大学物理平面简谐波波动方程
大学物理波动部分公式
• 弹簧振子作简谐运动的总能量(守恒)、动能、势能:
1
1
1
1
1
1
1
1
= 2 2 + 2 2 = 2 2 2 = 2 2 ; = 2 2 = 2 2 2 2 ( + ); = 2 2 = 2 2 2 ( + )
• 两个同方向同频率简谐振动的合成
•
=
= 2; =
• ⑤简谐振动的速度: =
2
• ⑥简谐运动的加速度: =
= 2
;=
2
=⥂
1
2
;=
1
= − ( + )
2
2
=
= −2 ( + )
• 单摆作简谐运动:
•
2
运动方程: 2 = −
• 机械振动
• 弹簧振子作简谐运动:
• ①加速度: = = − = −2
•
2
②微分方程: 2
= −2
• ③运动方程: = ( + )
• 或 = ( + ′ ) 其中 ′ = + 2
• ④弹簧振子的角频率、频率、周期、劲度系数之间的关系:
10
0
• 电磁波波速: =
• 声强级: =
电磁震荡与电磁波
2
2
1
+ = 0无阻尼自由震荡(有电容C和电感L组成的电路)
= 0 ( + )
=
1
大学物理_波动方程
《大学物理》 4、波动方程的几点讨论:
I、波沿x轴负向传播时,波动方程为:
yAco2s(Tt x)
y
II、波动方程中,x取固定值则得
到振动方程。
0
t
y0Aco2s(Tt x0)
y
u
III、波动方程中,t取固定值则
得到波形方程。
yAco2s(T t0x)
0
x
《大学物理》
例2 频率为12.5kHz的平面余弦纵波沿细长的金属棒传播,棒的杨氏模量为
0.1 10 3 cos( 25 10 3 t ) m 2
可见此点的振动相位比原点落后,相位差为
2
, 或 落 后 1 T , 即 2 10 5 s 。 4
( 4 ) 该 两 点 间 的 距 离 x 10 cm 0.10m
1 ,相应的相位差为 4
2
(5 ) t= 0 .0 0 2 1 s 时 的 波 形 为
1 0
2
根据已知条件,初相为:
x
2
y 1 co (t sx )[ /2 ]
《大学物理》
(2)按题设条件,t=1s时的波形方程为:
y1cos(1[x)/2]
y
u
sinx
1
(3)按题设条件,x=0.5m处的质点02 Nhomakorabeax
振动方程为:
y1cos(t[0.5)/2] cost()
《大学物理》
例题4 在x=0处有一个波源,振动初相为0,向x轴正向发出谐 波,波长为4m,振幅为0.01m,频率为50赫兹.现在x=10m处有 一个反射装置,将波反射.试求,反射波的波动方程.
解 棒中的波速
u Y 1.9 1011 N m2 5.0 103 m/s
大学物理平面简谐波波动方程
§4-2平面简谐波的波动方程振动与波动最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。
任何复杂的波都可看成是若干个简谐波的叠加。
对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。
需要定量地描述出每个质点的振动状态。
波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。
一、平面简谐波的波动方程设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点参考点原点的振动方程为()00cos y A t ωϕ=+任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x ππλλ=P 点的振动方程为区别联系振动研究一个质点的运动。
波动研究大量有联系的质点振动的集体表现。
振动是波动的根源。
波动是振动的传播。
x02c o s P y A t x πωϕλ⎛⎫=+- ⎪⎝⎭ 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉02c o s y A t x πωϕλ⎛⎫=+- ⎪⎝⎭就是沿 x 轴正向传播的平面简谐波的波动方程。
如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x πλ沿 x 轴负向传播的波动方程为02c o s y A t x πωϕλ⎛⎫=++⎪⎝⎭利用 2ωπν=, u λν=沿 x 轴正向传播的平面简谐波的波动方程又可写为02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭02c o s A t x u πνωϕ⎛⎫=-+⎪⎝⎭0c o s x A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦即 0c o s x y A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦原点的振动状态传到 P 点所需要的时间 xt u∆=P 点在 t 时刻重复原点在 x t u ⎛⎫- ⎪⎝⎭时刻的振动状态波动方程也常写为x02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭()0c o s A t k x ωϕ=-+ 其中 2k πλ=波数,物理意义为 2π 长度内所具有完整波的数目。
《大学物理》 第二版 课后习题答案 第十章
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
10-2平面简谐波的波函数
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
yO Acost
yO表示质点O在 t时刻离开平衡位置的距离.
