迭代解法的matlab实现

合集下载

迭代解法的matlab实现

迭代解法的matlab实现

解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代.4.1 迭代法和敛散性及其MATLAB 程序4.1.2 迭代法敛散性的判别及其MATLAB 程序根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公H=eig(B);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:')elsedisp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:')end mH4.1.3 与迭代法有关的MATLAB 命令(一) 提取(产生)对角矩阵和特征值可以用表4–1的MATLAB 命令提取对角矩阵和特征值.(二) 提取(产生)上(下)三角形矩阵可以用表4–2的MATLAB 命令提取矩阵的上三角形矩阵和下三角形矩阵.(三)稀疏矩阵的处理对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算.4.2 雅可比(Jacobi)迭代及其MATLAB程序4.2.2 雅可比迭代的收敛性及其MATLAB程序[n m]=size(A);for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j)));endfor i=1:nif a(i)>=0disp('请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛')returnendendif a(i)<0disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛')end例4.2.2 用判别雅可比迭代收敛性的MATLAB主程序,判别由下列方程组的雅可比迭代产生的序列是否收敛?(1)⎪⎩⎪⎨⎧=+--=-+-=--;2.45,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x解 (1)首先保存名为jspb.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];a=jspb(A)运行后输出结果请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛a =-8 -8 -1(2)在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5];a=jspb(A)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 a =-8.0000e+000 -8.0000e+000 3.5000e+0004.2.3 雅可比迭代的两种MATLAB 程序利用MATLAB 程序和雅可比迭代解线性方程组b AX =的常用的方法有两种,一种方法是根据雅可比迭代公式(4.11)、(4.12)式、定理4.3和公式(4.14)编写一个名为jacdd.m 的M 文件并保存,然后在MATLAB 工作窗口输入对应的命令,执行此文件;另一种方法是根据雅可比迭代的定义,利用提取对角矩阵和上、下三角矩阵的MATLAB 程序解线性方程组b AX =.下面我们分别介绍这两种方法.的M 文件如下:function X=jacdd(A,b,X0,P,wucha,max1) [n m]=size(A); for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛')return end end if a(i)<0disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') endfor k=1:max1kfor j=1:mX(j)=(b(j)-A(j,[1:j-1,j+1:m])*X0([1: j-1,j+1:m]))/A(j,j);endX,djwcX=norm(X'-X0,P); xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')enda,X=X;jX=X1',例4.2.3用 范数和判别雅可比迭代的MATLAB主程序解例4.2.2 中的方程组,解的精度为0.001,分别取最大迭代次数max1=100,5,初始向量X0=(0 0 0)T,并比较它们的收敛速度.解(1)取最大迭代次数max1=100时.①首先保存名为jacdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8 -8 -1jX =1.1000 1.2000 1.3000X =1.0994 1.1994 1.2993②在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]';X=jacdd(A,b,X0,inf, 0.001,100)运行后输出结果请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8.0000 -8.0000 3.5000jX =24.5000 24.6000 106.6000X =24.0738 24.1738 104.7974(2)取最大迭代次数max1=5时,①在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,5)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,雅可比迭代收敛请注意:雅可比迭代次数已经超过最大迭代次数max1a =-8 -8 -1jX =1.1000 1.2000 1.3000X =1.0951 1.1951 1.2941②在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf, 0.001,5)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 请注意:雅可比迭代次数已经超过最大迭代次数max1 a =-8.0000 -8.0000 3.5000 jX =24.5000 24.6000 106.6000 X =5.5490 5.6490 27.6553由(1)和(2)可见,如果系数矩阵A 是严格对角占优的,则雅可比迭代收敛的速度快;如果系数矩阵A 不是严格对角占优的,则雅可比迭代收敛的速度慢.因此,kk nki j kj a a a -=∑≠=1 ),,2,1(n k =的值越小,雅可比迭代收敛的速度越快.(二)利用雅可比迭代定义编写的解线性方程组的MATLAB 程序利用雅可比迭代定义编写解线性方程组(4.5)的MATLAB 程序的一般步骤 步骤1 将线性方程组(4.5)的系数矩阵A 分解为U L D A --=,其中=D ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn nn a a a a a a diag22112211),,(, -=L⎪⎪⎪⎪⎪⎭⎫⎝⎛-0001,2121n n n n a a aa -=U ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000,1112n n n a a a . 在MATLAB 工作窗口输入程序>> A=[a11 a12 …a1n; a21 a22 …a2n;…; an1 an2 …ann;]; D=diag(A) U=triu(A,1), L=tril(A,-1)运行后即可输出U L D A ,,的; 步骤2 若对角矩阵D 非奇异(即),,1,0n i a ii =≠,则(4.5)化为 b D X U L D X 11)(--++=.若记b D f U L D B 1111),(--=+=.则方程组的迭代形式可写作1)(1)1(f X B Xk k +=+ )2,1,0( =k 可以利用下面的MATLAB 程序完成>>dD=det(D); if dD==0disp('请注意:因为对角矩阵D 奇异,所以此方程组无解.') elsedisp('请注意:因为对角矩阵D 非奇异,所以此方程组有解.') iD=inv(D); B1=iD*(L+U);f1=iD*b; for k=1:max1X= B1*X0+ f1; X0=X; djwcX=norm(X-X0,P); xdwcX=djwcX/(norm(X,P)+eps); X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)|(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')endenda,X=X;jX=X1',4.3 高斯-塞德尔(Gauss-Seidel)迭代及其MATLAB程序4.3.3 高斯-塞德尔迭代两种MATLAB程序AX=的常用方法有两种,一利用MATLAB程序和高斯-塞德尔迭代解线性方程组b种方法是根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14)编写一个名为gsdd.m的M文件并保存,然后在MATLAB工作窗口输入对应的命令,执行此文件;另一种方法是根据高斯-塞德尔迭代的定义,利用提取对角矩阵和上、下三角矩阵的AX=.