差为-2的等差数列,a 1+a 4+….. + a 97 =50,a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-8213.}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =14.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= 15.已知}{n a 为等差数列,a 1+a 8+ a 13+ a 18=100,求a 10= 16.已知数列{a n }的前n 项和S n =n (n -40),则下列判断正确的是( ) A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>017.等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n=18.等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。

数列裂项相消典型例题

数列裂项相消典型例题

一个典型的数列裂项相消的例题如下:
例题:考虑数列{1, 1, 2, 3, 5, 8, 13, ...},其中每一项等于前两项的和。

给定一个正整数N,计算数列的前N项之和。

解题思路:
这个数列是著名的斐波那契数列,它的定义是F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2)(n >= 3)。

我们可以使用裂项相消的方法来解决这个问题。

首先,我们可以设S为数列的前N项和。

那么S的表达式可以写为:
S = 1 + 1 + 2 + 3 + 5 + 8 + ... + F(N-1) + F(N)
然后,我们观察数列中每一项与它前一项的关系,即F(n) = F(n-1) + F(n-2)。

根据这个关系,我们可以发现S的表达式中的一些项可以相互抵消,通过相消的方式简化求解过程。

具体来说,我们可以将S的表达式中的项分为两组,一组是从F(1)到F(N-2)的项,另一组是F(N-1)和F(N)。

对于第一组,我们可以看到F(n)等于它的前两项之和,所以这些项可以两两抵消。

因此,我们可以得到:
S = F(N-1) + F(N)
对于第二组,我们可以看到F(N)等于F(N-1)和F(N-2)的和,所以这两项仍然保留在S中。

综合上述分析,我们可以得到以下简化后的表达式:
S = F(N) + F(N-1)
因此,这个问题的答案就是数列中第N项和第N-1项的和,即F(N) + F(N-1)。

我们可以通过计算斐波那契数列的第N项和第N-1项的值,然后求和来得到最终的答案。

希望这个解题思路能够帮助到你解决数列裂项相消的典型例题!。

高中数学数列经典九例

高中数学数列经典九例

数学数列经典例题1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥(1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。

4.已知数列{n a }满足11=a ,且),2(22*1N n n a a nn n ∈≥+=-且.(Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n na 2}是等差数列;(Ⅲ)求数列{n a }的前n 项之和n S5.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T6.22,,4,21121+=-===++n n n n n b b a a b a a . 求证:⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+;⑶4)1(2221-+-=++++n n a a a n n .7.已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项.(1)求数列}{n a 的通项公式n n S n a 项和及前;(2)若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .8.已知n S 是数列{}n a 的前n 项和,123,22a a ==,且113210n n n S S S +--++=,其中*2,n n N ≥∈. ①求证数列{}1n a -是等比数列;②求数列{}n a 的前n 项和n S .9.已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设,3,2,1(21=-=+n a a b n n n ).(I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .高考数列解答题参考答案1.解析:(1)设该等差数列为{}n c ,则25a c =,33a c =,42a c=533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=-∴12(1)q q q -=-,1q ≠, ∴121,2q q ==,∴1164()2n a -= (2)121log [64()]6(1)72n n b n n -==--=-,{}n b 的前n 项和(13)2n n n S -=∴当17n ≤≤时,0n b ≥,∴(13)2n n n n T S -==(8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----789777()()2n n n S b b b S S S S S =-+++=--=-(13)422n n -=-∴(13)(17,)2(13)42(8,)2n n n n n T n n n n -⎧≤≤∈⎪⎪=⎨-⎪-≥∈⎪⎩**N N 2.解:(1)由151241=+=-a a a n n 及知,1234+=a a解得:,73=a 同理得.1,312==a a(2)由121+=-n n a a 知2211+=+-n n a a)1(211+=+-n n a a {}1+∴n a 构成以211=+a 为首项以2为公比的等比数列; 112)1(1-⋅++∴n n a a ;,21n n a =+∴.12-=∴n n a 为所求通项公式(3)12-=nn a 123......n n S a a a a ∴=++++123(21)(21)(21)......(21)n =-+-+-++-123(222......2)nn =++++-n n ---=21)21(2.221n n --=+3.解:由11335(2)n n n n S S a a n ---=-≥,12n n a a -∴=,又12a =,112n n a a -=, {}n a ∴是以2为首项,12为公比的等比数列,122112()()222n n n n a ---∴=⨯== 2(21)2n n b n -=-,1012123252(21)2n n T n --∴=⨯+⨯+⨯++-⋅ (1) 012111232(23)2(21)22n n n T n n ---=⨯+⨯++-⋅+-⋅ (2) (1)—(2)得0121122(222)(21)22n n n T n ---=++++--⋅ 即:1111112[1(2)]2(21)26(23)2212n n n n T n n ------=+--⋅=-+⋅- ,212(23)2n n T n -∴=-+⋅ 4.解:(Ⅰ)622212=+=a a ,2022323=+=a a .(Ⅱ)),2(22*1N n n a a n n n ∈≥+=-且 , ∴),2(122*11N n n a a n n n n ∈≥+=--且, 即),2(122*11N n n a a n n n n ∈≥=---且. ∴数列}2{n n a 是首项为21211=a ,公差为1=d 的等差数列. (Ⅲ)由(Ⅱ)得,211)1(21)1(212-=⋅-+=-+=n n d n a n n ∴n n n a 2)21(⋅-=. )2(2)21(2)211(2252232212)1(2)21(2252232211432321+⋅-+⋅--++⋅+⋅+⋅=⋅-++⋅+⋅+⋅=n n n n n n n S n S 1322)21(2221)2()1(+⋅--++++=--n n n n S 得 12)21(2222132-⋅--++++=+n n n12)21(21)21(21-⋅----=+n n n 32)23(-⋅-=n n . ∴32)32(+⋅-=n n n S . 5.解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n n S S +∴= 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N 当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥.(Ⅱ)12323n n T a a a na =++++, 当1n =时,11T =;当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+-- 11(12)3n n -=-+-1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥ 又111T a ==也满足上式, 1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥ 6.解: ⑴ )2(221+=++n n b b 2221=++∴+n n b b 2121=-=a a b 62222=+=b b 数列{b n +2}是首项为4公比为2的等比数列;⑵由⑴知 112242+-=⨯=+n n n b221-=∴+n n b 2211-=-++n n n a a22212-=-∴a a22323-=-a a……221-=--n n n a a上列(n-1)式子累加:n a n n 2)222(232-+++=-n a n n 221-=∴+⑶2)1(2)222(13221+-+++=++++n n a a a n n . 4)1(2221-+-=+++∴+n n a a a n n7.解:(1)设等差数列}{n a 的公差为d ,则⎩⎨⎧+=+=+21111)5()20(,60156d a d a a d a 解得⎩⎨⎧==.5,21a d32+=∴n a n . )4(2)325(+=++=n n n n S n (2)由).,2(,111*--+∈≥=-∴=-N n n a b b a b b n n n n n n112211121112,()()()(1)(14)3(2).3,n n n n n n n n b b b b b b b b a a a b n n n n b -----≥=-+-++-+=++++=--++=+=当时对也适合 ))(2(*∈+=∴N n n n b n ).211(21)2(11+-=+=∴n n n n b n )211123(21)2114121311(21+-+-=+-++-+-=n n n n T n )2)(1(4532+++=n n n n8.解:①113210n n n S S S +--++=⇒112()1n n n n S S S S +--=--⇒121(2)n n a a n +=-≥ 又123,22a a ==也满足上式,∴*121()n n a a n N +=-∈⇒112(1)n n a a +-=-(*n N ∈) ∴数列{}1n a -是公比为2,首项为1112a -=的等比数列 (2)由①,1211222n n n a ---=⨯=221n n a -⇒=+ 于是12...n n S a a a =+++()()()()1012212121...21n --=++++++++ ()1012222...2n n --=++++212n n -=+9.解析:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n两式相减:),2(4411≥-=-+n a a a n n n *),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+ ,21=∴+nn b b }{n b ∴是以2为公比的等比数列, ,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而 *)(231N n b n n ∈⋅=∴-(II ),231-==n n n b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n。

