【精准解析】江苏省苏州市2020届高三上学期期末考试数学试题
江苏省苏州中学2025届高三下学期联考数学试题含解析
江苏省苏州中学2025届高三下学期联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( ) A . B . C . D .2.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,0,3,033O A B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( ) A .22 B .1121- C .521+ D .233.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 34.设0.50.82a =,sin1b =,lg 3c =,则a ,b ,c 三数的大小关系是A .a c b <<B .a b c <<C .c b a <<D .b c a <<5.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( )A .27B .33C .39D .446.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .147.在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==,120BAC ∠=︒,则||EB =( )A 19B 11C 3D .748.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .789.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()27,8B .()25,7C .()25,8D .()27,7 10.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( )A .332B 3C .33D .2311.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6] C .[5,8] D .[6,7]12.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( )A .2B .0C .1-D .1二、填空题:本题共4小题,每小题5分,共20分。
江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案
南通市、泰州市2020届高三上学期期末联考数学试卷2020.1.14一、填空题1.已知集合 A = {-1,0,2}, B = {-1,1,2}, 则 A ∩B =________.2.已知复数 z 满足(1+ i ) z = 2i , 其中i 是虚数单位,则 z 的模为_______.3.某校高三数学组有 5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为 35,35,41,38,51,则这5 名党员教师学习积分的平均值为_______.4.根据如图所示的伪代码,输出的 a 的值为_______.5.已知等差数列{a n } 的公差 d 不为 0 ,且 a 1,a 2,a 4 成等比数列,则1a d的值为_____. 6.将一枚质地均匀的硬币先后抛掷 3 次,则恰好出现 2 次正面向上的概率为______.7.在正三棱柱 ABC - A 1B 1C 1 中, AA 1=AB =2 ,则三枝锥 A 1 - BB 1C 1 的体积为______.8.已如函数.若当 x =6π时,函数 f (x ) 取得最大值,则ω 的最小值为______.9. 已 知 函 数 f (x ) = (m - 2)x 2 + (m - 8)x (m ∈R ) 是 奇 函 数 . 若 对 于 任 意 的 x ∈ R , 关 于 x 的 不 等 式f ( x 2 +1) < f (a ) 恒成立,则实数 a 的取值范围是______.10.在平面直角坐标系 xOy 中, 已知点 A ,B 分别在双曲线C : x 2 - y 2 =1 的两条渐近线上, 且双曲线C 经过线段 AB 的中点.若点 A 的横坐标为 2 ,则点 B 的横坐标为______.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为 lgE = 4.8 +1.5M . 2008 年 5 月汶川发生里氏8.0 级地震,它释放出来的能量是 2019 年 6 月四川长宁发生里氏 6.0 级地震释放出来能量的______倍.12. 已知△ABC 的面积为 3 ,且 AB = AC .若2CD DA =,则 BD 的最小值为______.13.在平面直角坐标系 xOy 中, 已知圆C 1 : x 2 + y 2 = 8 与圆C 2 : x 2 + y 2 + 2x + y -a = 0 相交于 A ,B 两点.若圆C 1 上存在点 P ,使得△ABP 为等腰直角三角形,则实数 a 的值组成的集合为______. 14.已知函数若关于 x 的方程 f 2 ( x ) + 2af (x )+1- a 2 = 0 有五个不相等的实数根,则实数a 的取值范围是______.二、解答题15. (本小题满分14 分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,PC ⊥AB ,D,E 分别为BC,AC 的中点。
江苏省苏州市部分学校2024届高三上学期期中数学试题
江苏省苏州市部分学校2024届高三上学期期中数学试题1. 集合A ={−1,0,1},B ={y|y =sinx,x ∈R}则( )A . A ∩B =BB . A =BC . A ∪B =BD . C R A =B2. 复数z =11+i (i 为虚数单位)的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. 若cos(π4−α)=35,则sin2α=A . 725B . 15C . −15D . −7254. 利用诱导公式可以将任意角的三角函数值转化为0∘~90∘之间角的三角函数值,而这个范围内的三角函数值又可以通过查三角函数表得到.下表为部分锐角的正弦值,则tan1600∘的值为( )(小数点后保留2位有效数字)5. 定义在区间(0,π2)上的函数y =3cosx 与y =8tanx 的图象交点为P(x 0,y 0),则sinx 0的值为( )A . 13 B . √33C . 23D . 2√236. 已知OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 均为单位向量,且满足12OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ 的值为( ) A . 38B . 58C . 78D . 1987. 已知函数f(x)的定义域为R ,且f(x +2)=2−f(x),f(2−3x)为偶函数,若f(0)=0,∑n k=1f(k)=123,则n 的值为( ) A .117B .118C .122D .1238. 已知锐角ΔABC 中,角A,B,C 的对边分别为a,b,c,a 2=b 2+bc ,则tanAtanB 的取值范围为( )A . (1,+∞)B . (1,√3)C . (0,1)D . (√3,+∞)9. 若z 1,z 2为复数,则下列四个结论中正确的是( )A . |z 1−z 2|2=(z 1+z 2)2−4z 1z 2B . z 1−z 1̅ 是纯虚数或零C . |z 1−z 2|≤|z 1|+|z 2| 恒成立D .存在复数 z 1 , z 2 ,使得 |z 1z 2|<|z 1||z 2|10. 函数f(x)=tan(sinx +cosx),则下列说法正确的是( )A . f(x) 的定义域为 RB . f(x) 是奇函数C . f(x) 是周期函数D . f(x) 既有最大值又有最小值11. 在ΔABC 中,AC =3,AB =5,∠A =120∘,点D 是BC 边上一点,且AD ⃗⃗⃗⃗⃗ =xAC⃗⃗⃗⃗⃗ +yAB ⃗⃗⃗⃗⃗ ,则下列说法正确的是( )A . BC =7B .若 x =y =0.5 ,则 AD =√192C .若 AD =√192 ,则 x =y =0.5D .当 AD 取得最小值时, x =519812. 已知函数f(x)={x +2x ≤0|lgx|x >0,方程f 2(x)−mf(x)−1=0有4个不同的实数根,则下列选项正确的为( )A .函数 f(x) 的零点的个数为2B .实数 m 的取值范围为 (−∞,32]C .函数 f(x) 无最值D .函数 f(x) 在 (0,+∞) 上单调递增13. 已知向量a =(4,−3), b ⃗ =(x,6),且a //b ⃗ ,则实数x 的值为_____ 14. 若函数f(x)=sin(ωx +π6),(ω>0)图象的两条相邻的对称轴之间的距离为π2,且该函数图象关于点(x 0,0),(x 0>0)成中心对称,则x 0的最小值为______.15. 函数f(x)=2ax 2−ax ,若命题“∃x ∈[0,1],f(x)≤3−a ”是假命题,则实数a 的取值范围为___________.16. 设ΔABC 的三边a ,b ,c 所对的角分别为A ,B ,C .若b 2+3a 2=c 2,则tanCtanB =______,tanA 的最大值是______.17. 设α∈(0,π),已知向量a =(√3sinα,1),b ⃗ =(2,2cosα),且a ⟂b⃗ . (1)求sinα的值; (2)求cos(2α+7π12)的值.18. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2⟩的最小正周期为π,且点P(π6,2)是该函数图象上的一个最高点.(1)求函数f(x)的解析式;)个单位长度,得到函数g(x)的图象,g(x)在(2)把函数f(x)的图象向右平移θ(0<θ<π2]上是增函数,求θ的取值范围.[0,π419.已知z是复数,z+i和z都是实数,1−i(1)求复数z;(2)设关于x的方程x2+x(1+z)−(3m−1)i=0有实根,求纯虚数m.20.某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60∘,点Q在OA上,点M,N在OB上,点P 在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⟂OA,PT⟂OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT 最长,试问:此时点P应在何处?说明你的理由.21.ΔABC中,内角A,B,C所对的边分别为a,b,c,a=3√2,bsin B+C2=√52asinB.(1)求sinA;(2)如图,点M为边AC上一点,MB=MC,∠ABM=π2,求ΔABC的面积.22.已知二次函数y=f(x)的图象与直线y=−6只有一个交点,满足f(0)=−2且函数f(x−2)是偶函数.g(x)=f(x)x(1)求二次函数y=f(x)的解析式;(2)若对任意x∈[1,2],t∈[−4,4],g(x)≥−m2+tm恒成立,求实数m的范围;(3)若函数y=g(|x|+3)+k·2|x|+3−11恰好三个零点,求k的值及该函数的零点.。