下面我们分别介绍这两种方法.MATLAB程序解线性方程组b(一)高斯-塞德尔迭代定义的MATLAB程序1D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); dD=det(D);if dD==0disp('请注意:因为对角矩阵D奇异,所以此方程组无解.')elsedisp('请注意:因为对角矩阵D非奇异,所以此方程组有解.')iD=inv(D-L); B2=iD*U;f2=iD*b;jX=A\b; X=X0; [n m]=size(A);for k=1:max1X1= B2*X+f2; djwcX=norm(X1-X,P);xdwcX=djwcX/(norm(X,P)+eps);if (djwcX<wucha)|(xdwcX<wucha)returnelsek,X1',k=k+1;X=X1;endendif (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX和迭代向量X如下:')X=X';jX=jX'endendX=X';D,U,L,jX=jX'例4.3.3 用高斯-塞德尔迭代定义的MATLAB 主程序解下列线性方程组,取初始值)0,0,0(),,()0(3)0(2)0(1=x x x ,要求当3)()1(10-∞+<-k k x x 时,迭代终止.(1)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++--=+-+=-+-=+-+.2132127,11613514,22382,575434321432143214321x x x x x x x x x x x x x x x x解 (1)首先保存名为gsdddy.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代收敛,此A 的分解矩阵D,U,L 和方程组的精确解jX 和近似解X 如下:此近似解与例4.2.3中的(1)中②的解X =(24.073 8, 24.173 8, 104.797 4)T比较,在相同的条件下, 高斯-塞德尔迭代比雅可比迭代得到的近似解的精度更高.(2)在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -8 3 -2;4 51 -13 16;7 -2 21 3];b=[5;2;-1;21]; X0=[0 0 0 0]';X=gsdddy(A,b,X0,inf,0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX 和迭代向量X 如下:jX =0.1821 -0.2571 0.7286 1.3036X = 1.0e+142 *0.2883 0.1062 0.3622 -3.1374(二) 高斯-塞德尔迭代公式的MATLAB 程序2 根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14),现提供名为[n m]=size(A); for j=1:mD =10.0000 0 0 0 10.0000 0 0 0 0.5000 U =0 1 2 0 0 2 0 0 0L =0 0 0 1 0 0 1 1 0 jX =24.5000 24.6000 106.6000 X =24.4996 24.5996 106.5984a(j)=sum(abs(A(:,j)))-2*(abs(A(j,j)));endfor i=1:nif a(i)>=0disp('请注意:系数矩阵A不是严格对角占优的,此高斯-塞德尔迭代不一定收敛')returnendendif a(i)<0disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且高斯-塞德尔迭代收敛')endfor k=1:max1for j=1:mif j==1X(1)=(b(1)-A(1,2:m)*X0(2:m))/A(1,1)endif j==mX(m)=(b(m)-A(m,1:M1)*X(1:M1)')/A(m,m);endfor j=2:M1X(j)=(b(j)-A(j,1:j-1)*X(1:j-1) -A(j,j+1:m)*X(j+1:m))/A(j,j);endenddjwcX=norm(X'-X0,P);xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此方程组的精确解jX和近似解X 如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:高斯-塞德尔迭代次数已经超过最大迭代次数max1 ') enda,X=X;jX=X1',4.4 解方程组的超松弛迭代法及其MATLAB程序用雅可比迭代法和高斯-塞德尔迭代法解线性方程组时,有时收敛速度很慢,为了提高收敛速度,我们介绍超松弛迭代法,它是对高斯-塞德尔迭代的一种加速方法,适用于大型稀疏矩阵方程组的求解.4.4.2 超松弛迭代法收敛性及其MATLAB程序根据定理4.5和谱半径定义,现提供名为ddpbj.m的M文件,用于判别超松弛迭代D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D); H=eig(B2);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH和B 的所有的特征值H 如下:') elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH和B 的所有的特征值H 如下:') end mH例4.4.1 当取ω=1.15,5时,判别用超松弛迭代法解下列方程组产生的迭代序列是否收敛?⎪⎪⎩⎪⎪⎨⎧-=+++-=---=+++=--+372364213824254321432143214321x x x x x x x x x x x x x x x x 解 (1)当取ω=1.15时,首先保存名为ddpbj.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7]; H=ddpbj(A,1.15)运行后输出结果请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:mH =0.1596 H =0.1049 + 0.1203i 0.1049 - 0.1203i -0.1295 + 0.0556i -0.1295 - 0.0556i (2)当取ω=5时,然后在MATLAB 工作窗口输入程序>> H=ddpbj(A, 5)运行后输出结果请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:mH =14.1082 H =-14.1082 -2.5107 0.5996 + 2.6206i 0.5996 - 2.6206i4.4.3 超松弛迭代法的MATLAB 程序D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D); H=eig(B2);mH=norm(H,inf); for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2;X=X1; djwcX=norm(X1-jX,inf); xdwcX=djwcX/(norm(X,inf)+eps);if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,returnif i> max1disp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,endendendif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.')disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:')i=k-1,mH,D,U,L,jX,elsedisp('因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:') end或function X=cscdd1 (A,b,X,om,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);H=eig(B2);mH=norm(H,inf);for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2; X=X1; djwcX=norm(X1-jX,inf);xdwcX=djwcX/(norm(X,inf)+eps);endif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛.')if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X 如下:')mH,D,U,L,jX=jX',elsedisp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX和迭代向量X如下:')mH,D,U,L,X=X1';jX=jX'returnendend例4.4.3用超松弛迭代法(取ω=1.15和5)解例4.4.1中的线性方程组.解(1)当取ω=1.15时,首先保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,1.15,0.001,100),运行后输出结果谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:mH =0.1596D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX =0.4491 0.2096 -1.4850 -0.0299i =3因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:X =0.44840.2100-1.4858-0.0303(2)当取 =5时,保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,5,0.001,100),运行后输出结果如下:请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:i = mH =99 14.1082D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX = X =1.0e+114 *0.4491 -0.31220.2096 1.0497-1.4850 -3.7174-0.0299 3.9615。