考察波线上P点(坐标x), P点比O点的振
动t 落Δ后t 时刻t 的ux,位P移点,在由t此时得刻的位移是O点在
y A
u
P
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
y
u
A
P
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
故P点的振动方程(波动方程)为:
y
yo
(t
t)
A cos[ (t
x) u
]
对波动方程的各种形式,应着重从
物理意义上去理解从形式上看:波动是波形的传播.
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
大学物理 §§1100--22 平平面简面谐波简的谐波函波数 的波函数
一 平面简谐波的波函数
波函数:用以描述波在传播过程中空间各点 x 的振
动 y 随时间 t 变化的表达式。 y Acos[(t x) ]
u
设有一平面简谐波沿 x轴正方向传播,
波速为u,坐标原点 O处质点的振动方程为
y A
u
P
uu
Acos[(t x ) ( x0 )]
理学u院 物理u系
大学物理
§10-2 平面简谐波的波函数
例4 一平面简谐波以速度 u 20 m s-1 沿直线传播,波线上点 A 的简谐运动方 程
yA 3102 cos(4 π t); ( y, t单位分别为m,s).
5-2平面简谐波的波动方程详解
u 沿 x 轴正向 u 沿 x 轴负向
第5章 机械波
5–2 平面简谐波的波动方程 平面简谐波波函数的其它形式
大学物理学 (第3版)
t y A cos[2 π( T
y A cos[2 t
y A cos[ 2
2 x
x ) 0 ] λ
0 ]
(ut x) 0 ] A cos[k (ut x) 0 ]
x y A cos (t ) (沿x轴负向传播) u
第5章 机械波
5–2 平面简谐波的波动方程 如果原点的
大学物理学 (第3版)
A
O
y
u
初相位不为零
x
x 0, 0 0 A
点 O 振动方程
y0 A cos(t 0 )
波 函 数
x y A cos[ (t ) 0 ] u x y A cos[ (t ) 0 ] u
2 y G 2 y 2 t x2 2 y E 2 y 2 t x 2
G为切变模量
固体内弹性平面纵波
E为杨氏模量
张紧柔软线绳上传播横波
2 y T 2 y 2 t x 2
T为线绳所受张力,为线密度:单位长度线绳的质量
第5章 机械波
5–2 平面简谐波的波动方程 2、波速 固体中弹性横波 固体中弹性纵波 张紧软绳中横波
x0 x0 2 π u λ
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
波线上各点的简谐运动图
第5章 机械波
5–2 平面简谐波的波动方程
大学物理(机械工业出版社)第14章课后答案
第十四章 波动#14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(ϕ+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。
解:(1)O 处质点振动方程:y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置x = L ± k 2πu / ω (k = 0 , 1, 2, 3……)14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。
解:(1) y = 0.1 cos ( 4πt - 2πx / 10 )= 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 )= 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t tyv --=∂∂=ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设4Tt =时刻的波形如本题图所示,求该波的表达式。
解:由图可看出,在t=0时,原点处质点位移y 0=-A ,说明原点处质点的振动初相πϕ=0,因而波动方程为])(cos[πω++=uxt A y14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。
大学物理学5.2 机械波的波动方程
2、波动方程的物理意义
T
(1)、如果给定x,即x=x0 则y=y(t) 为x0处质点的振动方程
t T
x0处质点的振动初相为
为x0处质点落后于原点的位相
若x0= 则 x0处质点落后于原点的位相为2 是波在空间上的周期性的标志
同一波线上任意两点的振动位相差
(2)、如果给定t,即t=t0 则y=y(x) Y
O点振动状态传到p点需用
t 时刻p处质点的ຫໍສະໝຸດ 动状态重复tx u时刻O处质点的振动状态
p点的振动方程:
沿x轴正向传播的平面简谐波的波动方程 沿着波传播方向,各质点的振动依次落后于波源振动
为p点的振动落后与原点振动的时间
沿x轴负向传播的 平面简谐波的波动方程
若波源(原点)振动初位相不为零 或
波矢,表示在2 长度内所具有的完整波的
在时间t内整个波形沿波的传播方向平移了一段 距离x—行波
例 一平面简谐波t=0时的波形图所示,波速为u=0.05ms-1,
求:(1)波源的振动方程;(2)波动方程;(3)P点的振
动方程.