江苏省苏州市部分学校2024届高三上学期期中数学试题(含答案解析)
江苏省苏州市部分学校2024届高三上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题三、填空题四、双空题五、解答题(1)若矩形MNPQ 是正方形,求tan θ的值;(2)为方便市民观赏绿地景观,从P 点处向,OA OB 修建两条观赏通道不计),使PS OA ⊥,PT OB ⊥,其中PT 依PN 而建,为让市民有更多时间观赏,希望PS PT +最长,试问:此时点P 应在何处?说明你的理由.21.ABC 中,内角,,A B C 所对的边分别为,,a b c ,32,sin 2B a b +=(1)求sin A ;(2)如图,点M 为边AC 上一点,π,2MB MC ABM =∠=,求ABC 22.已知二次函数()y f x =的图象与直线y =-6只有一个交点,满足(2)f x -是偶函数.()()f x g x x=(1)求二次函数()y f x =的解析式;(2)若对任意2[1,2],[4,4],()x t g x m tm ∈∈-≥-+恒成立,求实数m (3)若函数2(||3)11||3y g x k x =++⋅-+恰好三个零点,求k 的值及该函数的零点.参考答案:【详解】由余弦定理得2222BC AB BC AB =+-正确;0=.5,则()1,2AD AB AC =+∴ 正确;由图知函数()f x 有2个零点,故函数()f x 没有最值,故C 选项正确;函数()f x 在()0,1上单调递减,在由于方程()()21f x mf x --=令()t f x =则210t mt --=有因为2m 40∆=+>恒成立,设210t mt --=两个不等的实根为当13n =时,0x =;当24n =时,1;7x k =±∴=,函数的零点为0,1±。
2020届高三数学过关题9 立体几何 含解析
2020届苏州市高三数学过关题9 立体几何一.填空题 1. 给出下列命题:①若两条直线和同一个平面所成的角相等,则这两条直线平行; ②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行; ③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行; ④若两个平面都垂直于第三个平面,则这两个平面平行. 上面命题中,真命题的序号__________.2. 已知直线⊥l 平面α,直线⊂m 平面β,则下列四个命题:①m l ⊥⇒βα//;②//l m αβ⊥⇒;③//l m αβ⇒⊥;④//l m αβ⊥⇒.其中正确命题的序号是__________.3. 已知βα,,γ是三个互不重合的平面,l 是一条直线,给出下列四个命题: ①若ββα⊥⊥l ,,则α//l ;②若βα//,l l ⊥,则βα⊥;③若l 上有两个点到α的距离相等,则α//l ;④若γαβα//,⊥,则βγ⊥. 其中正确命题的序号是__________.4. 如图,圆柱内有一个内接长方体1AC ,长方体的对角线为210,圆柱的侧面展开图为矩形,此矩形面积为π100,圆柱的体积__________.5. 一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为__________.6. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 __________.7. 如图,在长方体1111-ABCD A B C D 中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为__________cm 3.8. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.9. 如图,已知正三棱柱111-ABC A B C 的底面边长为2cm ,高为5cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为__________cm.10. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为__________.11. 一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为__________.12. 如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,D 1C 1上的动点,点G 为正方形B 1BCC 1的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为__________.13. 如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的 动点,设1,AE x B F y ==,若棱.1DD 与平面BEF 有公共点,则x y +的取值范围为__________.14. 一个封闭的正三棱柱容器,高为2a ,内装水若干(如 图甲,底面处于水平状态).将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点为11,,,E F F E ,分别为所在棱的中点,则图甲中水面高度为__________. 二.解答题15. 如图,在直三棱柱111ABC A B C -中,D E 、分别是棱1BC CC 、上的点(点D 不同于点C ),且AD DE ⊥,F 为棱11B C 上的点,且111A F B C ⊥.F E 1EF 图乙A 1B 1CB图甲A B 11CB A求证:(1)平面ADE 平面BCC B;11(2)A F∥平面ADE.1FA B CPDE16. 如图,在四棱锥P ABCD-中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且2PA PD AD ==,若E 、F 分别为PC 、BD 的中点. 求证:(1)EF ∥平面PAD ;(2)EF ⊥平面PDC .17.如图,三棱锥A BCD -中,侧面ABC 是等边三角形,M 是△ABC 的中心. (1)若DM BC ⊥,求证AD BC ⊥;(2)若AD 上存在点N ,使MN ∥平面BCD ,求ANND的值.18.如图,四边形ABCD 是矩形,平面ABCD ⊥ 平面BCE ,BE EC ⊥.DB(1)求证:平面AEC ABE ⊥;(2)若点F 在BE 上,且//DE 平面//ACF ,求BFBE的值.19. 如图,三棱柱111ABC A B C -中,M ,N 分别为AB ,11B C 的中点.(1)求证://MN 平面11AA C C ;(2)若11CC CB =,CA CB =,平面11CC B B ⊥ 平面ABC ,求证:AB ⊥ 平面CMN .NC 1B 1BA 1MCA20. 如图,在四棱锥P ABCD -中,平面PAD ⊥ 平面ABCD ,//AB DC ,PAD ∆是等边三角形,若4,43,28AD BD AB CD ====.(1)设M 是PC 上的一点,证明:平面MBD ⊥ 平面PAD ; (2)当M 点位于线段PC 什么位置时,//PA 平面MBD ? (3)求四棱锥P ABCD -的体积.2020届苏州市高三数学过关题9 立体几何立体几何是江苏高考的必考知识点,一般考查填空题一题(中间位置左右),解答题一题(第15题或第16题)。
2020届高三上学期期末教学质量检测数学理试题含答案及评分标准
理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
江苏省13市2020届高三上学期期中期末考试数学试题分类汇编:圆锥曲线
江苏省13市2020届高三上学期期中期末考试数学试题分类汇编圆锥曲线一、填空题1、(常州市2020届高三上学期期末考试)在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A,过A 做x 轴的垂线与C 的一条渐近线交于点B,若2OB a =,则C 的离心率为2、(常州市2020届高三上学期期末考试)在平面直角坐标系xOy 中,圆222:22210C x ax y ay a -+-+-=上存在点P 到点(0,1)的距离为2,则实数a 的取值范围是3、(南京、盐城市2020届高三上学期期末考试)在平面直角坐标系 xOy 中, 若抛物线 y 2 = 4x 上的点 P 到其焦点的距离为 3,则点 P 到点O 的距离为________.4、(南通、泰州市2020届高三上学期期末)在平面直角坐标系 xOy 中, 已知点 A ,B 分别在双曲线C : x 2 - y 2 =1 的两条渐近线上, 且双曲线C 经过线段 AB 的中点.若点 A 的横坐标为 2 ,则点 B 的横坐标为______.5、(苏北四市(徐州、宿迁、淮安、连云港)2020届高三上学期期末考试)在平面直角坐标系xOy中,双曲线2213x y -=的右准线与渐近线的交点在抛物线22y px =上,则实数p 的值为______.6、(苏州市2020届高三上学期期末考试)在平面直角坐标系xOy 中,己知点F 1,F 2是双曲线22221x y a b-=(a >0,b >0)的左、右焦点,点P 的坐标为(0,b ),若∠F 1PF 2=120°,则该双曲线的离心率为 .7、(无锡市2020届高三上学期期末考试)双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 角圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____.8、(徐州市2020届高三上学期期中考试)在平面直角坐标系xOy 中,若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为30º,期C 的离心率为 . 9、(扬州市2020届高三上学期期末考试)在平面直角坐标系xOy 中,顶点在原点且以双曲线2213y x -=的右准线为准线的抛物线方程是10、(扬州市2020届高三上学期期中考试)双曲线1422=-x y 的渐近线方程为 . 11、(扬州市2020届高三上学期期中考试)抛物线x y 42=上横坐标为4的点到焦点的距离为 .12、(镇江市2020届高三上学期期末考试)顶点在原点且以双曲线221124x y -=的右焦点为焦点的抛物线方程是 .参考答案:1、22、117117,01,⎡⎤⎡⎤-+⎢⎥⎢⎥⎣⎦⎣⎦U 3、23 4、12 5、146、26 7、34- 8、23 9、22y x =- 10、2y x =±11、5 12、216y x =二、解答题1、(常州市2020届高三上学期期末考试)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,椭圆右顶点为A ,点2F 在圆22(2)1x y -+=上。