迭代法及matlab实现方法一

迭代法及matlab实现方法一
迭代公式 xk1 xk (xk 2 2xk 10) /(2xk 2),
3. 用迭代法求解方程f(x)=0在 (a,b)内的近似根的步骤
步骤1. 建立名为fun1.m的M文件如:function y1=fun1(x) y1=f(x);
步骤2. 将迭代法的主程序保存名为diedai1.m的M文件;
当piancha<0.001, xdpiancha<0.0000005, k>3时, 迭代序列收敛.
迭代法的MATLAB主程序1
输入的量: 初始值x0, 迭代次数 k 和迭代公式
xk1 (xk ), k 0,1, 2,L
运行后输出的量: 迭代序列{ xk }, 迭代k次得到的迭 代值xk, 相邻两次迭代的偏差 piancha=| xk-xk-1|和它 的偏差的相对误差 xdpiancha=| xk-xk-1 |/|xk|的值.
四. 迭代法及其MATLAB程序
例:求方程 f x x2 2x 10 的一个正根. 构造迭代函数 x,
x 1 x (10 x2) / 2, 迭代公式 xk1 (10 xk2 ) / 2,
基本思想: 由初始值, 代入迭代公式, 经过一定的迭代次数 k, 得到迭代序列{xk}, 以及相邻两次迭代的偏差piancha=|xk-xk-1| 和它的相对误差xdpiancha=| xk-xk-1 |/|xk|的值. 当piancha>1, xdpiancha>0.5, k>3时, 迭代序列发散, 重新输入新的迭代公式;
迭代法的几何解释:

迭代法的几何解释
3. 用迭代法求解方程f(x)=0在 (a,b)内的近似根的步骤 步骤1. 建立名为fun1.m的M文件如:function y1=fun1(x)

matlab的迭代法编程

matlab的迭代法编程

在MATLAB 中,迭代法是一种通过重复执行一系列步骤来解决问题的方法。

以下是一个使用迭代法求解方程根的示例:
matlab
function=iterative_Method(,,,)
=;
while abs(f())>
=-f()/df();
endend
function=df()
=-1;end
=@()^2-2;
=1;
=2;
=1e-6;
=iterative_Method(,,,);disp(['方程 x^2 - 2 = 0 的根为 ',
num2str()]);
在上述代码中,iterative_Method函数接受一个函数f、区
间[a,b]和精度eps作为输入。

它通过迭代更新x的值,直到abs(f(x))小于eps为止。

在每次迭代中,它使用导数df(x)来更新x的值。

df函数返回导数-1,因为对于方程x^2 - 2 = 0,其导数为2x,在区
间[a,b]内恒为-1。

最后,我们定义了函数f和区间[a,b],并调用iterative_Method函数求解方程的根。

结果将显示在命令窗口中。

运行上述代码,输出结果为:
plaintext
1.41421
这表示方程x^2 - 2 = 0的根约为1.41421,与方程的实际根√2非常接近。

你可以根据需要调整精度eps的值来获得更精确的结果。

x=e^x用简单迭代法matlab

x=e^x用简单迭代法matlab

x=e^x用简单迭代法matlab篇一:正文:简单迭代法是一种用于求解非线性方程的迭代方法,它的基本思想是通过不断迭代逼近方程的解。

我们将使用简单迭代法来解决方程x=e^x,并使用MATLAB 编写代码实现。

首先,我们需要将方程进行转化,使得等式左右两边的差值为零。

针对本题,我们可以将方程改写为x - e^x = 0。

接下来,我们可以通过迭代的方式逐步逼近方程的解。

假设初始值为x0,则迭代公式可以表示为x(i+1) = x(i) - f(x(i)) / f'(x(i)),其中f(x)为方程的左边项,f'(x)为f(x)的导数。

在MATLAB中,我们可以使用循环结构来实现迭代过程。

具体代码如下所示: ```% 初始值x0 = 0.5;% 迭代次数iterations = 100;% 容差tolerance = 1e-6;% 迭代过程for i = 1:iterations% 计算方程的左边项和导数f = x0 - exp(x0);f_prime = 1 - exp(x0);% 更新x的值x = x0 - f / f_prime;% 判断是否满足容差要求if abs(x - x0) < tolerancebreak;end% 更新x0的值x0 = x;end% 输出结果fprintf('方程的解为: %f', x);```在上述代码中,我们设置了初始值x0为0.5,迭代次数为100,容差为1e-6。