数列全集

数列全集

1、256 ,269 ,286 ,302 ,()解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 302+3+2=3072、72 , 36 , 24 , 18 , ( )解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/=5/4. 选C(方法二)6×12=72, 6×6=36, 6×4=24, 6×3 =18, 6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 , 4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=3、8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264、3 , 11 , 13 , 29 , 31 ,()分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5、-2/5,1/5,-8/750,()。

A 11/375B 9/375C 7/375D 8/375解析: -2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=>分子 4、1、8、11=>头尾相减=>7、7分母 -10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 答案为A1. 16 , 8 , 8 , 12 , 24 , 60 , ( )分析:相邻两项的商为,1,,2,,3,所以选1802. 2 ,3 ,6 ,9 ,17 ,()分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=23 所以选B3. 3 ,2 ,5/3 ,3/2 ,()5 6 5 4分析:通分 3/1 4/2 5/3 6/4 ----7/5所以选A4. 20 ,22 ,25 ,30 ,37 ,()分析:它们相差的值分别为2,3,5,7。

数列应用题(典型例题)

数列应用题(典型例题)

1、(2004年福建高考)某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测今年起每年比上一年纯利润减少20万元。

今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+12n)万元(n为正整数)①设从今年起的前n年,若该企业不进行技术改造的累计纯利润为A n万元,进行技术改造后的累计纯利润为B n万元(需扣除技术改造资金),求A n、B n的表达式;②依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润2、(2001年全国理)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业. 根据规划,本年度投入800万元,以后每年投入将比上年减少15.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14。

(Ⅰ)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元. 写出a n,b n的表达式(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?3、(2007年安徽卷)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d (d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1 + r)n – 1,第二年所交纳的储备金就变为a2(1 + r) n – 2,…,以T n表示到第n年末所累计的储备金总额.(1)写出T n与T n– 1(n≥2)的递推关系式;(2)求证:T n = A n + B n,其中{A n}是一个等比数列,{B n}是一个等差数列.4、某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a元,分流后进入新经济实体,第n年的收入为na元,(1)求{}na的通项公式;(2)当827ab=时,这个人哪一年的收入最少?最少为多少?(3)当38ab≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?5、某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件。

构造法求数列通项的八种技巧(三)(学生版+解析版)

构造法求数列通项的八种技巧(三)(学生版+解析版)

构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n+1=ca n k,a n=ca n-1k或者a n+b=c(a n-1+b)k,b为常数.针对出现这种数列,为方便计算,两边通常取以c或首项为底的对数,就能找到突破口.什么情况取c为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n中, a1=2,a n+1=a n2,求数列a n的通项公式.【经典例题2】数列a n中,a1=1,a n+1=2a n2,求数列a n的通项公式.【经典例题3】已知a1=2,点a n,a n+1在函数f x =x2+2x的图像上,其中n∈N*,求数列a n的通项公式.【经典例题4】在数列a n中, a1=1,当n≥2时,有a n+1=a n2+4a n+2,求数列a n的通项公式.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n+1=Aa n+Ba n-1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n+1-a n=(A-1)a n-a n-1,利用a n+1-a n成等比数列,以及叠加法求出a n.还有一小部分题型可转化为a n+1+a n=(A+1)a n+a n-1,利用a n+1+a n成等比数列求出a n.【经典例题1】已知数列a n满足a1=1,a2=3,a n+2=3a n+1-2a n n∈N*,求数列a n的通项公式.【经典例题2】已知数列a n中,a1=1,a2=2,a n+2=23a n+1+13a n,求数列a n的通项公式。