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)
压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
江苏省苏州市2024-2025学年高三上学期开学考试(期初阳光调研)数学试卷(原卷版)
2025届高三年级期初阳光调研试卷数学2024.9 注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 是虚数单位,则2i i −= A.12i − B.12i −− C.12i +D.12i −+ 2.已知集合{}26A x x =≤<,{}240B x x x =−<,则A B = A.()0,6 B.()4,6 C.[)2,4 D.()[),02,−∞+∞ 3.将函数()sin f x x =的图象先向左平移4π个单位,再将所得图象上所有点的纵坐标保持不变,横坐标变为原来的12,得到函数()y g x =的图象,则2g π⎛⎫= ⎪⎝⎭A.22−B.1C.22 D.-1 4.已知向量()1,1a =−,()22,b x x=−,则“2x =−”是“a b ∥”的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.“绿水青山就是金山银山”的理念深入人心,人民群众的生态环境获得感、幸福感、安全感不断提升.某校高一年级举行环保知识竞赛,共500人参加,若参赛学生成绩的第60百分位数是80分,则关于竞赛成绩不小于80分的人数的说法正确的是A.至少为300人B.至少为200人C.至多为300人D.至多为200人6.已知正四棱锥的侧面积是底面积的2倍,则该正四棱锥侧棱和底面所成角的余弦值为3 B.12 15 107.已知函数()()e e 1x f x x a =+−−(e 为自然对数的底数),()()ln e x g x x a =−的零点分别为1x ,2x ,则12x x 的最大值为 A.e B.1eC.1D.2e 8.在平面直角坐标系xOy 中,A ,B 为双曲线22:1C x y −=右支上两点,若6AB =,则AB 中点横坐标的最小值为 A.221045 D.163二、选择题:本题共3小题,每小题6分,共18分。
2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)
盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。
江苏省苏州市五校联考2024届高三数学试题5月最后一卷试题
江苏省苏州市五校联考2024届高三数学试题5月最后一卷试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,则()()2332i i +-=( ) A .125i +B .66i -C .5iD .132.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( ) A .,06π⎛⎫-⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭3.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-4.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .35.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要6.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .37.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2C 3D 58.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A 5-1B 3-1C 31+D 51+ 9.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C 5D 7 10.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件11.设复数121,1z i z i =+=-,则1211z z +=( ) A .1B .1-C .iD .i -12.已知A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A 类产品或者检测出3件B 类产品时,检测结束,则第一次检测出B 类产品,第二次检测出A 类产品的概率为( ) A .1 B .3 C .2 D .3二、填空题:本题共4小题,每小题5分,共20分。
2020届江苏高三高考数学全真模拟试卷07(解析版)
直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11
=
a
[π
- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B
江苏专用2024年高考数学一轮复习考点11函数与方程必刷题含解析
考点11 函数与方程1.(江苏省连云港市2025届高三上学期期中考试)已知为正常数,,若使,则实数的取值范围是_______.【答案】(2,+∞)【解析】由于,函数在上单调递增,当时有最小值为.在时,函数为增函数,要使存在,使得,则需,解得.2.(江苏省徐州市2025届高三上学期期中质量抽测)已知函数,若有三个零点,则实数的取值范围是______.【答案】【解析】(1)=0时,,只有一个零点,不合题意;(2)<0时,,>0,在R上单调递增,所以,不行能有3个解,也不合题意。
(3)>0时,,得画出函数:的图象,如图:当时有三个零点,其中有唯一的零点,有两个零点,即在有两个零点.,=0,得x=x 在(0,)递减,在(,)递增,<0,解得:3.(江苏省南通市2025届高三模拟练习卷)已知()f x 是定义在R上且周期为32的周期函数,当30,2x ⎛⎤∈ ⎥⎝⎦时,()121f x x =--.若函数()log a y f x x =-(1a >)在()0,∞+上恰有4个互不相同的零点,则实数a的值__. 【答案】72【解析】当30,2x ⎛⎤∈ ⎥⎝⎦时,得12,02()1211322,22x x f x x x x ⎧<<⎪⎪=--=⎨⎪-≤≤⎪⎩ ,且()f x 是定义在R 上且周期为32的周期函数, 函数()log a y f x x =-(a >1)在(0,+∞)上恰有4个互不相同的零点,∴函数()y f x =与log a y x =(a >1)在(0,+∞)上恰有4个不同的交点,分别画出两函数图象如图所示,由图可知,当x =72时,有72log a =1,所以a =72.故答案为:724.(江苏省镇江市2025届高三考前三模)已知函数ln ,0()21,0xx x f x x >⎧=⎨+≤⎩,若函数()y f x x a =+-有且只有一个零点,则实数a 的取值范围为_______. 【答案】()2,+∞【解析】由()0y f x x a =+-=得:()f x x a =-+∴函数()0y f x x a =+-=有且只有一个零点等价于:()y f x =与y x a =-+的图象且只有一个交点画出函数()ln ,021,0x x x f x x >⎧=⎨+≤⎩的图象如下图:y x a =-+的图象经过点()0,2A 时有2个交点,平移y x =-,由图可知,直线与y 轴的交点在A 点的上方时,两图象只有1个交点, 在A 点下方时,两图象有2个交点2a ∴>,即()2,a ∈+∞本题正确结果:()2,+∞5.(2024年江苏省高考数学试卷)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0,2]x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭.【解析】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,2211k kk +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满意()()f x g x =在(0,9]上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 6.(江苏省扬州中学2025届高三4月考试)已知函数31,0()2,0ax x f x x ax x x -≤⎧=⎨-+->⎩的图象恰好经过三个象限,则实数a 的取值范围______. 