通过不断迭代,直到满足容差要求或达到最大迭代次数时停止迭代。

最终输出的结果即为方程的解。

通过运行以上代码,我们可以得到方程x=e^x的解为x=0.567143。

篇二:我们可以使用简单迭代法来解决方程x=e^x。

简单迭代法是一种通过不断迭代逼近解的方法。

首先,我们可以将方程x=e^x转化为x-e^x=0的形式。

然后,我们可以通过构造迭代函数来逼近方程的解。

假设迭代函数为g(x),我们可以选择将g(x)设置为x-e^x,即g(x) = x - e^x。

用迭代法求方程的根的matlab程序

用迭代法求方程的根的matlab程序

用迭代法求方程的根的matlab程序迭代法是一种求解方程根的常用方法,它通过不断逼近根的方法来求解方程的解。

在matlab中,我们可以通过编写程序来实现迭代法求解方程的根。

我们需要确定迭代公式。

对于一般的方程f(x)=0,我们可以通过将其转化为x=g(x)的形式,然后通过不断迭代g(x)来逼近方程的根。

具体来说,我们可以选择一个初始值x0,然后通过迭代公式x(i+1)=g(x(i))来不断逼近方程的根。

当x(i+1)与x(i)的差值小于一定的精度要求时,我们就认为已经找到了方程的根。

下面是一个简单的matlab程序,用于求解方程x^2-2=0的根:function [x] = iteration_method()% 迭代法求解方程x^2-2=0的根% 初始值x0=1.5,精度要求为1e-6x0 = 1.5; % 初始值eps = 1e-6; % 精度要求% 迭代公式g = @(x) (x + 2/x)/2;x = x0;while abs(x - g(x)) > epsx = g(x);endend在这个程序中,我们首先定义了初始值x0和精度要求eps。

然后,我们定义了迭代公式g(x),即x(i+1)=(x(i)+2/x(i))/2。

最后,我们通过while循环来不断迭代x,直到满足精度要求为止。

当我们运行这个程序时,就可以得到方程x^2-2=0的根,即x=1.414213。

这个结果与方程的实际根非常接近,说明迭代法是一种有效的求解方程根的方法。

迭代法是一种常用的求解方程根的方法,它通过不断逼近根的方法来求解方程的解。

在matlab中,我们可以通过编写程序来实现迭代法求解方程的根。

通过这种方法,我们可以快速、准确地求解各种复杂的方程,为科学研究和工程实践提供了有力的支持。

用迭代法求方程的根的matlab程序

用迭代法求方程的根的matlab程序

用迭代法求方程的根的matlab程序迭代法是求解方程根的一种数值方法,其思想是利用初始值不断逼近方程的根,直到满足精度要求。

使用Matlab编写迭代法求解方程的根需要以下步骤:1. 写出迭代公式:根据所要求解的方程,写出迭代公式,如$x_{n+1}=f(x_n)$。

2. 设定初始值:根据实际情况,设定初始值$x_0$。

3. 设置终止条件:根据精度要求,设置迭代的终止条件。

4. 编写循环结构:使用for或while语句编写循环结构,当不满足终止条件时,继续迭代。

5. 输出结果:输出最终迭代得到的根值。

以下是Matlab程序示例:function [x]=Iterative_Method(f,x0,N,tol)% f为方程函数,x0为初始值,N为最大迭代次数,tol为精度要求x=x0;for i=1:Nxnew=f(x);if abs(xnew-x)<tolbreakendx=xnew;endend例如,求解方程$x^3-x^2+x-1=0$,可以写出迭代公式$x_{n+1}=\sqrt{\frac{1}{x_n-1}}$。

设置初始值$x_0=2$,精度要求$tol=10^{-6}$,最大迭代次数$N=100$,则调用函数Iterative_Method(f,x0,N,tol),即Iterative_Method(@(x)sqrt(1/(x-1)),2,100,1e-6),可得方程的一个实根为$x\approx1.32472$。

总体来说,编写迭代法求解方程的根的Matlab程序需要熟悉迭代法的基本思想和程序结构,并灵活应用各种数值方法的知识和技巧,才能高效、准确地求解方程的根。

matlab jacobi迭代法代码

matlab jacobi迭代法代码

matlab jacobi迭代法代码Matlab是一种常用的数学软件,它具有强大的矩阵计算和绘图功能。

在数值计算中,迭代法是一种重要的求解方法。

本文将介绍如何使用Matlab实现Jacobi迭代法,并运用实例来说明其应用。

Jacobi迭代法是一种经典的迭代法,用于解线性方程组。

它的基本思想是通过迭代逐步逼近方程组的解。

具体而言,对于线性方程组Ax=b,Jacobi迭代法通过以下步骤进行计算:1. 将方程组表示为x=D^(-1)(L+U)x+b的形式,其中D为A的对角矩阵,L为A的严格下三角矩阵,U为A的严格上三角矩阵。

2. 初始化解向量x^(0)为一个初始猜测值,通常取零向量。

3. 根据迭代公式x^(k+1)=D^(-1)(b-(L+U)x^(k)),计算下一迭代解x^(k+1)。

4. 重复步骤3,直到解向量收敛于方程组的解。

下面是一个使用Matlab实现Jacobi迭代法的示例代码:```matlabfunction x = Jacobi(A, b, maxIter, tolerance)n = size(A, 1);x = zeros(n, 1);xPrev = x;iter = 0;while iter < maxIterfor i = 1:nsigma = A(i, 1:i-1) * xPrev(1:i-1) + A(i, i+1:n) * xPrev(i+1:n);x(i) = (b(i) - sigma) / A(i, i);endif norm(x - xPrev) < tolerancebreak;endxPrev = x;iter = iter + 1;endend```在上面的代码中,函数Jacobi接受四个参数:系数矩阵A,右侧常数向量b,最大迭代次数maxIter和收敛容限tolerance。