【经典例题3】数列a n中,a1=1,a2=53,a n+2=53a n+1-23a n,求数列a n的通项公式。

此方法可以解决大多数的a n+1=Aa n+Ba n-1,A+B=1模型的试题.当然针对个别试题,单纯构造a n+1-a n成等比数列可能解决不了问题.我们需要学习更完整的方法来解决这种类型题.这就需要运用数列的特征方程理念来解决.当然我们不需要详细学习数列的特征方程,用高中的待定系数法也可以解决,接下来我们通过两道例题,来详细解释说明下这种方法.【经典例题4】已知数列a n满足a1=1,a2=4,a n+2=4a n+1-4a n n∈N*,求数列a n的通项公式.【经典例题5】已知数列a n满足a1=1,a2=43,a n+2=73a n+1-23a n n∈N*,求a n的通项公式.秒杀求法:a n+2=pa n+1+qa n(p,q≠0)类通项公式暴力秒杀求法a n+2=pa n+1+qa n(p,q≠0)对应的特征方程为:x2=px+q,设其两根为x1,x2当x1≠x2时, a n=Ax1n-2+Bx2n-2当x1=x2时, a n=(An+B)x1n-2其中A,B的值的求法,用a1,a2的值代入上面的通项公式中,建立方程组解之即可【秒杀例题1】已知数列a n满足a1=1,a2=43,a n+2=73a n+1-23a n n∈N*,求a n的通项公式.【秒杀例题2】已知数列a n满足a1=1,a2=4,a n+2=4a n+1-4a n n∈N*,求数列a n的通项公式.【练习1】在数列a n中,a1=1,a2=2,a n+1=3a n-2a n-1(n≥2),则a n=_______.【练习2】设数列a n的前n项和为S n,n∈N*.已知a1=1,a2=32,a3=54,且当n≥2时, 4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:a n+1-12a n为等比数列;(3)求数列a n的通项公式.【练习3】数列a n满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明b n是等差数列;(2)求a n的通项公式.◆构造八:数列不动点构造求数列(较难,能力强的同学可以学习)针对x n+1=ax n+bcx n+d这类题型,考题中并不多见,难度比较大,这类题型有特定的解题方法.我们需要学习“数列不动点”的知识点.接下来我们来学习下什么是“数列不动点”,它有什么性质.当然看不懂也没关系,可以通过例题,熟记掌握解题步骤就可以.对于函数f(x),若存在实数x0,使得f x0=x0,则称x=x0是函数f(x)的不动点.在几何上,曲线y=f(x)与曲线y=x的交点的横坐标即为函数f(x)的不动点.一般地,数列x n的递推式可以由公式x n+1=f x n给出,因此可以定义递推数列的不动点:对于递推数列x n,若其递推式为x n+1=f x n,且存在实数x0,使得f x0=x0,则称x0是数列x n的不动点。

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

高中数学人教版 必修五 数列经典例题 高考题(附黄冈解析答案)

高中数学人教版 必修五 数列经典例题 高考题(附黄冈解析答案)