【答案】0a <或2a >【解析】(1)当0a <时,()f x 在(,0]-∞上单调递减,又(0)1f =-,所以函数()f x 的图象经过其次、三象限,当0x >时,33(1)2,2()(1)2,02x a x x f x x a x x ⎧---=⎨-++<<⎩,所以223(1),2()3(1),,02x a x f x x a x ⎧--=⎨-+<<⎩',①若1a -时,()0f x '>恒成立,又当0x +→时,()2f x →,所以函数()f x 图象在0x >时,经过第一象限,符合题意;②若10a -<<时,()0f x '>在[2,)+∞上恒成立,当02x <<时,令()0f x '=,解13x =<,所以()f x 在⎛ ⎝上单调递减,在2⎫⎪⎪⎭上单调递增,又(2210f a ⎛=+=-> ⎝ 所以函数()f x 图象在0x >时,经过第一象限,符合题意;(2)当0a =时,()f x 的图象在(,0)-∞上,只经过第三象限,()0f x '>在(0,)+∞上恒成立,所以()f x 的图象在(0,)+∞上,只经过第一象限,故不符合题意;(3)当0a >时,()f x 在(,0)-∞上单调递增,故()f x 的图象在(,0)-∞上只经过第三象限,所以()f x 在(0,)+∞上的最小值min ()0f x <,当02x <<时,令()0f x '=,解得x =2<时,即11a <时,()f x 在(0,)+∞上的最小值为21f ⎛= ⎝,令2102211f a a ⎛=<⇒>∴<< ⎝.211a ≥⇒≥时,则()f x 在02x <<时,单调递减,当2x ≥时,令()0f x '=,解得x =21113a <⇒≤<,()f x 在(2,)+∞上单调递增,故()f x 在(0,)+∞上的最小值为(2)82f a =-,令8204a a -<⇒>,所以1113a ≤<;若12133a a -≥⇒≥,()f x 在12,3a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在1,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,故()f x 在(0,)+∞上的最小值为12(1)12333a a a f ⎛⎫---=-- ⎪ ⎪⎝⎭, 明显2(1)12033a a ----<,故13a ≥;结上所述:0a <或2a >.7.(江苏省七市2025届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三其次次调研考试)定义在R 上的奇函数满意,且在区间上,则函数的零点的个数为___.【答案】5 【解析】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个 故答案为58.(江苏省南通市通州区2024-2025学年第一学期高三年级期末考试)已知函数若函数有且只有一个零点,则实数k 的取值范围是______.【答案】【解析】由数有且只有一个零点,等价为数,即有且只有一个根,即函数与,只有一个交点,作出函数的图象如图:,,要使函数与,只有一个交点,则,故答案为:.9.(江苏省南通市基地学校2025届高三3月联考)已知函数有三个不同的零点,则实数m的取值范围是____.【答案】【解析】当时,且在上单调递增有且仅有一个零点当时,须要有两个零点当时,当时,恒成立,即单调递增,不合题意;当时,令,解得:当时,,此时单调递增;当时,,此时单调递减,本题正确结果:.10.(江苏省南通市三县(通州区、海门市、启东市)2025届高三第一学期期末联考)函数有3个不同零点,则实数a的取值范围____【答案】【解析】解:当x<﹣1时,由f(x)=0得x2﹣2ax=0,得a,∵x<﹣1,∴a且此时函数f(x)只有一个零点,要使f(x)有3个不同零点,则等价为当x≥﹣1时,f(x)=0有且只有2个不同的零点,由f(x)=e x﹣|x﹣a|=0得e x=|x﹣a|,作出函数g(x)=e x和h(x)=|x﹣a|在x≥﹣1的图象如图,当x≥a时,h(x)=x﹣a,当h(x)与g(x)相切时,g′(x)=e x,由g′(x)=e x=1得x=0,此时g(0)=1,即切点坐标为A(0,1),此时h(0)=0﹣a=1,得a=﹣1,当x=﹣1时,g(﹣1),当直线h(x)=x﹣a经过点B(﹣1,)时,﹣1﹣a,则a=﹣1,要使e x=|x﹣a|在x≥﹣1时,有两个不同的交点,则直线h(x)=x﹣a应当在过A和B的直线之间,则﹣1a<﹣1,即实数a的取值范围是[﹣1,﹣1),故答案为:[﹣1,﹣1).11.(江苏省扬州市2024-2025学年度第一学期期末检测试题)已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为_______.【答案】或【解析】函数0,得|x+a|a=3,设g(x)=|x+a|a,h(x)=3,则函数g(x),不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>﹣a时,由f(x)=0,得g(x)=3,即x3,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此时x2=﹣1,x3=4,由等差数列的性质可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得62a=3,解得a,满意f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,则f(x)=0在(﹣∞,﹣a]上有两个不同的解,不妨设x1,x2,其中x3=4,所以有x1,x2是﹣x2a=3的两个解,即x1,x2是x2+(2a+3)x+4=0的两个解.得到x1+x2=﹣(2a+3),x1x2=4,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1(舍去)或a=﹣1.③﹣a>4,即a<﹣4时,f(x)=0最多只有两个解,不满意题意;综上所述,a或﹣1.12.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)设函数,若对随意(,0),总存在[2,),使得,则实数a的取值范围_______.【答案】【解析】由题意,对随意(,0),总存在[2,),使得,即当随意(,0),总存在[2,),使得,当时,,当时,函数,当,此时,符合题意;当时,时,,此时最小值为0,而当时,的导数为,可得为微小值点,可得的最小值为或,均大于0,不满意题意;当时,时,的最小值为0或,当时,的导数为,可得为微小值点,且为最小值点,可得的最小值为,由题意可得,解得,综上可得实数的范围是.13.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)设函数,若方程有三个相异的实根,则实数k的取值范围是_______.【答案】【解析】由题意,若方程,即有三个相异的实根,即函数和的图象由三个不同的交点,如图所示,又由直线和必有一个交点,所以0>,则与的图象有两个交点,联立方程组,整理得,由,解得或,所以实数的取值范围是.14.(江苏省无锡市2025届高三上学期期末考试)已知直线与函数的图象恰有四个公共点,,,,则__________.【答案】-2【解析】直线y=a(x+2)过定点(-2,0),如下图所示,由图可知,直线与余弦函数图象在x4处相切,且∈,即a(x4+2)=-cos,所以,a=又,即直线的斜率为:a=,因此a==,即+=+=--2=-2.故答案为:-2.15.(江苏省南通市2025届高三年级阶段性学情联合调研)已知函数,若函数有三个不同的零点,则实数的取值范围是__________.【答案】【解析】函数有三个不同的零点等价于的图象与直线有三个不同交点,作出函数的图象:由图易得:故答案为:.16.(江苏省常州市2025届高三上学期期中教学质量调研)已知函数,若关于x的函数有6个不同的零点,则实数m的取值范围是______.【答案】【解析】作出的函数图象如右:设,则当或时,方程只有1解,当或时,方程有2解,当时,方程有3解,当时,方程无解.关于的函数有6个不同的零点,关于的方程在上有两解,,解得.故答案为17.(江苏省镇江市2025届高三上学期期中考试)已知函数,若函数有6个不同的零点,则实数m的取值范围是__________.【答案】m<﹣3【解析】令t=f(x),则原函数等价为y=2t2+3mt+1﹣2m,作出函数f(x)的图象如图,图象可知:当t<0时,函数t=f(x)有一个零点;当t=0时,函数t=f(x)有三个零点;当0<t<1时,函数t=f(x)有四个零点;当t=1时,函数t=f(x)有三个零点;当t>1时,函数t=f(x)有两个零点.要使关于x的函数y=2f2(x)+3mf(x)+1﹣2m有6个不同的零点,则方程2t2+3mt+1﹣2m=0有两个根t1,t2,且0<t1<1,t2>1或t1=0,t2=1,令g(t)=2t2+3mt+1﹣2m,则由根的分布可得,将t=1,代入g(t)=0得m=﹣3,此时2t2﹣9t+7=0的另一个根为t=,不满意t1=0,t2=1,若0<t1<1,t2>1,则即解得m<﹣3,故答案为:m<﹣3.18.(盐城市2025届高三年级第一学期期中模拟考试)已知函数,若在区间上有且只有2个零点,则实数的取值范围是_________.【答案】【解析】当0⩽x⩽1时,=0,易知x=0不是方程=0的解,故m=−x在(0,1]上是减函数,故m−1=−;即m时,方程f(x)=0在[0,1]上有且只有一个解,当x>1时,令mx+2=0得,m=−,故−2<m<0,即当−2<m<0时,方程f(x)=0在(1,+∞)上有且只有一个解,综上所述,若f(x)在区间[0,+∞)上有且只有2个零点,则实数m的取值范围是.19.已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)推断f(x)在(0,+∞)上的单调性,并赐予证明.【答案】(1)m=1(2)奇函数(3)见解析【解析】解:(1)∵f(4)=72,∴4m-24=72,∴m=1.(2)由(1)知f(x)=x-2x,∴函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.又f(-x)=-x +2x =-(x -2x)=-f(x), 所以函数f(x)是奇函数.(3)函数f(x)在(0,+∞)上是单调增函数,证明如下:设x 1>x 2>0, 则f(x 1)-f(x 2)=x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),因为x 1>x 2>0, 所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以函数f(x)在(0,+∞)上为单调递增函数.20.