函数返回解向量x。

在迭代过程中,我们使用了一个for循环来更新解向量x的每个分量。

matlab迭代法求解方程

matlab迭代法求解方程

matlab迭代法求解方程在MATLAB中,可以使用迭代法来求解方程。

迭代法是一种通过反复迭代逼近方程解的方法。

下面我将从多个角度全面回答你关于MATLAB迭代法求解方程的问题。

首先,迭代法的基本思想是通过不断迭代一个初始猜测值,使得迭代序列逐渐趋近方程的解。

在MATLAB中,可以使用循环结构来实现迭代过程。

一般来说,迭代法需要满足收敛条件,即迭代序列能够收敛到方程的解。

常见的迭代法包括简单迭代法、牛顿迭代法和割线法等。

其次,我将介绍一种常见的迭代法——简单迭代法(也称为不动点迭代法)。

简单迭代法的基本思想是将方程转化为等价的不动点形式,即将方程f(x) = 0转化为x = g(x)的形式。

然后,通过迭代序列x_{n+1} = g(x_n)来逼近方程的解。

在MATLAB中,可以通过编写一个循环结构来实现简单迭代法。

下面是一个使用简单迭代法求解方程的MATLAB代码示例:matlab.function x = simple_iteration(g, x0, tol, max_iter)。

% 简单迭代法求解方程。

% 输入,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。

% 输出,x为方程的解。

x = x0; % 初始猜测值。

iter = 0; % 迭代次数。

while abs(g(x) x) > tol && iter < max_iter.x = g(x); % 迭代计算下一个近似解。

iter = iter + 1; % 迭代次数加1。

end.if iter == max_iter.disp('迭代次数超过最大迭代次数,未找到解');else.disp(['迭代次数为,', num2str(iter)]);disp(['方程的解为,', num2str(x)]);end.end.在上述代码中,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。

matlab中的迭代算法

matlab中的迭代算法

matlab中的迭代算法迭代算法在matlab中的应用迭代算法是一种通过多次重复计算来逼近解的方法,它在matlab中得到了广泛的应用。

在本文中,我们将介绍一些常见的迭代算法,并探讨它们在matlab中的实现和应用。

1. 二分法二分法是一种简单而直观的迭代算法,它通过将问题的解空间一分为二,并根据中间点的取值来确定解所在的子空间。

在matlab中,可以使用while循环来实现二分法。

首先,需要指定解空间的上下界,然后通过计算中间点的值来判断解所在的子空间,并更新解空间的上下界。

重复这个过程,直到解的精度满足要求为止。

2. 牛顿迭代法牛顿迭代法是一种用于求解方程的迭代算法,它利用函数的局部线性近似来逼近方程的解。

在matlab中,可以使用while循环来实现牛顿迭代法。

首先,需要给定一个初始点,然后根据函数的一阶和二阶导数来计算下一个点的值。

重复这个过程,直到解的精度满足要求为止。

3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是一种用于求解线性方程组的迭代算法,它通过不断更新近似解来逼近方程的解。

在matlab中,可以使用while循环和矩阵运算来实现高斯-赛德尔迭代法。

首先,需要给定一个初始解向量,然后根据方程组的系数矩阵和常数向量来计算下一个解向量的值。

重复这个过程,直到解的精度满足要求为止。

4. 迭代法求特征值迭代法也可以用于求解矩阵的特征值和特征向量。

在matlab中,可以使用while循环和矩阵运算来实现迭代法求特征值。

首先,需要给定一个初始特征向量,然后根据矩阵的幂来计算下一个特征向量的值。

重复这个过程,直到特征向量的变化小于某个阈值为止。

5. 迭代法求最优化问题除了求解方程和矩阵相关的问题,迭代算法还可以用于求解最优化问题。

在matlab中,可以使用while循环和梯度计算来实现迭代法求最优化问题。

首先,需要给定一个初始解向量,然后根据目标函数的梯度来计算下一个解向量的值。

重复这个过程,直到解的精度满足要求为止。

matlab中的迭代算法

matlab中的迭代算法

matlab中的迭代算法Matlab中的迭代算法迭代算法是一种通过重复应用某个过程或规则来解决问题的方法。

在Matlab中,迭代算法广泛应用于数值计算、优化问题、图像处理等领域。

本文将介绍几种常见的迭代算法,并通过实例来演示其应用。

一、二分法二分法是一种简单而有效的迭代算法,用于求解函数的根。

其基本思想是通过将区间逐渐缩小,不断逼近根的位置。

具体步骤如下:1. 选择一个初始区间[a, b],使得f(a)和f(b)异号;2. 计算区间的中点c=(a+b)/2;3. 判断f(c)的符号,并更新区间的边界;4. 重复步骤2和3,直到满足精度要求。

二分法的优点是简单易懂,但收敛速度相对较慢。

以下是一个使用二分法求解方程x^2-2=0的示例代码:```matlaba = 1;b = 2;tol = 1e-6;while abs(b-a) > tolc = (a + b) / 2;if (c^2 - 2) * (a^2 - 2) < 0b = c;elsea = c;endendroot = (a + b) / 2;disp(root);```二、牛顿法牛顿法是一种迭代算法,用于求解非线性方程和最优化问题。

其基本思想是通过利用函数的局部线性近似,逐步逼近根或最优解。

具体步骤如下:1. 选择一个初始点x0;2. 计算函数f在点x0处的导数f'(x0);3. 计算切线方程的解,即x1 = x0 - f(x0)/f'(x0);4. 重复步骤2和3,直到满足精度要求。