黄冈经典例题高考题(附答案,解析)等差数列例 1、在等差数列{a n}中:1、若a1-a4-a8-a12+a15=2,则a3+a13=___________.2、若a6=5,a3+a8=5,则a10=___________.3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________.例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由.例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行?1 3 5 715 13 11 917 19 21 2331 29 27 25…………例 4、设f(x)=log2x-log x4(0<x<1).又知数列{a n}的通项an满足.(1)求数列{a n}的通项公式;(2)判断该数列{a n}的单调性.1.(2009年安徽卷)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.-1B.1C.3D.72.(2009年湖北卷)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.13783.(江西卷)在数列{a n}中,,则a n=( )A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn等差数列前N项和、等比数列例 1 、在等差数列 {a n}中,(1)已知a15=33,a45=153,求a61;(2)已知S8=48,S12=168,求S4;(3)已知a1-a4-a8-a12+a15=2,求S15;(4)已知S7=42,S n=510,a n-3=45,求n.例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.例 3 、设数列 {a n}的首项a1=1,前n项之和S n满足关系式:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,4…)(1)求证:数列{a n}为等比数列;(2)设数列{a n}的公比为f(t),作数列{b n},使(n=2,3,4,…),求b n.(3)求和:b1b2-b2b3+b3b4-…+(-1)n+1b n b n+1.例 4、一个水池有若干出水量相同的水龙头,如果所有水龙头同时放水,那么 24分钟可注满水池,如果开始时,全部放开,以后每隔相等的时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且最后一个水龙头放水的时间恰好是第一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?例 5 、在 XOY平面上有一个点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n),…,对每个自然数n,点P n位于函数y=2000(0<a<10)的图象上,且点P n,点(n,0)与点(n+1,0)构成一个以P n为顶点的等腰三角形. (1)求点P n的纵坐标b n的表达式;(2)若对每个自然数n,以b n,b n+1,b n+2为边长能构成一个三角形,求a的取值范围;(3)设B n=b1·b2·…·b n(n∈N*).若a取(2)中确定的范围内的最小整数,求数列{B n}的最大项的项数.1.(2009年宁夏、海南卷)等差数列{a n}的前n项和为S n,已知,,则m=()A.38B.20C.10D.92.(2009年全国1卷)设等差数列{a n}的前n项和为S n,若S9=72,则=_________.3.(2009年福建卷)等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.等比数列前N项和、数列的应用例 1 、 {a n} 为等差数列(d≠0) , {a n} 中的部分项组成的数列恰为等比数列,且 k1=1 ,k2=5 , k3=17 ,求 k1+k2+k3+……+k n的值 .例 2、已知数列 {a n} 满足条件: a1=1 , a2=r(r ﹥ 0) 且 {a n·a n+1} 是公比为 q(q ﹥ 0) 的等比数列,设 b n=a2n a2n(n=1,2, …… ).-1+(1)求出使不等式 a n a n+1+a n+1a n+2> a n+2 a n+3 (n ∈ N*) 成立的 q 的取值范围;(2)求 b n;(3)设,求数列的最大项和最小项的值 .例 3 、某职工年初向银行贷款 2万元用于购房,银行为了推行住房制度改革,贷款优惠的年利率为10%,按复利计算,若这笔贷款要求分10年等额还清,每年一次,并且从贷款后次年年初开始归还,问每年应还多少元?(精确到1元)例 4、在一次人才招聘会上,有 A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资比上一年的月工资的基础上递增5%.设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.1.(2009年全国2卷)设等比数列{a n}的前n项和为S n,若,则=___________.2.(2009年北京卷)若数列满足:,则___________;前8项的和___________.(用数字作答)3.(2009年辽宁卷)等比数列{a n}的前n 项和为S n,已知,,成等差数列.(1)求{a n}的公比q;(2)若a1-a3=3,求S n.答案&解析等差数列例一分析:利用等差数列任两项之间的关系:am =an+(m-n)d以及“距首末两端等距离两项的和相等”的性质可简化解答过程.解:,故 5=10-d,∴ d=5.故 a10=a6+4d=5+4×5=25.例二分析:考察数列{an}在哪一范围是递增数列,在哪些范围是递减数列,即可找到最大项.解:由有n≤9.而 an >0,∴当n≤9时,有an+1≥an.即 a1<a2<…<a9=a10>a11>a12>…∴数列{an}中存在最大项,最大项的项数为9或10,最大项为.点评:最大项与最大项的项数是不同概念,一个是项,一个是项号.例三分析:考虑到每行占有四个数,利用周期性进行处理,每一个周期占两行用 8个数,只须确定2003是第几个正奇数,问题就得到解决.解:设2003是第n个正奇数.则 2003=1+(n-1)·2.∴ n=1002.而 1002=8×125+2.∴ 2003在第251行第3列.例四分析:的方程,解方程并注意f(x)的定义域0<x<1即可得通项公式.依据条件列出关于an解:(1)又∵ f(x)定义域为0<x<1,(2)}为递增数列.则数列{an1. 答案:B2.答案:C解析:=n2,由此可排除D(1378不是平方数),将A、B、C选项根据图形的规律可知第n个三角形数为,第n个正方形数为bn代入到三角形数表达式中检验可知,符合题意的是C选项,故选C.3.答案:A等差数列前N项和、等比数列例1 解析:(1) a45 -a15=30d=153 -33 得 d=4 , a61=a45+16d=217.(2)方法 1 S4, S8-S4, S12-S8成等差数列,则 S4+(168 -48) =2(48 -S4)解得 S4= -8方法 2 成等差数列,则,∴ d=2.故.则 S4= -8.(3)∵(4) S7=7a4=42 ∴ a4=6∴ n=20例二解析:∴ an=63 -3n≥0 有 n ≤ 21 误解一=误解二例三解析:(1)∵ n≥2 时∴ {an} 为等比数列 .(2)∵则 {bn } 为等差数列,而 b1=1.∴(3)∵. ∴当 n 为偶数时,当 n 为奇数时例四解析:设有 n 个水龙头,每个水龙头放水时间依次为 x1, x2, x3,…, xn,则数列 {xn} 为等差数列且每个水龙头 1 分钟放水池水,故最后关闭的水龙头放水时间为 40 分钟 .例五解析:(1)∵.(2)∵ 0<a<10 ,则 0<.要使 bn , bn+1, bn+2为边能构成三角形,(3)故{B n} 中最大项的项数为n=20.1.答案:C解析:}是等差数列,所以,由,得:2-=0,所以=2,又,因为{an即=38,即(2m-1)×2=38,解得m=10,故选C.2.答案:24解析:}是等差数列,由,得,∵{an.3.解析:(1)设的公比为,由已知得,解得..(2)由(1)得,,则,.设的公差为,则有,解得.从而.所以数列的前项和.等比数列前N项和、数列的应用例一解答:设公比为 q ,例二解答:(1)由题意得 rq n-1+rq n> rq n+1.由题设 r ﹥ 0,q ﹥ 0 ,故上式 q2-q-1﹤0 ,(2)因为,所以,b1=1+r≠0 ,所以 {bn} 是首项为 1+r ,公比为 q 的等比数列,从而 bn=(1+r)q n-1.(3)由(2)知 bn=(1+r)q n-1,从上式可知当 n-20.2 > 0 ,即 n ≥ 21(n ∈ N) 时, cn随 n 的增大而减小,故①当 n-20.2<0 ,即 n ≤ 20(n ∈ N) 时, cn也随着 n 的增大而减小,故②综合①、②两式知对任意的自然数 n 有 c20≤ cn≤ c21故 {cn } 的最大项 c21=2.25 ,最小项 c20=-4.例三解一:我们把这类问题一般化,即贷款年利率为 a ,贷款额为 M ,每年等额归还 x 元,第 n 年还清,各年应付款及利息分别如下:第 n 次付款 x 元,这次欠款全还清 .第 n-1 次付款 x 元后,过一年贷款全部还清,因此所付款连利息之和为 x(1+a) 元;第 n-2 次付款 x 元后,过二年贷款全部还清,因此所付款连利息之和为 x(1+a)2元;……第一次付款 x 元后,一直到最后一次贷款全部还清,所付款连利息之和为 x(1+a)n-1元.将 a=0.1 , M=20000 , n=10 代入上式得故每年年初应还 3255 元.解二:设每年应还 x 元,第 n 次归还 x 元之后还剩欠款为 an元;则 a0=20000 , a1=20000(1+10%)-x ,an+1=an(1+10%)-x ,∴ an+1-10x=1.1(an-10x) ,故数列 { an-10x} 为等比数列.∴ an -10x= (a-10x)×1.1n,依题意有 a10=10x+(20000-10x) ×1.110=0 ..故每年平均应还 3255 元.例四解答:(1)此人在 A 、 B 公司第 n 年的月工资数分别为:an=1500+230 × (n-1)(n ∈ N*) ,bn=2000(1+5%)n-1(n ∈ N*) .(2)若该人在 A 公司连续工作 10 年,则他的工资收入总量为:12(a1+a2+…+a10)=304200 (元);若该人在 B 公司连续工作 10 年,则他的工资收入总量为:12(b1+b2+…+b10) ≈ 301869 (元).因此在 A 公司收入的总量高些,因此该人应该选择 A 公司 .(3)问题等价于求 Cn =an-bn=1270+230n-2000×1.05n-1(n ∈ N*) 的最大值 .当 n ≥ 2 时, Cn -Cn-1=230-100×1.05n-2,当 Cn -Cn-1> 0 ,即 230-100×1.05n-2> 0 时, 1.05n-2<2.3 ,得 n<19.1,因此,当 2 ≤ n ≤ 19 时, Cn-1<Cn;于是当 n ≥ 20 时, Cn≤ Cn-1.∴ C19=a19-b19≈ 827 (元) .即在 A 公司工作比在 B 公司工作的月工资收入最多可以多827 元.1.答案:3解析:设等比数列的公比为q.当q=1时,.当q≠1时,由.2. 答案:16;255解析:依题知数列{a}是首项为1,且公比为2的等比数列,n.3. 解析:(1)依题意有.由于,故.又,从而.(2)由已知可得.故.从而.。

初中数学数列典型10类例题

初中数学数列典型10类例题

初中数学数列典型10类例题1、有一个农妇,拿着一篮鸡蛋来到市场上,第一位顾客买了全部鸡蛋的一半再加半个;第二位顾客买了第一次剩下部分的一半再加半个;第三位顾客买了第二次剩下的一半再加半个,如此继续,当第六位顾客买了第五次剩下的一半再加半个时,他发现自己和其他顾客所买的鸡蛋都是整个的,而且农妇也刚好卖完所有鸡蛋,那么农妇一共拿了多少个鸡蛋到市场?你能算出来吗?(63个) 2、小明和小刚是好朋友,他们一个月里两次同时到一家超市买鸡蛋,两次鸡蛋的单价有变化,其中第一次鸡蛋的单价为x元/千克,第二次鸡蛋的单价为y元/千克。

现知道两人的购买方式不一样,小明每次总是买相同质量的鸡蛋,小刚则每次只拿出相同数量的钱买鸡蛋。

两种买鸡蛋的方式哪种合算?3、一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时.一天,小船从早晨6点由A港出发顺流到达B 港时,发现一救生圈在途中落入水中,立刻返回,一小时后找到救生圈。