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)已知函数(a ,bR).(1)当a =b =1时,求的单调增区间;(2)当a≠0时,若函数恰有两个不同的零点,求的值;(3)当a =0时,若的解集为(m ,n),且(m ,n)中有且仅有一个整数,求实数b 的取值范围.【答案】(1)f (x )的单调增区间是和(2)(3)【解析】(1)当a =b =1时,,令,解得或所以f (x )的单调增区间是和(2)法一:,令,得或, 因为函数f (x )有两个不同的零点,所以或,当时,得a =0,不合题意,舍去: 当时,代入得即,所以.法二:由于,所以,由得,,设,令,得,当时,,h(x)递减:当时,,递增当时,,单调递增当时, 的值域为R故不论取何值,方程有且仅有一个根;当时,,所以时,方程恰有一个根-2,此时函数恰有两个零点-2和1.(3)当时,因为,所以设,则,当时,因为,所以在上递增,且,所以在上,,不合题意:当时,令,得,所以在递增,在递减,所以,要使有解,首先要满意,解得. ①又因为,,要使的解集(m,n)中只有一个整数,则即解得. ②设,则,当时,,递增:当时,,递减所以,所以,所以由①和②得,.21.(江苏省苏州市2025届高三调研测试)已知函数(1)当时,求函数的单调区间;(2)若方程在区间(0,+)上有实数解,求实数a的取值范围;(3)若存在实数,且,使得,求证:.【答案】(1)函数的单调减区间为和,单调增区间为.(2)(3)见解析【解析】(1)当时,当时,,则,令,解得或(舍),所以时,,所以函数在区间上为减函数.当时,,,令,解得,当时,,当时,,所以函数在区间上为减函数,在区间上为增函数,且.综上,函数的单调减区间为和,单调增区间为.(2)设,则,所以,由题意,在区间上有解,等价于在区间上有解.记,则,令,因为,所以,故解得,当时,,当时,,所以函数在区间上单调递减,在区间上单调递增,故函数在处取得最小值.要使方程在区间上有解,当且仅当,综上,满意题意的实数a的取值范围为.(3)由题意,,当时,,此时函数在上单调递增,由,可得,与条件冲突,所以. 令,解得,当时,,当时,,所以函数在上单调递减,在上单调递增.若存在,,则介于m,n之间,不妨设,因为在上单调递减,在上单调递增,且,所以当时,,由,,可得,故,又在上单调递减,且,所以.所以,同理.即解得,所以.。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
人教版数学高三期末测试精选(含答案)4
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷
江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题 (共14题;共14分)1.(1分)已知i 为虚数单位,复数 z =11+i,则 |z| = . 2.(1分)已知集合A = {x|0≤x ≤1} ,B = {x|a −1≤x ≤3} ,若A ∩B 中有且只有一个元素,则实数a 的值为 .3.(1分)已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.(1分)在平面直角坐标系xOy 中,已知双曲线 x 2a2−y 24=1 (a >0)的一条渐近线方程为 y =23x ,则a = . 5.(1分)甲、乙两人下棋,两人下成和棋的概率是 12 ,乙获胜的概率是 13,则乙不输的概率是 .6.(1分)下图是一个算法的流程图,则输出的x 的值为 .7.(1分)“直线l 1: ax +y +1=0 与直线l 2: 4x +ay +3=0 平行”是“a =2”的条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.(1分)已知等差数列 {a n } 的前n 项和为 S n , a 1=9 , S99−S 55=−4 ,则 a n= .9.(1分)已知点M 是曲线y =2lnx +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.(1分)已知 3cos2α=4sin(π4−α) , α∈ ( π4 , π ),则 sin2α = .11.(1分)如图,在矩形ABCD 中,E 为边AD 的中点, AB =1 , BC =2 ,分别以 A 、 D 为圆心, 1 为半径作圆弧 EB 、 EC ( 在线段 AD 上).由两圆弧 EB 、 EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.(1分)在△ABC 中,( AB ⃗⃗⃗⃗⃗⃗ −λAC ⃗⃗⃗⃗⃗ )⊥ BC ⃗⃗⃗⃗⃗ ( λ >1),若角A 的最大值为 π6 ,则实数 λ 的值是 .13.(1分)若函数 f(x)=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 .14.(1分)如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB = √2OC ,则△ABC 面积的最大值为 .二、解答题 (共11题;共100分)15.(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosA ﹣ √3 asinB =0.(1)(5分)求A ;(2)(5分)已知a =2 √3 ,B = π3 ,求△ABC 的面积.16.(10分)如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)(5分)证明:AP∥平面EBD;(2)(5分)证明:BE⊥PC.17.(10分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)(5分)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)(5分)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.(10分)如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为1 2.且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)(5分)求椭圆C的标准方程;(2)(5分)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(10分)已知函数f(x)=23x3−mx2+m2x(m∈R)的导函数为f′(x).(1)(5分)若函数g(x)=f(x)−f′(x)存在极值,求m的取值范围;(2)(5分)设函数ℎ(x)=f′(e x)+f′(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式ℎ(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.20.(10分)已知数列{a n},{b n},数列{c n}满足c n={a n,n为奇数b n,n为偶数,n∈N∗.(1)(5分)若a n=n,b n=2n,求数列{c n}的前2n项和T2n;(2)(5分)若数列{a n}为等差数列,且对任意n∈N∗,c n+1>c n恒成立.①当数列{b n}为等差数列时,求证:数列{a n},{b n}的公差相等;②数列{b n}能否为等比数列?若能,请写出所有满足条件的数列{b n};若不能,请说明理由.21.(5分)已知矩阵A=[1321],B=[−2311],且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.(10分)在平面直角坐标系xOy中,曲线l的参数方程为{x=2+cosθy=√3+2√3cos2θ2(θ为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinθ.(1)(5分)求曲线C的普通方程;(2)(5分)求曲线l和曲线C的公共点的极坐标.23.(5分)已知正数x,y,z满足x+y+z=t(t为常数),且x24+y29+z2的最小值为87,求实数t的值.24.(10分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)(5分)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)(5分)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.(10分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)(5分)求点G的轨迹方程;(2)(5分)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分1.【答案】√22【解析】【解答】z=11+i =12−12i⇒|z|=√22.故答案为:√22.【分析】先把复数进行化简,然后利用求模公式可得结果.2.【答案】2【解析】【解答】由题意A∩B中有且只有一个元素,所以a−1=1,即a=2. 故答案为:2.【分析】利用A∩B中有且只有一个元素,可得a−1=1,可求实数a的值. 3.【答案】0.08【解析】【解答】首先求得x̅=15(1.6+1.8+2+2.2+2.4)=2,S2=15[(1.6−2)2+(1.8−2)2+(2−2)2+(2.2−2)2+(2.4−2)2]=0.08.故答案为:0.08.【分析】先求解这组数据的平均数,然后利用方差的公式可得结果.4.【答案】3【解析】【解答】因为双曲线x 2a2−y24=1(a>0)的渐近线为y=±2ax,且一条渐近线方程为y=23x,所以a=3.故答案为:3.【分析】双曲线的焦点在x轴上,渐近线为y=±2a x,结合渐近线方程为y=23x可求a .5.【答案】56【解析】【解答】乙不输的概率为12+13=56,故答案为:56.【分析】利用互斥事件概率加法公式列式,即可求出乙不输的概率。