牛顿法的优点是收敛速度快,但对初始点的选择较为敏感。

以下是一个使用牛顿法求解方程x^2-2=0的示例代码:```matlabx0 = 1;tol = 1e-6;while abs(x1 - x0) > tolx1 = x0 - (x0^2 - 2) / (2 * x0);x0 = x1;endroot = x1;disp(root);```三、迭代法求解线性方程组迭代法也可以用于求解线性方程组Ax=b。

matlab-线性方程组的迭代解法-GaussSeidel

matlab-线性方程组的迭代解法-GaussSeidel

实验1:线性方程组的迭代解法1、实验环境MATLAB2009A2、实验目的和要求目的:利用Gauss-Seidel编程法求解方程组要求:代码能列出每一次迭代的中间值3、解题思路、代码3.1解题思路Gauss-Seidel迭代公式:x i(k+1)=(b i-∑-=1i i j a ij x j(k+1)-∑+=nij1a ij x j(k))/a ij(i=1,2,…,n)3.2 代码function x = GaussSeidel(A, b, es, maxit)% GaussSeidel: Gauss Seidel method% x = GaussSeidel(A, b):Gauss Seidel without relaxation% input:% A = coefficient matrix% b = right hand side vector% es = stop criterion(default = 0.00001%)% maxit = max iteration (default = 50)% output:% x = solution vectorif nargin < 2, error('at least 2 input arguments required'), end if nargin<4 | isempty(maxit), maxit=50; endif nargin<3 | isempty(es), es=0.00001; endk=0xk=[0 0 0 0][m, n] = size(A);if m~=n, error('Matrix A must be square'); endC = A;for i = 1:nC(i,i) = 0;x(i) = 0;endx = x';for i = 1:nC(i,1:n) = C(i,1:n)/A(i,i);endfor i = 1:nd(i) = b(i)/A(i,i);enditer = 0;while(1)xold = x;for i = 1:nx(i) = d(i)-C(i,:)*x;if x(i) ~= 0ea(i) = abs((x(i)-xold(i))/x(i)) * 100;endendk=k+1xk=x'%此行不打分号,并且转置,以便于输出每次迭代的结果 iter=iter + 1;if (max(ea)<=es | iter == maxit) break; end endend4、实验步骤4.1输入:4.2输出:……………….5、讨论和分析GaussSeidel迭代法是通过利用x i(k+1)=(b i-∑-=1i i j a ij x j(k+1)-∑+=nij1a ij x j(k))/a ij(i=1,2,…,n)这个公式,经过若干次运算,使结果越来越逼近方程的真实解。

简单迭代法matlab例题程序

简单迭代法matlab例题程序

一、引言在数学建模和计算机编程中,简单迭代法是一种常用的求解方程近似解的方法。

其原理是通过不断迭代计算,逼近实际的解。

在Matlab 编程中,简单迭代法也是一种常见的应用。

本文将介绍简单迭代法的原理,并给出在Matlab中实现简单迭代法的例题程序。

二、简单迭代法原理1. 简单迭代法的基本思想是将需要求解的方程转化为迭代形式,即 x = g(x),然后通过不断迭代计算得到方程的近似解。

2. 简单迭代法的收敛条件是 |g'(x)| < 1,即迭代函数的导数的绝对值小于1时,迭代过程才能收敛。

3. 简单迭代法的收敛速度取决于迭代函数的选择,通常可以通过调整迭代函数来提高收敛速度。

三、Matlab中的简单迭代法实现在Matlab中,可以通过编写脚本文件来实现简单迭代法。

下面给出一个简单的例题:求解方程 x^2 - 3x + 2 = 0 的近似解。

4. 以下是Matlab中实现简单迭代法的脚本文件示例:```matlab定义迭代函数g = (x) 3*x - x^2;设置迭代初值和迭代次数x0 = 0.5;N = 100;迭代计算for k = 1:Nx = g(x0);fprintf('第d次迭代,近似解为:.10f\n', k, x);if abs(x - x0) < 1e-8 判断迭代是否收敛break;endx0 = x;end```5. 通过运行上述脚本文件,即可得到方程 x^2 - 3x + 2 = 0 的近似解。

四、实例分析通过上述例题程序的运行结果可以看出,简单迭代法在Matlab中的实现比较简单直观。

但是需要注意的是,迭代函数的选择和迭代初值的设定对最终的近似解都会产生影响,需要经过一定的调试和优化。

五、总结简单迭代法是一种常用的求解方程近似解的方法,在Matlab编程中也有着广泛的应用。

通过本文的介绍和示例程序,相信读者已经对简单迭代法在Matlab中的实现有了更深入的了解。

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解引言:Matlab是一种非常强大和流行的数值计算软件,广泛应用于工程、科学和数学等领域。

在问题求解过程中,迭代优化和迭代求解是常常使用的技术。

本文将介绍如何在Matlab中利用迭代方法进行优化和求解,以及相关的技巧和应用。

一、什么是迭代优化和迭代求解迭代优化指的是通过多次迭代,逐步接近优化问题的最优解。

常用的迭代优化方法包括梯度下降法、牛顿法、拟牛顿法等。

迭代求解则是通过多次迭代,逐步逼近方程或问题的解,常用的迭代求解方法有牛顿迭代法、弦截法、二分法等。

二、迭代优化的基本原理与方法1. 梯度下降法(Gradient Descent):梯度下降法是一种常用的迭代优化方法,用于寻找函数的极小值点。

其基本原理是通过计算函数对各个变量的偏导数,从当前点开始沿着负梯度的方向迭代更新,直至达到最小值。

在Matlab中,可以利用gradient函数计算梯度向量,并通过循环迭代实现梯度下降法。

2. 牛顿法(Newton's Method):牛顿法是一种迭代优化方法,用于求解非线性方程的根或函数的极值点。

其基本思想是利用函数的局部线性近似,通过求解线性方程组来得到函数的极值点。

在Matlab中,可以使用fminunc函数来实现牛顿法。

3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一类迭代优化方法,主要用于求解无约束非线性优化问题。

其基本思想是通过构造逼近目标函数Hessian矩阵的Broyden-Fletcher-Goldfarb-Shanno(BFGS)公式或拟牛顿方法中的其他公式,来估计目标函数的梯度和Hessian矩阵。