问:(1)若小船按水流速度由A漂流到B港需要多少小时?(2〉救生圈是在何时落入水中的?4、已知: b7+2ab-c2+2ac则三角形ABC是什么三角形(直角或等腰)5、已知: a+b2+c2-2ab+2ac+2bc,则三角形ABC是什么三角形(等边三角形)6、己知:(a-b)-是三角形的三边,则(a-b)-c?___(大于0或小于0)7、关于x的分式方程."_-1,下列说法正确的是()A、方程的解是x=m+5.B、m>-5时,方程的解是正数.c、m<-5时,方程的解是负数. D、无法确定.8、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1〉今年三月份甲种型号电脑每台售价多少元?(2)为了增加收入,该公司决定再经销乙种型号电脑,已知甲种型号电脑每台进价为3500元,乙种型号电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种型号的电脑共15台,有几种进货方案?(3)如果乙种型号电脑每台售价为3800元,为打开乙种型号电脑的销路,公司决定每售出一台乙种型号电脑,返还顾客现金a元,要使(2〉中所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?9、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是(A>A、8B、7c、6D、510、若x=2008/2009,y=2009/2010,则x,y的大小关系是_。

数列典型例题

数列典型例题

数列典型例题一.选择题1.若数列{}n a 是等差数列,且11a =,35a =,则10a 等于( )A .19B .21C .37D .412.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++等于( )A .120B .105C .90D .753.在等差数列{}n a 中,533a =,45153a =,则201是该数列的第( )项A .60B .61C .62D .634若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A .12B .13C .14D .156等差数列{}n a 的前n 项和为n S ,若70a >,80a <,则下列结论正确的是( )A .78S S <B .1516S S <C .130S >D .150S >7等差数列{}n a 中,已知公差12d =,且139960a a a +++=,则12100a a a +++=( )A .170B .150C .145D .12013.已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S ( )A .80B .120C .135D .160.9在等差数列{}n a 中,公差2-=d ,n S 为前n 项和,若1110S S =,则=1a ( ) A.18 B.20 C.22 D.24 10等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 4811.已知等差数列{}n a 中,60191371=+++a a a a ,那么=19S ( )A .390B .285C .180D .12012. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A.84B.72C.60D.4814. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项和等于( )A.160B.180C.200D.22015若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-1516.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-40017.数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为( )A.2n 2n +1B.2n n +1C.n +2n +1D.n2n +118.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1 D .n 2-n +1-12n19在等比数列}{n a 中,公比2q =,且30303212=⋅⋅⋅⋅a a a a ,则30963a a a a ⋅⋅⋅⋅ 等于( )A .102B .202C .162D .15220设等比数列{}n a 的前n 项和为n S ,若633S S =,则96=SS ( )A .2B .73C .83D .321等比数列}{n a 中,已知对任意自然数n ,=+⋯+++n a a a a 32121n -,则22212n a a a ++⋅⋅⋅+=( )A .()221n - B .()1213n - C .41n- D .()1413n -22在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m =A .9B .10C .11D .1223已知{}n a 是等比数列,25124a a ==,,则12231n n a a a a a a ++++=( ))4116.n A --( B .16(12)n -- C .()32143n -- D .()32123n -- 24等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++=( )A .12B .10C .8D .32log 5+25已知各项均为正数的等比数列{}n a ,1235a a a =,78910a a a =,则456a a a =A.B .7C .6D.26.某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( )A .)1(32+-n nB .)34(2-n nC .23n -D .321n二.填空题1在等差数列{}n a 中,,16,482==a a 则等于12a ________2.在等差数列{}n a 中,21=a ,1221=-+n n a a 。

数列与数表问题15例题

数列与数表问题15例题

1.下面是两个具有一定的规律的数列,请你按规律补填出空缺的项:(1)1,5,11,19,29,___,55;(2)1,2,6,16,44,___,328.[分析与解]在数列(1)中,相邻两项的差分别为4、6、8、10.容易看出相邻两项的差每次增加2,因此下一个差应该是10+2=12,补填的数应该是29+12=41.而41+14=55,亦满足此规律.在数列(2)中,从第二项开始,出现的项都是偶数,可以发现:(1+2)×2=6,(2+6)×2=16,(6+16)×2=44.即从第三项开始,数列的每一项都是它前面两项和的2倍,应补填的数为(16+44)×2=120.而(44+120)×2=328,亦满足此规律.2.有一列由三个数组成的数组,它们依次是(1,5,10)(2,10,20);(3,15,30);…….问第99个数组内三个数的和是多少?[分析与解]这些数组的第一个数等于项数,第二个数等于项数的5倍,第三个数等于项数的10倍.显然这个数组的第99个数字的第一个数字为99,则第二个数字为99×5=495,第三个数字为99×10=990,所以这三个数字的和为99+495+990=1584.法2第99组的数的和是第一组数的和的99倍,所以99×16=1584。