y/m
u
解 (1)设波源的振动方程为 0.02
y A cos(t )
o 0.5 P
0.8
x/m
由图知,波长为 0.8m
T 0.8 80 m s1
u 0.05 5
2
T8
t 0 y0
2
v0 0
y
0.02
cos(
t
)(m)
82
(2)波动方程为
y
0.02 cos[(
(t
x
简明大学物理第二版 复件 4-6 平面简谐波
上页 下页 返回 帮助
x t 3 2
4-6 平面简谐波
第四章 机械振动与机械波
此方程说明了每个质点振动的 周期性,即波动的时间周期性. 据此可以作出该质点的y-t振动 曲线 。
y
O
A
x x0
t
上页 下页 返回 帮助
4-6 平面简谐波
相位差和波程差
第四章 机械振动与机械波
x 波函数 y A cos t u
在同一时刻,距离原点O分别为x1和x2的两质点的相位分别为:
当Δt=T/4时,整个波形应沿传播方向平移λ/4的距离. 于是可容易地作出t=T/4时的波形曲线,如图中的虚线所示.
上页
下页
返回
帮助
4-6 平面简谐波
第四章 机械振动与机械波
由图中的两条曲线可得到坐标x=λ/4的质点在t=0、T/4时 的y值,按照这样的思路,只要平移波形曲线,就可以得到在 不同时刻质点更多的y值.于是就可以作出这个质点的振动曲线, 如图所示.
I P S wu 1 2
A u
2 2
I A 2 I
2
在SI中,能流密度的单位是瓦每平方米,符号为W·m-2
上页 下页 返回 帮助
4-6 平面简谐波
3 波的振幅
第四章 机械振动与机械波
在波动过程中,如果各处传波质点的振动状况不随时间改变, 并且振动能量也不为介质吸收,那么单位时间内通过不同波面的 总能量就相等,这是能量守恒定律要求的. 对平面波,可任取两个面积为S1、S2的波面,相应的强度 分别为I1,I2. 由于S1=S2 ,且根据能量守恒,在单位时间有
大学物理 平面简谐波的波函数
y Acos[2 π x (2π t )] T
y(x,t) y(x ,t)(波具有空间的周期性)
波程差
x21 x2 x1
12
1 2
2π
x2 x1
2π
x21
2π
x
回目录
3若
x, t 均变化,波函数表示波形沿传播方向的运动情况(行波).
yu
t 时刻
x
O
x
t t 时刻
xx
x 0.5处m质点的振动方程
y 1.0cos(π t π)m
y
y/m
3
1.0
3*
2
4
4O
2
0
* 1.0
* 2.0
*
t /s
1 -1.0* 1
*
x 0.5 m 处质点的振动曲线
回目录
例2 一平面简谐波以速度
沿u直线传20播m,波线/ s上点 A 的简谐运动方
程
. yA 310 2 cos(4 π t)m
y Acos式(中Bt Cx)
A, B, C 为正常数,求波长、波速、波传播方向上相距为 的两点间的相位差.