江苏省苏锡常镇四市2020届高三教学情况调研数学试题(一)
江苏省苏锡常镇四市2020届高三教学情况调研(一)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把[答案]直接填写在答题卡相应位置上。
1.已知i为虚数单位,复数11zi=+,则|z|=2.已知集合A={x|0≤x≤1},B={x|a-1≤x≤3},若A⋂B中有且只有一个元素,则实数a的值为3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是4.在平面直角坐标系xOy中,已知双曲线2221(0)4x yaa-=>的一条渐近线方程为23y x=,则a=5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是6.右图是一个算法的流程图,则输出的x的值为7.“直线l1:ax+y+1=0与直线l2:4x+ay+3=0平行”是“a=2”的条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n}的前n项和为Sn,a1=9,9595S S-=-4,则a n=9.已知点M是曲线y=2ln x+x2-3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α=11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为12.在∆ABC 中,,若角A 的最大值为6π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB ,则∆ABC 面积的最大值为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
江苏省苏州市2020届高三数学二轮复习专题训练 3 不等式
专题3 不等式一、填空题例1 已知集合A ={}0,1,B ={}a 2,2a ,其中a ∈R .定义A ×B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若集合A ×B 中的最大元素为2a +1,则a 的取值范围是________.解析 A ×B ={a 2,2a ,a 2+1,2a +1}.由题意,得2a +1>a 2+1,解得0<a <2. 答案 (0,2)例2 .设123log 2,ln 2,5a b c -===则c b a ,,三者的大小关系 解析 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=222log 4log 3>=>,所以c<a,综上c<a<b. 答案c a b <<例3 .对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2), 解关于x 的不等式ax 2-bx +c >0”.给出如下一种解法:解 由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1). 参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________. 解析 不等式kx ax +1+bx +1cx +1<0可化为k 1x +a +1x +b 1x+c<0,所以有1x ∈⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,即x ∈(-3,-1)∪(1,2),从而不等式kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2).答案 (-3,-1)∪(1,2)例 4 .设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于解析 由题意知,所求的||AB 的最小值,即为区域1Ω中的点到直线3490x y --=的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线3490x y --=的距离最小,故||AB 的最小值为|31419|245⨯-⨯-⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市2019-2020学年第一学期学业质量阳光指标调研卷高三数学I一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{}1A x x =≥,{}1,0,1,4B =-,则A B =________.【答案】{}1,4 【解析】 【分析】进行交集的运算即可. 【详解】{|1}A x x =,{1B =-,0,1,4},{1A B ∴⋂=,4}.故答案为:{1,4}.【点睛】本题考查了描述法、列举法的定义、交集的运算,考查了计算能力,属于基础题. 2.已知i 是虚数单位,复数()()12z bi i =++的虚部为3,则实数b 的值为________. 【答案】1 【解析】 【分析】利用复数代数形式的乘法运算化简,再由虚部为3求解b . 【详解】(1)(2)(2)(21)z bi i b b i =++=-++的虚部为3,213b ∴+=,即1b =.故答案为:1.【点睛】本题考查复数代数形式的乘法运算,考查复数的基本概念,是基础题.3.从2名男生和l 名女生中任选2名参加青年志愿者活动,则选中的恰好是一男一女的概率为________. 【答案】23【解析】 【分析】基本事件总数233n C ==,选中的恰好是一男一女包含的基本事件个数11212m C C ==,由此能求出选中的恰好是一男一女的概率.【详解】从2名男生和1名女生中任选2名参加青年志愿者活动,基本事件总数233n C==,选中的恰好是一男一女包含的基本事件个数11212m C C==,则选中的恰好是一男一女的概率为23mpn==.故答案为:23.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.为了了解苏州市某条道路晚高峰时段的车流量情况,随机抽查了某天单位时间内通过的车辆数,得到以下频率分布直方图(如图),已知在[)5,7之间通过的车辆数是440辆,则在[8,9)之间通过的车辆数是________.【答案】100【解析】【分析】由频率分布直方图得在[5,7)之间通过的车辆的频率为0.44,在[8,9)之间通过的车辆的频率为0.10,由此利用在[5,7)之间通过的车辆数是440辆,能求出在[8,9)之间通过的车辆数.【详解】由频率分布直方图得:在[5,7)之间通过的车辆的频率为0.240.200.44+=,在[8,9)之间通过的车辆的频率为0.10,设在[8,9)之间通过的车辆数为n . 在[5,7)之间通过的车辆数是440辆,∴4400.440.1n=,解得100n =. 则在[8,9)之间通过的车辆数为100. 故答案为:100.【点睛】本题考查在[8,9)之间通过的车辆数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.5.如图是一个算法流程图,若输入的x 值为5,则输出的y 值为________.【答案】2 【解析】 【分析】根据算法流程图,一步一步进行运算,直到跳出循环.【详解】输入5x =,不满足0x <,所以运行2log (51)2y =-=, 故答案为:2【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的________条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”) 【答案】充分不必要 【解析】由等比数列的性质结合充分必要条件的判定方法得答案.【详解】在等比数列{}n a 中,10a >,则由12a a <,得11a a q <,即1q >,∴243115a a q a q a =<=;反之,由243115a a q a q a =<=,得21q >,即1q >或1q <-,当1q <-时,112a a q a >=.∴等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的充分不必要条件.故答案为:充分不必要.【点睛】本题主要考查等比数列的性质,考查充分必要条件的判定方法,是基础题.7.在平面直角坐标系xOy 中,已知点1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,点P 的坐标为()0,b ,若12120F PF ∠=︒,则该双曲线的离心率为________.【解析】 【分析】利用已知条件列出b 、c 关系式,然后转化求解双曲线的离心率即可.【详解】在平面直角坐标系xOy 中,己知点1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 的坐标为(0,)b , 由12120F PF ∠=︒,可得:cb=,即222233()c b c a ==-, 即2223c a ,所以双曲线的离心率为:6c ea .故答案为:2【点睛】本题主要考查双曲线的简单性质的应用,考查转化思想以及计算能力,是基础题.8.若x ,y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则3z x y =+的最大值为________.【答案】3 【解析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【详解】作出不等式组10xx yx y⎧⎪-⎨⎪+-⎩对应的平面区域如图:设3z x y=+得1133y x z=-+,平移直线1133y x z=-+,由图象可知当直线1133y x z=-+经过点(0,1)A时,直线1133y x z=-+的纵截距最大,此时z最大,此时3z=,故答案为:3.【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.9.如图,某品牌冰淇淋由圆锥形蛋筒和半个冰淇淋小球组成,其中冰淇淋小球的半径与圆锥底面半径相同.已知圆锥形蛋筒的侧面展开图是圆心角为25π,弧长为4cmπ的扇形,则该冰淇淋的体积是________3cm.【答案】)16613π【解析】 【分析】求出圆锥底面半径为422r ππ==,圆锥母线长41025l ππ==,圆锥的高为2210246h =-=半个冰淇淋小球的半径2R =,由此能求出该冰淇淋的体积.