3.0,1,2,3,6,7,14,15,30,___,___,___.上面这个数列是小明按照一定的规律写下来的,他第一次先写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,依此类推.那么这列数的最后3项的和应是多少?[分析与解](0,1),(2,3),(6,7),(14,15),(30,___),(___,___)注意到从第二组数开始,每组数的第一个数是前一组最后一个数的2倍,而每组内的两个数字连续,所以30后面为31,下一组的第一个数为31×2=62,下一组的第二个数为62+1=63,所以这列数的最后3项为31+62+63=156.4.仔细观察下面的数表,找出规律,然后补填出空缺的数字.[分析与解](1) 第二行的数均比第一行对应的数大21,所以58下面第二行数为58+21=79,即空格内填79.(2) 每行的第一、二列数的和比第三列数大17,如14+9-17=5,21+8-13=17,所以第一行的第三列数为28+9-17=19.即空格内填19.5.图5-3中各个数之间存在着某种关系.请按照这一关系求出数a和b.[分析与解]考察相邻圆周及它们公共区域上所填入的数字后发现如下关系:10+20=30=15×2,20+40=60=30×2,即两圆的公共部分上的数字是它旁边两个区域中数字的平均数,于是应该有a=20×2-16=24,b =(16+40)÷2=28,验证后发现此规律成立.6.将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数之和.如果第7个数和第8个数分别是81,131,那么第一个数是多少?[分析与解]显然,我们可以倒推,每个数都是后面的第二个数与后面第一个数的差,有第6个数为131-81=50,第5个数为81-50=31,第4个数为50-31=19,第3个数为31-19=12,第2个数为19-12=7,第1个数为12-7=5.7.1,2,3,2,3,4,3,4,5,4,5,6,….上面是一串按某种规律排列的自然数,问其中第101个数至第110个数之和是多少?[分析与解]我们注意到(1,2,3),(2,3,4),(3,4,5),(4,5,6),…每组数的第一个等于项数,而101÷3=33……2,即第101个数为第34组的第2个数,而第34组数为(34,35,36),所以第101个数至110个数为(__,35,36),(35,36,37),(36,37,38),(37,38,__),所以这10个数的和为35+36+35+36+37+36+37+38+37+38=2×35+3×36+37×3+38×2=365.即其中第101个数至第110个数之和是365.8.如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999.那么在这个多位数里,从左到右的第2000个数字是多少?[分析与解]其中一位数字有9个,两位数从10~99有90个,占有90×2=180个数字,三位数为100~999有900个,占有900×3=2700个,而2000-9-180=1811,所以第2000个数字是从100的1开始的第1811个数字,有1811÷3=603……2,即第100+603=703的第2个数字,为0.9.标有A,B,C,D,E,F,G记号的7盏灯顺次排成一行,每盏灯各安装着一个开关.现在A,C,D,G这4盏灯亮着,其余3盏灯是灭的.小方先拉一下A的开关,然后拉B,C,……,直到G的开关各一次,接下去再按从A到G的顺序拉动开关,并依此循环下去.他这样拉动了1990次后,亮着的灯是哪几盏?[分析与解]小方循环地从A到G拉动开关,一共拉了1990次.由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环了284次.然后又拉动A和B的开关一次.每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次,A和B的状态会改变,而C到G的状态不变,而C到G的状态不变.开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G.10.在l,2两数之间,第一次写上3;笫二次在1,3之间和3,2之间分别写上4,5,得到l 4 3 52以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和.这样的过程共重复了8次,那么所有数的和是多少?[分析与解]第一次写上3后,和增加了3=3;第二次再写上4,5后,和增加了4+5=9;第三次再写上5,7,8,7,和增加了5+7+8+7=27;…和依次增大了3,9,27,…不难看出,接下来应该增大81,243,729,2187,6561,所以重复8次后,比开始的1+2=3,和增大了3+9+27+81+243+729+2187+6561=9840,所以现在这些数的和为3+9840=9843.11.有一列数:l,1989,l988,l,l987,….从第三个数起,每一个数都是它前面两个数中大数减小数的差.那么第1989个数是多少?[分析与解]根据题目中给出的数列的形成办法,我们不难写出数列的前几项为:1,1989,1988,1,1987,1986,1,1985,1984,1,1983,1982,…,通过观察发现,每隔3个数就出现1个1,而划去全部的1之后,数列变为:1989,1988,1987,1986,1985,…,它是一个递减的数列,每次减少1,由于有1989÷3=663,即原数列一共划去了663个“1”,相当于求划去1之后的原数列的第1989-663=1326项.应该为:1989-(1326-1)=664.原数列的第1989项为664.法2,把原数列每三个数分成一组,每组最后的数字构成了一个公差为2的灯拆数列,1989÷3=663,所以,第1989个数为1988-(663-1)×2=1988-1324=664。