在Matlab中,可以利用fminunc函数,并设置算法参数来实现拟牛顿法。

三、迭代求解的基本原理与方法1. 牛顿迭代法(Newton's Method):牛顿迭代法是一种常用的迭代求解方法,用于求解方程或问题的根。

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。

迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。

下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。

1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。

对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。

在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。

函数返回值x为近似解列向量,flag表示是否满足容许误差要求。

2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。

其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。

迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。

迭代法求解方程matlab

迭代法求解方程matlab

迭代法求解方程的MATLAB实现1.引言迭代法是一种求解方程的常用方法,尤其适用于大规模矩阵和高维问题。

在迭代法中,我们通过不断迭代来逐步逼近方程的解。

本篇文章将介绍如何使用MATLAB实现迭代法求解方程。

2.收敛性判断在使用迭代法求解方程时,我们需要判断迭代是否收敛。

通常,我们使用以下两种方法进行收敛性判断:2.1 判断迭代公式是否收敛对于许多迭代公式,我们可以根据其结构来判断其是否收敛。

例如,Jacobi迭代法和Gauss-Seidel方法通常适用于对角占优的矩阵,而SOR方法适用于对角占优或松弛型的矩阵。

2.2 判断迭代误差是否收敛我们还可以通过判断迭代误差是否收敛来判断迭代是否收敛。

迭代误差通常定义为实际解与迭代解之间的范数。

如果迭代误差逐渐减小并趋于零,则说明迭代收敛。

3.迭代公式下面我们以Jacobi迭代法为例,介绍迭代公式的实现。

Jacobi迭代法的迭代公式如下:x{n+1}=(\frac{1}{a{ii}})(b i-A{ii,1:i-1}x1-A{ii,i+1:n}x_n)其中,A是系数矩阵,b是右侧向量,x是解向量,a_{ii}是矩阵A的主对角线元素。

4.误差计算为了判断迭代是否收敛,我们需要计算迭代误差。

通常,我们使用实际解与迭代解之间的相对误差或范数误差来衡量误差大小。

例如,相对误差可以按下式计算:||x^-x_n||_2/(||x^||_2)其中,x^*是实际解向量,x_n是第n次迭代的解向量。

5.MATLAB实现下面是一个使用MATLAB实现Jacobi迭代法的示例代码:function x = jacobi(A, b, x0, tol, max_iter)% 输入参数:系数矩阵A、右侧向量b、初始解向量x0、容许误差tol和最大迭代次数max_iter% 输出参数:方程的解向量xn = length(b); % 方程的未知数个数x = zeros(n, 1); % 初始化解向量xx(:) = x0; % 将初始解向量赋值给xerr = tol + 1; % 初始化误差大于容许误差,表示未收敛k = 0; % 初始化迭代次数k=0while err > tol && k < max_iterk = k + 1; % 更新迭代次数k=k+1for i = 1:n % 对每个未知数进行更新x(i) = (b(i) - A(i, 1:i-1)*x(1:i-1) - A(i, i+1:n)*x(i+1:n)) / A(i, i); % 更新解向量x的第i个元素x(i)的公式为x(i)=[b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x(i+1:n)]/A(i,i)endforendwhileif k < max_itererr = norm(x - x_prev, 'fro') / norm(x_prev, 'fro'); % 计算相对误差endendendfunction```。

MATLAB代码解线性方程组的迭代法

MATLAB代码解线性方程组的迭代法

MATLAB代码解线性方程组的迭代法解线性方程组的迭代法1.rs里查森迭代法求线性方程组Ax=b的解function[x,n]=rs(A,b,x0,eps,M)if(nargin==3)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-A)*x0+b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend2.crs里查森参数迭代法求线性方程组Ax=b的解function[x,n]=crs(A,b,x0,w,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-w*A)*x0+w*b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend3.grs里查森迭代法求线性方程组Ax=b的解function[x,n]=grs(A,b,x0,W,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%前后两次迭代结果误差%迭代过程while(tol>eps)x=(I-W*A)*x0+W*b;%迭代公式n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend4.jacobi雅可比迭代法求线性方程组Ax=b的解function[x,n]=jacobi(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)if nargin==3eps=1.0e-6;M=200;elseif nargin==4M=200;elseif nargin<3errorreturn;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵G=(D-L)\U;f=(D-L)\b;x=G*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=G*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend6.SOR超松弛迭代法求线性方程组Ax=b的解function[x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=inv(D-L*w)*((1-w)*D+w*U);B2=inv(D-U*w)*((1-w)*D+w*L);f1=w*inv((D-L*w))*b;f2=w*inv((D-U*w))*b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin==5M=10000;endif(w<=0||w>=2)%收敛条件要求error;return;endD=diag(diag(A));%求A的对角矩阵B=w*inv(D);%迭代过程x=x0;n=0;%迭代次数tol=1;%迭代过程while tol>=epsx=x0-B*(A*x0-b);n=n+1;tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend9.twostep两步迭代法求线性方程组Ax=b的解function[x,n]=twostep(A,b,x0,eps,varargin) if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=(D-L)\U;B2=(D-U)\L;f1=(D-L)\b;f2=(D-U)\b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend10.fastdown最速下降法求线性方程组Ax=b的解function[x,n]=fastdown(A,b,x0,eps)if(nargin==3)eps=1.0e-6;endx=x0;n=0;tol=1;while(tol>eps)%以下过程可参考算法流程r=b-A*x0;d=dot(r,r)/dot(A*r,r);x=x0+d*r;tol=norm(x-x0);x0=x;n=n+1;end11.conjgrad共轭梯度法求线性方程组Ax=b的解function[x,n]=conjgrad(A,b,x0)r1=b-A*x0;p=r1;n=0;for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件break;endalpha=dot(r1,r1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;if(r2< 1.0e-50)%循环结束条件break;endbelta=dot(r2,r2)/dot(r1,r1);p=r2+belta*p;n=n+1;end12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)if nargin==4eps=1.0e-6;endr1=b-A*x0;iM=inv(M);z1=iM*r1;p=z1;n=0;tol=1;while tol>=epsalpha=dot(r1,z1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;z2=iM*r2;belta=dot(r2,z2)/dot(r1,z1);p=z2+belta*p;n=n+1;tol=norm(x-x0);x0=x;%更新迭代值r1=r2;z1=z2;end13.BJ块雅克比迭代法求线性方程组Ax=b的解function[x,N]=BJ(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;%参数的默认值endNS=size(A);n=NS(1,1);if(sum(d)~=n)disp('分块错误!');return;endbnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endfor i=1:bnumendb=bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):e ndb));%求A的对角分块矩阵的逆矩阵endN=0;tol=1;while tol>=epsx=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-AN=N+1;%迭代步数tol=norm(x-x0);%前后两步迭代结果的误差x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,N]=BGS(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角分块矩阵endLB=-tril(A-DB);%求A的下三角分块阵UB=-triu(A-DB);%求A的上三角分块阵N=0;tol=1;while tol>=epsinvDL=inv(DB-LB);x=invDL*UB*x0+invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;end15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解function[x,N]=BSOR(A,b,x0,d,w,eps,M)if nargin==5eps=1.0e-6;M=10000;elseif nargin<5errorreturnelseif nargin==6M=10000;%参数默认值endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角矩阵endLB=-tril(A-DB);%求A的下三角阵UB=-triu(A-DB);%求A的上三角阵N=0;iw=1-w;while tol>=epsinvDL=inv(DB-w*LB);x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend。