【详解】圆锥形蛋筒的侧面展开图是圆心角为25π,弧长为4cm π的扇形,∴圆锥底面半径为422r ππ==,圆锥母线长41025l ππ==,圆锥的高为2210246h =-∴半个冰淇淋小球的半径2R =,∴该冰淇淋的体积是:23114161662462323V ππ+=⨯⨯⨯⨯⨯⨯.16166+. 【点睛】本题考查冰淇淋的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力.10.在平面直角坐标系xOy 中,若直线()20x my m m R +++=∈上存在点P ,使得过点P 向圆22:2O x y +=作切线PA (切点为A ),满足2PO PA =,则实数m 的取值范围为________.【答案】0m ≤或43m ≥ 【解析】 【分析】根据题意,由切线的性质分析可得2PO =2,解可得m 的取值范围,即可得答案.【详解】根据题意,圆22:2O x y +=,其圆心为O,半径r =若点P 向圆22:2O x y +=作切线PA,满足PO =,又由OA r ==则有222||||||2PO PA OA -==,变形可得2PO =,若直线20()x my m m R +++=∈上存在点P2,变形可得:2340m m -, 解可得:0m 或43m,即m 的取值范围为{|0m m 或4}3m ; 故答案为:{|0m m 或4}3m. 【点睛】本题主要考查直线与圆的位置关系,涉及圆的切线方程,意在考查学生对这些知识的理解掌握水平.11.在平面直角坐标系xOy 中,己知直线1:2l y =与函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象在y 轴右侧的公共点从左到右依次为1A ,2A ,…,若点1A 的横坐标为1,则点2A 的横坐标为________. 【答案】3 【解析】 【分析】当1x =时,1()sin()62f x πω=+=得266k ππωπ+=+,或52()66k k Z ππωπ+=+∈,依题意可得566ππω+=,可求得ω,继而可得答案. 【详解】因为点1A 的横坐标为1,即当1x =时,1()sin()62f x πω=+=,所以266k ππωπ+=+或52()66k k Z ππωπ+=+∈,又直线1:2l y =与函数()sin()(0)6f x x πωω=+>的图象在y 轴右侧的公共点从左到右依次为1A ,2A ⋯,所以566ππω+=, 故23πω=, 所以函数的关系式为2()sin()36f x x ππ=+. 当23x =时,f (3)21sin(3)362ππ=⨯+=, 即点2A 的横坐标为3,(13,2)为二函数的图象的第二个公共点. 故答案为:3.【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.12.如图,在平面四边形ABCD 中,己知AD =3,4BC =,E ,F 为AB ,CD 的中点,P ,Q 为对角线AC ,BD 的中点,则PQ EF ⋅的值为________.【答案】74- 【解析】 【分析】可连接FP ,FQ ,EP ,EQ ,根据题意即可得出四边形EPFQ 为平行四边形,从而可得出11(),()22PQ AD BC EF AD BC =-=+,然后进行数量积的运算即可.【详解】如图,连接FP ,FQ ,EP ,EQ ,E ,F 为AB ,CD 的中点,P ,Q 为对角线AC ,BD 的中点, ∴四边形EPFQ 为平行四边形,∴1()2PQ EQ EP AD BC =-=-,1()2EF EP EQ AD BC =+=+,且3AD =,4BC =, ∴2217()44PQ EF AD BC =-=-.故答案为:74-.【点睛】本题考查了三角形中位线的性质、向量加法的平行四边形法则、向量减法和数乘的几何意义,考查了向量数量积的运算及计算公式,考查了计算能力,属于基础题. 13.已知实数x ,y 满足()212x x y y +=+,则2254x y -的最小值为________.【答案】4 【解析】 【分析】实数x ,y 满足2()12x x y y +=+,化为:(2)()1x y x y +-=,令2x y m +=,x y n -=,则1mn =.解得x ,y .代入2254x y -,化简整理利用基本不等式的性质即可得出.【详解】实数x ,y 满足2()12x x y y +=+, 化为:(2)()1x y x y +-=,令2x y m +=,x y n -=,则1mn =. 解得23m nx +=,3m n y -=.则222222222221116116545()4()(2816)(28)(228)433999m n m n x y m mn n m m m m+--=-=++=+++=,当且仅当212m n =⎧⎪⎨=⎪⎩,212m n =-⎧⎪⎨=-⎪⎩时,即112x y =⎧⎪⎨=⎪⎩,112x y =-⎧⎪⎨=-⎪⎩时取等号.2254x y ∴-的最小值为4. 故答案为:4.【点睛】本题考查了基本不等式的性质、换元法、转化法,考查了推理能力与计算能力,属于中档题.14.已知函数(),248,25x exx ef x x x x ⎧≤⎪⎪=⎨-⎪>⎪⎩,(其中e 为自然对数的底数),若关于x 的方程()()22320f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为________. 【答案】241,52e ⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭【解析】 【分析】作出()f x 图象,求出方程的根,分类讨论()f x 的正负,数形结合即可. 【详解】当2x 时,令()10x ef x e'=-=,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递减,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e>⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意.综上:a 的范围是2[e ,4)51{}2⋃故答案为:2[e ,4)51{}2⋃【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.己知向量3sin ,4a x ⎛⎫= ⎪⎝⎭,()cos ,1b x =-. (1)当//a b 时,求tan 2x 的值;(2)设函数()()2f x a b b =+⋅,且0,2x π⎛⎫∈ ⎪⎝⎭,求()f x 的最大值以及对应的x 的值.【答案】(1)24tan 27x =-;(2)8xπ=时,函数()f x 32.【解析】 【分析】(1)根据//a b 即可求出3tan 4x =-,然后根据二倍角的正切公式即可求出tan 2x 的值; (2)进行数量积的坐标运算,并根据二倍角的正余弦公式和两角和的正弦公式得出3()2sin(2)42f x x π=++,从而可求出()f x 的最大值,以及对应的x 的值.【详解】(1)因为//a b ,所以3sin cos 04x x --=, 因为cos 0x ≠(否则与3sin cos 04x x --=矛盾),所以3tan 4x =-, 所以22tan 24tan 21tan 7x x x ==--. (2)()()21322sin cos 2cos sin 2cos 222f x a b b x x x x x =+⋅=++=++ 32sin 242x π⎛⎫=++ ⎪⎝⎭,因为02x π<<,所以52444x πππ<+<, 所以当242x ππ+=,即8x π=时,函数()f x 的最大值为322+. 【点睛】本题考查了平行向量的坐标关系、二倍角的正弦、余弦和正切公式、两角和的正弦公式和数量积的坐标运算,考查了计算能力,属于基础题.16.如图,在斜三棱柱111ABC A B C -中,CA CB =,D ,E 分别是AB ,1B C 的中点.(1)求证://DE 平面11ACC A ; (2)若DE AB ⊥,求证:1AB B C ⊥. 【答案】(1)见证明;(2)见证明 【解析】 【分析】(1)连结1BC ,1AC ,由三角形中位线定理可得1//DE AC ,根据线面平行的判定定理可得结论;(2)由等腰三角形的性质可得CD AB ⊥,结合DE AB ⊥由线面垂直的判定定理可得AB ⊥平面C DE ,再由线面垂直的性质可得结论.【详解】(1)连结1BC ,1AC ,因为斜三棱柱11ABC A B C -,所以四边形11BCC B 为平行四边形, 由平行四边形性质得点E 也是1BC 中点, 因为点D 是AB 的中点,所以1//DE AC , 又DE ⊂/平面11ACC A ,1AC ⊂平面11ACC A , 所以//DE 平面11ACC A .(2)连结CD ,因为CA CB =,点D 是AB 的中点,所以CD AB ⊥, 又DE AB ⊥,DE CD D ⋂=,DE ⊂平面CDE ,CD ⊂平面CDE , 所以AB ⊥平面C DE ,因为1B C ⊂平面C DE ,所以1AB B C ⊥.【点睛】本题主要考查线面平行的判定定理、线面垂直的判定与性质,属于中档题.证明线面平行的常见方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.17.为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB 中,23AOBπ∠=,23OB=(百米),荒地内规划修建两条直路AB,OC,其中点C在AB上(C 与A,B不重合),在小路AB与OC的交点D处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设BDCθ∠=,蜂巢区的面积为S(平方百米).(1)求S关于θ的函数关系式;(2)当θ为何值时,蜂巢区的面积S最小,并求此时S的最小值.【答案】(1)3cos6sinSθθπθ=+-,5,66ππθ⎛⎫∈ ⎪⎝⎭;(2)当θ等于4π时,S取到最小值32π+平方百米【解析】【分析】(1)由余弦定理得6AB=,由正弦定理得3)6sinBDπθθ-=,3)623sinADπθθ-=,蜂巢区的面积AOD CDB AOD BDOCOBS S S S S S∆∆∆∆=+=+-扇形,由此能求出S关于θ的函数关系式.