数列经典题

数列经典题

数列经典例题 2017.12例1. 已知数列满足. (1)求;(2)证明:. 解:(1).(2)证明:由已知,故,所以证得.例2. (I )已知数列,其中,且数列为等比数列,求常数;(II )设、是公比不相等的两个等比数列,,证明数列不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1),将c n =2n +3n代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .为证{c n }不是等比数列只需证≠c 1·c 3.事实上,=(a 1p +b 1q )2=p 2+q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= p 2+q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此c 1·c 3,故{c n }不是等比数列.}{n a 1111,3(2)n n n a a a n --==+≥32,a a 312n n a -=21231,314,3413a a a =∴=+==+= 113--=-n n n a a )()()(12211a a a a a a a n n n n n -++-+-=--- 1213133312n n n a ---+=++++= 312n n a -={}n c nn n c 32+={}n n pc c -+1p {}n a {}n b n n n b a c +={}n c 6122c 22c 21a 21b 21a 21b ≠22c例3. 数列的前项和记为(Ⅰ)求的通项公式;(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求. 解:(Ⅰ)由可得, 两式相减得:,又∴故是首项为1,公比为3的等比数列∴(Ⅱ)设的公比为,由得,可得,可得 故可设,又,由题意可得,解得∵等差数列的各项为正,∴∴∴例4. 已知数列的前三项与数列的前三项对应相同,且对任意的都成立,数列是等差数列.⑴求数列与的通项公式;⑵是否存在,使得,请说明理由.点拨:(1)左边相当于是数列前n 项和的形式,可以联想到已知求的方法,当时,.(2)把看作一个函数,利用函数的思想方法来研究的取值情况. 解:(1)已知…)①时,…)②{}n a n 11,1,21(1)n n n S a a S n +==+≥{}n a {}n b nn T 315T =112233,,a b a b a b +++n T 121n n a S +=+121(2)n n a S n -=+≥112,3(2)n n n n n a a a a a n ++-==≥21213a S =+=213a a ={}n a 13n n a -={}n b d 315T =12315b b b ++=25b =135,5b d b d =-=+1231,3,9a a a ===2(51)(59)(53)d d -+++=+122,10d d =={}n b 0d >2d =2(1)3222n n n T n n n -=+⨯=+{}n a {}n b 212322...aa a +++128n n a n-+=*N n ∈{}nn b b-+1{}n a {}n b N k *∈(0,1)k k b a -∈2112322...28n n a a a a n-++++={}12n n a -n S n a 2n ≥1n n n S S a --=k k a b -k k a b -212322a a a +++12n n a -+8n =(n ∈*N 2n ≥212322a a a +++2128(1)n n a n --+=-(n ∈*N①-②得,,求得,在①中令,可得得,所以N*). 由题意,,,所以,, ∴数列的公差为, ∴,).(2),当时,单调递增,且, 所以时,,又,所以,不存在,使得.例5. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解:依题意得: 2b n+1 = a n+1 + a n+2① a 2n+1 = b n b n+1②∵ a n 、b n 为正数,由②得,代入①并同除以得:,∴为等差数列∵ b 1 = 2 , a 2 = 3 ,,128n n a -=42nn a -=1n =41182a -==42n n a -=(n ∈18b =24b =32b =214b b -=-322b b -=-}{1n n b b -+2)4(2=---1n n b b +-=2)1(4⨯-+-n 26n =-121321()()()n n n b b b b b b b b -=+-+-++- (4)(2)(28)n =-+-++- 2714n n =-+(n ∈*N k k b a -=2714k k -+-42k-4k ≥277()()24f k k =-+-42k-(4)1f =4k ≥2()714f k k k =-+-421k -≥(1)(2)(3)0f f f ===k ∈*N (0,1)k k b a -∈21211,+++++==n n n n n n b b a b b a 1+n b 212+++=n n n b b b }{n b 29,22122==b b b a 则∴,∴当n ≥2时,, 又a 1 = 1,当n = 1时成立,∴例6. 已知函数的图象经过点和,记(1)求数列的通项公式;(2)设,若,求的最小值;(3)求使不等式对一切均成立的最大实数.解:(1)由题意得,解得,(2)由(1)得,①②①-②得., 设,则由2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n 2)1(1+==-n n b b a n n n 2)1(+=n n a n 3()log ()f x ax b =+)1,2(A )2,5(B ()*3,.f n n a n N =∈}{n a n n nnn b b b T a b +++==21,2)(Z m m T n ∈<m 12)11()11)(11(21+≥+++n p a a a n*N n ∈p ⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ⎩⎨⎧-==12b a )12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-n n n b 212-=n n nn n T 2122322523211321-+-++++=∴- 1132212232252232121+--+-+-+++=n n n n n n n T )21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++= 1n 1n 1n 21n 2212321n 2+-+---=--n n 2n n 23n 2321n 2213T +-=---=∴-*,232)(N n n n f n ∈+=得随的增大而减小时,又恒成立,(3)由题意得恒成立记,则是随的增大而增大的最小值为,,即.例7. 已知等比数列的前项和为,且. (1)求、的值及数列的通项公式;(2)设,求数列的前项和.解:(1)时,.而为等比数列,得, 又,得,从而.又.(2),),得, 1512132121)32(2522252)()1(1<+≤++=++=+=++n n n n n f n f n n *,232)(N n n n f n∈+=n +∞→∴n 当3→n T )(Z m m T n ∈<3min =∴m *21)11()11)(11(121N n a a a n p n ∈++++≤对 )11()11)(11(121)(21n a a a n n F ++++=()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++ )(),()1(,0)(n F n F n F n F 即>+∴> n )(n F 332)1(=F 332≤∴p 332max =p }{n a n 2n n S a b =⋅+13a =a b }{n a n nnb a =}{n b n n T 2≥n a S S a n n n n ⋅=-=--112}{n a a a a =⋅=-111231=a 3=a 123-⋅=n n a 123,3a a b b =+=∴=- 132n n n n nb a -==⋅21123(1)3222n n n T -=++++ 231111231(2322222n n n n n T --=+++++ 2111111(1)232222n n n nT -=++++-.例8. 已知数列的前n 项和为S n ,且成等差数列,. 函数.(I )求数列的通项公式; (II )设数列满足,记数列的前n 项和为T n ,试比较的大小.解:(I )成等差数列,①当时,②. ①-②得:,,当n =1时,由①得,又是以1为首项3为公比的等比数列,(II )∵,,,比较的大小,只需比较与312 的大小即可.∵∴当时,111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---}{n a 11,,n n S a +-*1,1N n a ∈=3()log f x x =}{n a {}n b 1(3)[()2]n n b n f a =++{}n b 52512312n n T +-与11,,n n S a +- 121n n S a +∴=-2n ≥121n n S a -=-112()n n n n S S a a -+-=-13+=∴n n a a 13.n na a +∴=112221S a a ∴==-11,a =2213,3,a a a ∴=∴={}n a ∴13.n n a -∴=()xlog x f 3=133()log log 31n n n f a a n -∴===-11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++ 11111()22323n n =+--++525,122(2)(3)n n n +=-++52512312n n T +-与2(2)(3)n n ++222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-*,N n ∈*19N n n ≤≤∈且5252(2)(3)312,;12312n n n n T +++<<-即当时,当时,.例9.. 数列是首项为1000,公比为的等比数列,数列满足, (1)求数列的前项和的最大值;(2)求数列的前项和.解:(1)由题意:,∴,∴数列是首项为3,公差为的等差数列,∴,∴由,得,∴数列的前项和的最大值为.(2)由(1)当时,,当时,,∴当时,当时,∴.例10. 数列中,且满足,.⑴求数列的通项公式;10n =5252(2)(3)312,;12312n n n n T +++==-即*10N n n >∈且5252(2)(3)312,12312n n n n T +++>>-即{}n a 110{b }n 121(lg lg lg )k k b a a a k=+++ *()N k ∈{b }n n {|b |}n n n S '410nn a -=lg 4n a n =-{lg }n a 1-12(1)lg lg lg 32k k k a a a k -+++=- 1(1)7[3]22n n n nb n n --=-=10n n b b +≥⎧⎨≤⎩67n ≤≤{b }n n 67212S S ==7n ≤0n b ≥7n >0n b <7n ≤212731132()244n n nS b b b n n n -+'=+++==-+ 7n >12789n n S b b b b b b '=+++---- 27121132()2144n S b b b n n =-+++=-+ 22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩{}n a 2,841==a a n n n a a a -=++122*N n ∈{}n a⑵设,求; ⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由.解:(1)由题意,,为等差数列,设公差为, 由题意得,. (2)若,时,故(3),若对任意成立,即对任意成立,的最小值是,的最大整数值是7.即存在最大整数使对任意,均有例11.. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,||||||21n n a a a S +++= n S n b 1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈ m *N n ∈>n T 32mm n n n n a a a a -=-+++112}{n a ∴d 2832d d =+⇒=-82(1)102n a n n ∴=--=-50210≤≥-n n 则||||||,521n n a a a S n +++=≤ 时21281029,2n na a a n n n +-=+++=⨯=- 6n ≥n n a a a a a a S ---+++= 765212555()2940n n S S S S S n n =--=-=-+⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥11111()(12)2(1)21n n b n a n n n n ===--++ ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+ .2(1)n n =+32n m T >*N n ∈116n mn >+*N n ∈*()1N nn n ∈+211,162m ∴<m ∴,7=m *N n ∈.32n mT >163,814342==a a求S=a 11 + a 22 + a 33 + … + a nn解:设数列{}的公差为d ,数列{}(i=1,2,3,…,n )的公比为q则= a 11 + (k -1)d ,a kk = [a 11 + (k -1)d]q k -1依题意得:,解得:a 11 = d = q = ± 又n 2个数都是正数,∴a 11 = d = q = ,∴a kk =,,两式相减得:例12. 设数列 (1)证明:数列是等比数列;(2)设数列的公比,数列满足,b n =f (b n -1)(n ∈N *,n ≥2),求数列的通项公式;(3)设,,求数列的前n 项和Tn .(1)证明:由相减得:∴数列是等比数列(2)解:1k a ik a 1k a ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a 2121kk2n n S 212132122132⨯++⨯+⨯+=1432212132122121+⨯++⨯+⨯+=n n S n n nS 22121--=-0,1,)1(,}{-≠-+=λλλ其中且项和为的前n n n n a S S n a }{n a }{n a ()q f λ={}n b 1b =}{n b 1λ=1(1)n n nC a b =-{}n C 11(1)(1)(2)n n n n S a S a n λλλλ--=+-⇒=+-≥11,(2),1n n n n n a a a a n a λλλλ--=-+∴=≥+{}n a是首项为,公差为1的等差数列,∴..(3)解:时①②①-②得:∴所以:.例13. 已知等比数列与数列满足N *.(1)判断是何种数列,并给出证明; (2)若. 解:(1)设的公比为q ,∵,∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型一:迭加法求数列通项公式
1.在数列中,,,求.
解析:∵,
当时,