d
y Acos(Bt Cx)
y Acos2 π ( t x )
T
2π
C
T 2π B
u B
TC
2π d dC回目录
二 波函数的物理意义
y Acos[(t x) ] Acos[2 π( t x ) ]
u
8m 5m 9m
C
B oA
Dx
1)以 A 为坐标原点,写出波函数
两种方法:时间推迟法和相位落后法
y 3102 cos[4 π(t x )]m 20
大学物理波动方程波动能量
• 不同波长、相同振幅 反向波的叠加 不同波长、
ch6
4.平均能流密度 平均能流密度 质元不断从前一质元接收能量, 质元不断从前一质元接收能量,又向后一质元传 递能量 ⇒ 波动是一种能量传递方式 ⇒ 能量流 平均能流密度:单位时间内通过垂直于波线方向的 平均能流密度: 单位面积的平均能量
1 I = w u = ρ ω 2 A2 u 2
单位: 单位:W/m2
ch6Βιβλιοθήκη §6-5 驻波一、驻波的形成和特点
1.驻波的形成 驻波的形成 • 相干波:频率相同、振动方向相同、有固定相 相干波:频率相同、振动方向相同、 位差的两个波源所发出的简谐波 • 干涉:在两相干波交叠处,有些地方波加强而 干涉:在两相干波交叠处, 有些地方波减弱的现象 •两列振幅相同、传播方向相反的相干波的叠加 两列振幅相同 传播方向相反的相干波的叠加 两列振幅相同、 y2 = Acos(ω t + kx) y1 = Acos(ω t − kx)
波腹与波节间距 λ/4 • 相位分布 同一段内各质元相位相同 每一波节两侧的质元相位相反
4
处不振动, 处不振动,相邻波节间 距
2
ch6
• 能量分布 Ep↓ Ek↑ Ep↓ 势能→动能 势能 动能 能量由波节向波腹流动 瞬时位移为0, 势能为 , 瞬时位移为 , 势能为0, 动能最大。 动能最大。 Ek↓ Ep↑ Ep↑ 动能→势能 动能 势能 能量由波腹向波节流动
ch6
的声波 • 次声波 10-4 < ν < 20Hz的声波 特点:衰减小, 特点:衰减小,可用于远距离传播 次声波的波源 大气湍流、火山爆发、地震、 大气湍流、火山爆发、地震、陨 石落地、雷暴、 石落地、雷暴、磁暴等大规模自 然活动中,都有次声波产生。 然活动中,都有次声波产生。 次声波的用途 科学研究: 科学研究: 研究地球、海洋、大气等大规模运动; ①研究地球、海洋、大气等大规模运动;② 对自然灾害性事件(如火山爆发、地震等) 对自然灾害性事件(如火山爆发、地震等) 进行预报,深入认识自然规律。 进行预报,深入认识自然规律。 军事应用: 军事应用: 军事侦察; 次声波有杀伤性。 ①军事侦察;②次声波有杀伤性。
大学物理第十六章机械波第二节平面简谐波 波动方程
0.4
0.5
t=3T/4
波动方程的推导
(5)质点的最大速率
vm
A
A 2
T
0.5 102
2 m/s
1 30
0.94 m/s
(6)a、b两点相隔半个波长,b点处质点比a点处质点
的相位落后 。
(7)3T/4时的波形如下图中实线所示,波峰M1和M2已
分别右移3 4而到达
高等教育大学教学课件 大学物理
§16-2 平面简谐波 波动方程
平面简谐波传播时,介质中各质点都作同一频 率的简谐波动,在任一时刻,各点的振动相位一般 不同,它们的位移也不相同。据波阵面的定义可知, 任一时刻在同一波阵面上的各点有相同的相位,它 们离开各自的平衡位置有相同的位移。
波动方程:描述介质中各质点的位移随时间的变 化关系。
y /cm
M 1 和'
M 2处' 。
0.5 M1
M1' M2
M2'
0.4
0.2
a
0
b
0.2 10 20 30 40 50 60 70 x /cm
0.4
0.5
t=3T/4
谢谢欣赏!
Hale Waihona Puke A cos2
t
x
0
y(x,t) Acos( t k x 0) 其中 k 2
平面简谐波的波动表式
波动表式的意义:
x 一定。令x=x1,则质点位移y 仅是时间t 的函数。
即
y
A c os
t
2
x1
0
大学物理平面简谐波的波函数精选精品文档
u
1m 0
λ10m 8 m 5 m 9 m
C
B oA
Dx
第十章 波动
21
物理学
第五版
选择进入下一节:
本章目录
6-1 机械波的几个概念
6-2 平面简谐波的波函数
6-3 波的能量 能流密度 6-4 惠更斯原理 波的衍射和干涉
6-5 驻波
6-6 多普勒效应
第十章 波动
22
x
A cos
t
2πx
第十章 波动
4
物理学
第五版
6-2 平面简谐波的波函数
波函数
yAcos(t[x)]
u
质点的振动速度,加速度
v y A si n (t [x)]
t
u
a 2 t2 y 2A co (ts[u x)]
第五版
6-2 平面简谐波的波函数
(3) x0.5m处质点的振动规律并作图
y1.0co2π s([t x)π] 2.0 2.0 2
x0.5m处质点的振动方程
ycoπst[π](m)
y
y/m
3
3
1.0
*
4O
2
0 2* 1.0 *4 2.0 * t / s
1 -1.0*1
*
x0.5m处质点的振动曲线
第十章 波动
15
物理学
第五版
6-2 平面简谐波的波函数
例2 一平面简谐波以速度u20ms-1
沿直线传播,波线上点 A 的简谐运动方 程
yA31 0 2co4π st)(; ( y, t单位分别为m,s).