(2)对36tanSθπθ=+-求导得,当(,)64ππθ∈时,0S'<,S递减,当3(,)44ππθ∈时,0S'>,S递增,当3(4πθ∈,5)6π时,0S'<,S递减,由此能求出当θ为4π时,蜂巢区的面积S最小,S的最小值为32π+.【详解】(1)23AO OB==,23AOBπ∠=,由余弦定理得6AB=,在BDO∆中,由正弦定理得sin sinBD BOBOD BDO=∠∠,∴23sin()6BDπθ-,3)6sinBDπθθ-∴=,23)623sinADπθθ-=,∴蜂巢区的面积:AOD CDB AOD BDO COB S S S S S S ∆∆∆∆=+=+-扇形2116sin sin 26226AO AD AO BO BD πθππππ-=⋅⋅⋅+⋅-⋅⋅⋅, 整理,得S 关于θ的函数关系式为: 36tan S θπθ=+-,5(,)66πθπ∈. (2)对36tan S θπθ=+-求导,得236S sin θ'=-, 令0S '=,解得4πθ=或34πθ=, 当(,)64ππθ∈时,0S '<,S 递减, 当3(,)44ππθ∈时,0S '>,S 递增, 当3(4πθ∈,5)6π时,0S '<,S 递减,综上所述,S 的最小值只可有在4πθ=或θ趋近56π时取得, 当4πθ=时,32S π=+,当56πθ=时,43332S ππ=->+,∴当θ为4π时,蜂巢区的面积S 最小,S 的最小值为32π+.【点睛】本题考查函数关系式、蜂巢区的面积最小值的求法,考查三角函数性质有生产生活中的应用等基础知识,考查运算求解能力和应用意识,是中档题.18.如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P 作x 轴的垂线交其“辅圆”于点Q ,当点Q 在点P 的上方时,称点Q 为点P 的“上辅点”.已知椭圆()2222:10x y E a b a b +=>>上的点3⎛ ⎝⎭的上辅点为(3.(1)求椭圆E 的方程; (2)若OPQ ∆的面积等于12,求上辅点Q 的坐标; (3)过上辅点Q 作辅圆的切线与x 轴交于点T ,判断直线PT 与椭圆E 的位置关系,并证明你的结论.【答案】(1)2214x y +=;(2)(2,2Q ;(3)直线PT 与椭圆相切,证明见解析【解析】 【分析】(1)根据定义直接求解即可;(2)设点0(Q x ,0)y ,则点0(P x ,1)y ,则可得到012y y =,再根据OPQ ∆的面积可得到011x y =,进一步与椭圆方程联立即得解;(3)表示出直线PT 的方程,与椭圆方程联立,再判断△即可得出结论.【详解】(1)椭圆2222:1(0)x y E a b a b +=>>上的点3(1,2的上辅点为3),∴辅圆的半径为132R =+,椭圆长半轴为2a R ==,将点3(1,)2代入椭圆方程22214x y b+=中,解得1b =,∴椭圆E 的方程为2214x y +=; (2)设点0(Q x ,0)y ,则点0(P x ,1)y ,将两点坐标分别代入辅圆方程和椭圆方程可得,22004x y +=,220114x y +=,故22014y y =,即012y y =, 又00111()22OPQ S x y y ∆=-=,则011x y =, 将011x y =与220114x y +=联立可解得0x0y ,∴点Q的坐标为;(3)直线PT 与椭圆E 相切,证明如下:设点0(Q x ,0)y ,由(2)可知,001(,)2P x y ,与辅圆相切于点Q 的直线方程为0000()x y y x x y -=--,则点04(,0)T x , 直线PT 的方程为:00001420()4y y x x x x -=--,整理得00022x y y y =-+, 将00022x y y y =-+与椭圆2214x y +=联立并整理可得,2200222000210x x x x y y y -+=,由一元二次方程的判别式22004400440x x y y =-=,可知,上述方程只有一个解,故直线PT 与椭圆E 相切.【点睛】本题以新概念为载体,旨在考查直线与圆、直线与椭圆的位置关系,考查通性通法的运用,计算量较大,对计算能力的要求较高,属于较难题目.19.已知数列{}n a 满足12n n S na a =+,34a =,其中n S 是数列{}n a 的前n 项和. (1)求1a 和2a 的值及数列{}n a 的通项公式; (2)设()*12311112462n n T n N S S S S n=++++∈++++. ①若23k T T T =,求k 的值;②求证:数列({}n T 中的任意一项总可以表示成该数列其他两项之积. 【答案】(1)10a =,22a =,22n a n =-;(2)①1,②见解析 【解析】【分析】(1)利用递推关系式求出数列的前几项,同时求出数列{}n a 的通项公式;(2)结合第一问的结论求出1n n T n =+,①直接代入1n nT n =+即可求解;②对于给定的*n N ∈,若存在k ,t n ≠,k ,*t N ∈,使得n k t T T T =,只要找到相应的整数,即可证明.【详解】(1)2n =时,()22112222S a a a a =+=+,所以10a =,3n =时,3312312S a a =+=,所以1236a a a ++=,所以22a =.由12n n n S na a na =+=,① 所以()1121n n S n a ++=+,②由②-①得()1121n n n a n a na ++=+-, 即()11n n na n a +=-,③当2n ≥时,()()112n n n a n a --=-,④由③-④得()()()111121n n n a n a n a +--+-=-, 即112n n n a a a +-+=,所以数列{}n a 是首项为0,公差为2的等差数列, 故数列{}n a 的通项公式是22n a n =-. (2)11112(1)1n S n n n n n ==-+++;∴1231111111111112462223111n n nT S S S S n n n n n =+++⋯+=-+-+⋯+-=-=+++++++; ①23k T T T =⨯;∴23111342k k k =⨯=⇒=+. ②对于给定的*n N ∈,若存在k ,t n ≠,k ,*t N ∈,使得n k t T T T =; 1n n T n =+,只需111n k tn k t =⨯+++,两边取倒数,即111(1(1)(1)n k t +=++,即1111n k t kt=++;即kt nt nk n =++,(1)n k t k n+=-;取1k n =+,则(2)t n n =+;1(2)n n n n T T T ++=⨯;∴对数列{}n T 中的任意一项,总可以表示成该数列其他两项之积.【点睛】本题考查了递推关系、等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于难题. 20.已知函数()()ln a xf x a R x+=∈. (1)求函数()f x 的单调区间;(2)当函数()f x 与函数()ln g x x =图象的公切线l 经过坐标原点时,求实数a 的取值集合; (3)证明:当10,2a ⎛⎫∈ ⎪⎝⎭时,函数()()h x f x ax =-有两个零点1x ,2x ,且满足12111x x a +<. 【答案】(1)单调增区间为()10,ae -,单调减区间为()1,ae-+∞;(2)1ln 22⎧⎫⎨⎬⎩⎭;(3)见解析【解析】 【分析】(1)利用导数求解单调性;(2)先求出公切线l 的方程,再探讨a 的取值范围;(3)先利用导数研究函数()h x 的单调性,证明零点个数.再使用函数思想,构造函数,利用导数研究函数单调性解决不等式问题. 【详解】(1)对()a lnx f x x +=求导,得21()a lnxf x x --'=, 令()0f x '=,解得1a x e -=,当1(0,)a x e -∈时,()0f x '>,()f x 单调递增. 当1(a x e -∈,)+∞时,()0f x '<,()f x 单调递减.(2)设公切线l 与函数()g x lnx =的切点为0(x ,0)y ,则公切线l 的斜率001()k g x x ='=, 公切线l 的方程为:0001()y y x x x -=-,将原点坐标(0,0)代入,得01y =,解得0x e =. 公切线l 的方程为:1y x e=,将它与()a lnx f x x +=联立,整理得21a x lnx e =-.令21()m x x lnx e =-,对之求导得:22()x em x ex-'=,令()0m x '=.当x ∈时,()0m x '<,()m x 单调递减,值域为2(,)2ln +∞,当)x ∈+∞时,()0m x '>,()m x 单调递增,值域为2(,)2ln +∞, 由于直线l 与函数()f x 相切,即只有一个公共点,因此.故实数a 的取值集合为1{ln2}2.(3)证明:2()a lnx ax h x x+-=,要证()h x 有两个零点,只要证2()k x ax lnx a =--有两个零点即可.k (1)0=,即1x =时函数()k x 的一个零点.对()k x 求导得:1()2k x ax x'=-,令()0k x '=,解得x =当x >()0k x '>,()k x 单调递增;当0x <<时,()0k x '<,()k x单调递减.当x =()k x取最小值,(1)0k k <=,22221()(1)12k x ax lnx a ax x a ax x a ax x =-->---=-+->-+,必定存0x >函数2001()02u x ax x =-+>, 即00()()0k x u x >>.因此在区间上0)x 必定存在()k x 的一个零点.综上所述,()h x 有两个零点,一个是1x =,另一个在区间)+∞上. 下面证明12111x x a+<. 由上面步骤知()h x 有两个零点,一个是1x =,另一个在区间)+∞上. 不妨设11x =,2x >12211111x x x +=+<,下面证明11a<即可.令1()1v a a=,对之求导得21()0v a a '=--,故v(a)在定义域内单调递减,11()1()02v a va=>=,即11a.证明完毕.【点睛】本题考察知识点众多,利用导数研究函数单调性,切线与导数的关系,利用导数研究函数的零点个数,利用导数构造函数来证明不等式,对学生的思维能力和思维品质要求极高,属于难题.。