将上面个式子相加得到:
∴(),
当时,符合上式
故.
总结升华:
1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列.
2.当数列的递推公式是形如的解析式,
而的和是可求的,则可用多式累(迭)加法得.
举一反三:
【变式1】已知数列,,,求.
【答案】
【变式2】数列中,,求通项公式.
【答案】.
类型二:迭乘法求数列通项公式
2.设是首项为1的正项数列,且
,求它的通项公式.
解析:由题意

∵,∴,
∴,
∴,又,
∴当时,

当时,符合上式
∴.
总结升华:
1. 在数列中,,若为常数且
,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列.
2.若数列有形如的解析关系,而
的积是可求的,则可用多式累(迭)乘法求得.
举一反三:
【变式1】在数列中,,,求.
【答案】
【变式2】已知数列中,,
,求通项公式.
【答案】由得,∴,
∴,
∴当时,
当时,符合上式

类型三:倒数法求通项公式
3.数列中,
,,求.
思路点拨:对两边同除以得即可.
解析:∵,∴两边同除以得,
∴成等差数列,公差为d=5,首项,
∴,
∴.
总结升华:
1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而
恰是等差数列.其通项易求,先求的通项,再求的通项.
2.若数列有形如的关系,则可在
等式两边同乘以,先求出,再求得.
举一反三:
【变式1】数列中,,,求.
【答案】
【变式2】数列中,
,,求.
【答案】.
类型四:待定系数法求通项公式
4.已知数列中,,,求.
法一:设,解得
即原式化为
设,则数列为等比数列,且

法二:∵①

由①-②得:
设,则数列为等比数列



法三:,,
,……,


总结升华:
1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即
,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.
2.若数列有形如(k、b为常数)的线性
递推关系,则可用待定系数法求得.
举一反三:
【变式1】已知数列中,,求
【答案】令,则,
∴,即
∴,
∴为等比数列,且首项为,
公比,
∴,
故.
【变式2】已知数列满足,而且,求这个数列的通项公式.
【答案】∵,∴
设,则,即

∴数列是以为首项,3为公比的等比数列,
∴,∴.
∴.
类型五:和的递推关系的应用
5.已知数列中,是它的前n项和,并且
, .
(1)设,求证:数列是等比数列;
(2)设,求证:数列是等差数列;
(3)求数列的通项公式及前n项和.
解析:
(1)因为,所以
以上两式等号两边分别相减,得
即,变形得
因为,所以
由此可知,数列是公比为2的等比数列.
由,,
所以, 所以,
所以.
(2),所以
将代入得
由此可知,数列是公差为的等差数列,它的首项,
故.
(3),所以
当n≥2时,

由于也适合此公式,
故所求的前n项和公式是
.
总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.
举一反三:
【变式1】设数列首项为1,前n项和满足
.
(1)求证:数列是等比数列;
(2)设数列的公比为,作数列,使,
,求的通项公式.
【答案】
(1),

∴,

①-②
∴,
∴是一个首项为1公比为的等比数列;
(2)

∴是一个首项为1公比为的等差比数列

【变式2】若, (),求.
【答案】当n≥2时,将代入
,
∴,
整理得
两边同除以得(常数)
∴是以为首项,公差d=2的等差数列,


∴.
【变式3】等差数列中,前n项和,若.求数列的前n项和.
【答案】∵为等差数列,公差设为,

,
∴,
∴,
若,则, ∴.
∵,
∴,∴ ,
∴,



①-②得

类型六:数列的应用题
6.在一直线上共插13面小旗,相邻两面间距离为
10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上最短路程是多少?
思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和.
解析:设将旗集中到第x面小旗处,则
从第一面旗到第面旗处,共走路程为了,
回到第二面处再到第面处是,
回到第三面处再到第面处是,

从第面处到第面处取旗再回到第面
处的路程为,
从第面处到第面处取旗再回到第面处,路程为20×2,
总的路程为:
∵,∴时,有最小值
答:将旗集中到第7面小旗处,所走路程最短.
总结升华:本题属等差数列应用问题,应用等差数列前
项和公式,在求和后,利用二次函数求最短路程.
举一反三:
【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为()
A. B. C. D.
【答案】D;
解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为,

【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本
金为()
A.万元 B.2万元 C.3万元 D.万元
【答案】B;
解析:本金利息/利率,利息利息税/税率
利息(元),
本金(元)
【变式3】根据市场调查结果,预测某种家用商品从年
初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是( )
A.5月、6月 B.6月、7月 C.7月、8月D.9月、10月
【答案】C;
解析:第个月份的需求量超过万件,则
解不等式,得,即.
【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算(即年平均费用最少)
【答案】设汽车使用年限为年,为使用该汽车平均费用.
当且仅当,即(年)时等到
号成立.
因此该汽车使用10年报废最合算.
【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.
(1)分别求2007年底和2008年底的住房面积;
(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到)
【答案】
(1)2007年底的住房面积为1200(1+5%)-20=1240(万平方米),
2008年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),
∴2007年底的住房面积为1240万平方米;
2008年底的住房面积为1282万平方米.
(2)2007年底的住房面积为[1200(1+5%)-20]万平方米,
2008年底的住房面积为[1200(1+5%)2-20(1+5%)-20]万平方米,
2009年底的住房面积为[1200(1+5%)3-20(1+5%)2-20(1+5%)-20]万平方米,
…………
2026年底的住房面积为
[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20] 万平方米

1200(1+5%)20―20(1+5%)19―20(1+5%)18―……―20(1+5%)―20
≈(万平方米),
∴2026年底的住房面积约为万平方米.。

相关文档
最新文档