(大学物理 课件)波动方程
表示 x1 处质点的振动方程
结束
返回
2. t = t 1 (常数) y
o y = A cos ω ( t 1 x )+j u x
表示在 t 1 时刻的波形
结束
返回
3. t 与 x 都发生变化 x t = t1 y 1 = A cos ω ( t 1 u ) + j x t = t 1+Δ t y ´= A cos ω ( t 1+Δ t u ) + j y
波 动 方 程
返回16章 结束
波动方程 一、平面简谐波的波动方程 y u x
§16-2平面简谐波
o
B
x
参考点O点的振动方程为: y = A cos ( t + j ) ω
任意点(B点)的振动方程,即波动方程为: y = A cos ω ( t x ) + j u 结束 返回
平面简谐波的波动方程为: x j y = A cos ω ( t u ) + t x j y = A cos 2π ( T l ) +
A cos 2π (x +120 t ) = 60
π
3
例2. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,其波 速为u =600m/s。试写出波动方程。 y(m)
u 5 x (m)
o
12
.
结束
返回
解: o 由图可知, 在t = 0时刻
y(m)
u 5 x (m)
12
.
y1 y´ ut
.
O
x
x´
t
令 y 1= y ´
得: ´= x +uΔ t x 这表示相应于位移y1的相位,向前传播了 uΔ t的距离。 结束 返回
大学物理课后习题答案第五章
第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
大学物理 平面简谐波的波函数
17
3)写出传播方向上点C、点D 的简谐运动方程
u
C
8m
y A 310 cos( 4 π t )m 10m 5m 9m
B
2
oA
D
x
AC
点 C 的相位比点 A 超前
cos( 4 π t 2 π )m 13 2 3 10 cos( 4 π t π)m 5 点 D 的相位落后于点 A AD 2 y D 3 10 cos( 4 π t 2 π )m 9 2 3 10 cos( 4 π t π)m 5
4
波动方程的其它形式
t x y ( x,t ) A cos[ 2 π( ) ] T λ y( x, t ) A cos(t kx )
质点的振动速度,加速度 角波数 k 2 π
(wave number)
y x v A sin[ (t ) ] t u
分析:
2 3 ( D) 2
( B)
,
由波形图可判定O点在该时刻的振动方向竖直向 上(如图示)
A x
3 由旋转矢量图可知此时的相位为 2
23
3.在下面几种说法中,正确的说法是: (C)
(A)波源不动时,波源的振动周期与波动的周期在数 值上是不同的。 (B)在波传播方向上的任一质点振动位相总是比波源 的位相超前。 (C)在波传播方向上的任一质点振动位相总是比波源 的位相滞后。 (D) 波源的振动速度与波速相同。
在t=1/v时刻:
1 v | x x2 2A sin 2 (1 ) 2A 4
即速度比为-1。
3 v | x x1 2A sin 2 (1 ) 2A 4
大学物理10.2 平面简谐波
3. 有一沿 轴正向传播的平面简谐波,在t =0 有一沿x 轴正向传播的平面简谐波, 时的波形图如图中实线所示. 时的波形图如图中实线所示. 问:(1)原 ) 的振动相位是多大? 点o 的振动相位是多大?(2)如果振幅为 、 )如果振幅为A、 波速为u 请写出波动方程. 圆频率为ω、波速为 ,请写出波动方程.
x w = ρ A ω sin ω t − u
2 2 2
平均能量密度: 能量密度在一个周期内的 平均能量密度: 平均值. 平均值. 1 x 1 T 2 2 2 = ρ A2ω 2 w = ∫ ρ A ω sin ω t − dt 2 T 0 u 3. 能流密度 为了描述波动过程中能量的传播情况, 为了描述波动过程中能量的传播情况,引 入能流密度的概念. 入能流密度的概念 单位时间内通过垂直于波动传播方向上单 位面积的平均能量,叫做波的平均能流密度 平均能流密度, 位面积的平均能量,叫做波的平均能流密度, 也称之为波的强度 波的强度. 也称之为波的强度.
I0
I
∴I = I0e−ax
o
dx
x
I
I0
o
x
10.2.3 例题分析
1. 一平面简谐波沿 轴的正向传播已知波动方程 一平面简谐波沿x 为 y = 0.02 cos π (25t − 0.1 x )m 求: 1)波的振幅、波长、周期及波速; ( )波的振幅、波长、周期及波速; (2)质元振动的最大速度; )质元振动的最大速度; 时的波形图. (3)画出 =1s 时的波形图. )画出t
2. 波动方程的意义
x y( x , t ) = A cos ω t ∓ u 如果x 给定, 的函数, 如果 给定,则y 是t 的函数,这时波动方程 不同时刻的位移. 表示距原点为x 处的质元在不同时刻的位移 表示距原点为 处的质元在不同时刻的位移.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4-2平面简谐波的波动方程
振动与波动
最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。
任何复杂的波都可看成是若干个简谐波的叠加。
对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。
需要定量地描述出每个质点的振动状态。
波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。
一、平面简谐波的波动方程
设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点
参考点原点的振动方程为
任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?
沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π
现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相
位比 O 点落后 22x x π
πλλ
=
P 点的振动方程为
由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉
就是沿 x 轴正向传播的平面简谐波的波动方程。
如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π
λ
沿 x 轴负向传播的波动方程为 利用 2ωπν=, u λν=
沿 x 轴正向传播的平面简谐波的波动方程又可写为
即 0cos x y A t u ωϕ⎡⎤
⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦
原点的振动状态传到 P 点所需要的时间 x
t u
∆=
P 点在 t 时刻重复原点在 x t u ⎛⎫
- ⎪⎝⎭
时刻的振动状态
波动方程也常写为 其中 2k π
λ
=
波数,物理意义为 2π 长度内所具有完整波的数目。
☆ 波动方程的三个要素:参考点,参考点振动方程,传播方向
二、波动方程的物理意义
1、固定x ,如令0x x =
()002cos y t A t x πωϕλ⎛
⎫=+-
⎪⎝⎭ 振动方程 0x 处质点的振动方程
0x 处的振动曲线 该质点在 1t 和 2t 两时刻的相位差 2、固定t ,如令0t t =
()002cos y x A t x πωϕλ⎛
⎫
=+-
⎪⎝
⎭
波形方程 0t 时刻各质点离开各自平衡位置的位移分布情况,即 0t 时刻的波形方程。
波形曲线 3、x 和 t 都在变化
各个不同质点在不同时刻的位移,各个质点的振动情况,不同时刻的波形,反映了波形不断向前推进的波动传播的全过程 ⇒ 行波
t 时刻,x 处的某个振动状态经过 t ∆ 的时间,传播了 x u t ∆=∆ 的距离,传到了 x x +∆ 处,显然
()(),,y t t x x y t x +∆+∆= 行波必须满足此方程
其中 x u t ∆=∆ 波是振动状态的传播! 习题类型
(1) 由某质元的振动方程(或振动曲线) ⇒ 求波动方程 (2) 由某时刻的波形曲线 ⇒ 求波动方程
例4.2:一平面波在介质中以速度 20u =m/s 沿直线传播,已知在传播路径上某点A 的振动方程为 ()3cos 4A y t π=,如图4.8所示。
(1)若以A 点为坐标原点,写出波动方程,并求出C ,D 两点的振动方程; (2)若以B 点为坐标原点,写出波动方程,并求出C ,D 两点的振动方程。
解:(1)振幅 3A =m ,圆频率4ωπ=rad/s ,频率 22ω
νπ
=
=Hz , 波长 10u
λν
=
=m
波动方程为
23cos 43cos 45y t x t x ππππλ⎛
⎫⎛
⎫=-
=-
⎪ ⎪⎝
⎭⎝
⎭
m C 点坐标为 13C x =-m ,振动方程为
A
B
8m
u
C
D
5m
9m
t 时刻
t t +∆ 时刻
133cos 43cos 455C C y t x t ππππ⎛⎫⎛
⎫
=-=+
⎪ ⎪⎝⎭⎝⎭
m D 点坐标为 9D x =m ,振动方程为
93cos 43cos 455D D y t x t ππππ⎛⎫⎛
⎫
=-=-
⎪ ⎪⎝⎭⎝⎭
m (2)A 点坐标为 5A x =m ,波动方程为
()23cos 43cos 45A y t x x t x πππππλ⎡⎤⎛⎫
=--=-+ ⎪⎢⎥⎣⎦⎝⎭
m C 点坐标为 8C x =-m ,振动方程为
133cos 43cos 455C C y t x t πππππ⎛⎫⎛
⎫
=-+=+
⎪ ⎪⎝⎭⎝⎭
m D 点坐标为 14D x =m ,振动方程为
93cos 43cos 455D D y t x t πππππ⎛⎫⎛
⎫
=-+=-
⎪ ⎪⎝⎭⎝
⎭
m 例4.3:一平面简谐横波以 400u =m/s 的波速在均匀介质中沿x +方向传播。
位于坐标原点的质点的振动周期为0.01秒,振幅为0.1m ,取原点处质点经过平衡位置且向正方向运动时作为计时起点。
(1)写出波动方程;
(2)写出距原点2m 处的质点P 的振动方程; (3)画出0.005t =秒和0.007秒时的波形图;
(4)若以距原点2m 处为坐标原点,写出波动方程。
解:(1)由题意 0.1A =m ,0.01T =秒,400u =m/s
可得圆频率 2200T
π
ωπ== rad/s , 波长 4uT λ==m
由旋转矢量图知,原点处质点的初相位 故原点处质点的运动方程为
030.1cos 2002y t ππ⎛
⎫=+
⎪⎝
⎭
m 波动方程为
30.1cos 20022y t x πππ⎛
⎫=+- ⎪⎝
⎭ m (2)2P x = m 处质点的振动方程为
30.1cos 2000.1cos 200222P P y t x t πππππ⎛⎫⎛
⎫=+
-=+ ⎪ ⎪⎝⎭⎝
⎭ m (3)10.005t =秒时,波形方程为
因为 2110.00254t t T -==,故由1t 时刻的波形向+x 方向平移4
λ
即可得2t 时刻
的波形。
如图所示
(4)
20.1cos 2000.1cos 200222y t x t x ππππππλ⎛⎫⎛
⎫''=+-
=+- ⎪ ⎪⎝⎭⎝
⎭ Ex. 4:已知 2t
= 秒的波形曲线如图所示,波速0.5u =/m s ,沿x -方向传播
求:(1)O 点的振动方程;(2)波动方程
解:(1)由2t =s 时的波形图可知
0.5A =m ,2λ=m ,∴4T u λ
=
=s , 22
T ππ
ω=
=
利用旋转矢量图法得出 2t =秒时 O 点振动相位
2t =, 2
π
ω=
O 点的初相位 02
πϕ=
O 点的振动方程为
(2)波动方程 0.5cos 22t x ππξπ⎛⎫
=++ ⎪⎝⎭
Ex :一列机械波沿x 轴正向传播,t =0 时的
波形如图所示,已知波速为10 m ·s -1,波
长为2m ,求: (1) 波动方程;
(2) P 点的振动方程及振动曲线; (3) P 点的坐标;
(4) P 点回到平衡位置所需的最短时间.
解: (1)由题5-13图可知1.0=A m ,0=t 时,
原点处质点振动的初始条件为0,200<=v A y ,∴03
π
ϕ=
由题知2=λm , 10=u 1s m -⋅,则 10
52
u νλ===Hz ,
圆频率 ππυω102==
原点 O 的振动方程为 波动方程为
(2)由图知,0=t 时,0,2
<-=P P v A
y ,
∴3
4π
φ-=P (P 点的相位应落后于0点,故取负值)
∴P 点振动方程为)3
4
10cos(1.0ππ-=t y p
(3)由 πππ34
|3)10(100-=+-=t x t
解得 67.13
5
==x m
(4)根据(2)的结果可作出旋转矢量图如题5-13图(a), 则由P 点回到平衡位置应经历的相位角 ∴所需最短时间为。