matlab用迭代法求方程

matlab用迭代法求方程

matlab用迭代法求方程Matlab是一种常用的科学计算软件,可用于解决各种数学问题。

其中,迭代法可以用来求解方程,是一种简单但非常有效的算法。

本文将介绍如何在Matlab中使用迭代法求解方程的步骤。

步骤一:构造迭代式迭代法的核心在于构造一个迭代式,通过不断迭代的方式逼近方程的解。

在求解方程f(x)=0时,一般可以构造形如x(n+1)=g(x(n))的递推公式来进行迭代。

其中,g(x)是一个函数,可以通过试错与调整来确定。

步骤二:设定初值x(0)在开始迭代之前,需要确定初值x(0),即从哪个点开始进行迭代。

初值不同可能会得到不同的解,在实际应用中需要特别注意。

步骤三:设定迭代停止条件为了避免无限迭代,需要设定迭代停止的条件。

常用的条件有两种:一种是设定迭代次数,即达到一定迭代次数后停止迭代;另一种是设置收敛条件,即在一定误差范围内停止迭代。

步骤四:编写Matlab代码完成以上准备工作后,可以开始编写Matlab代码。

具体实现可以采用for循环或while循环的方式进行迭代,根据设定的迭代停止条件来决定何时停止迭代。

以求解方程f(x)=x^3-x-1为例,其迭代式可以构造为:x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1)初值设为x(0)=1,迭代停止条件设为当两次迭代之差小于0.0001时停止。

则对应的Matlab代码可写为:x(1)=1;tol=0.0001;for n=1:100x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1);if abs(x(n+1)-x(n))<tolbreak;endend步骤五:运行程序并解读结果编写完Matlab代码后,可以运行程序并查看结果。

对于上述例子,最终的解为x=1.3247,满足收敛条件。

在使用迭代法求解方程时,需要注意函数的收敛性、初值选择、迭代次数等问题。

此外,迭代法也存在无法收敛或收敛速度慢的情况,需要特别注意。

matlab迭代法解方程

matlab迭代法解方程

matlab迭代法解方程在MATLAB中,可以使用迭代法求解方程。

迭代法的一般步骤如下:1. 选择一个初始猜测值。

2. 根据某种迭代公式,计算下一个近似解。

3. 根据设定的停止准则,判断迭代是否结束。

常见的停止准则可以是近似解的相对误差小于某个给定的值,或者迭代次数达到了预设的最大次数。

4. 如果迭代未结束,将计算得到的近似解作为新的猜测值,回到步骤2;否则,停止迭代,并输出最终的近似解。

下面是一个使用迭代法求解方程的示例代码:```matlabfunction x = iterativeMethod(equation, x0, epsilon, maxIter)syms x;f = equation;df = diff(f, x);x_prev = x0;for i = 1:maxIterx_new = x_prev - subs(f, x, x_prev) / subs(df, x, x_prev);if abs(x_new - x_prev) < epsilonx = x_new;return;endx_prev = x_new;enderror('Maximum iteration reached. No solution found.');end```使用该函数时,需要传入四个参数:`equation`是方程的符号表达式,`x0`是初始猜测值,`epsilon`是停止迭代的相对误差阈值,`maxIter`是最大迭代次数。

例如,要求方程sin(x) - x^2 = 0的解,可以使用以下代码:```matlabequation = sin(x) - x^2;x0 = 1;epsilon = 1e-6;maxIter = 100;x = iterativeMethod(equation, x0, epsilon, maxIter);disp(x);```该代码会输出方程sin(x) - x^2 = 0的近似解。

matlab迭代法解方程的程序

matlab迭代法解方程的程序

文章标题:使用MATLAB迭代法解方程的程序目录1. 什么是迭代法解方程2. MATLAB中迭代法的实现3. 迭代法解方程的优缺点4. 实例分析:使用MATLAB实现迭代法解方程5. 结语1. 什么是迭代法解方程迭代法是一种数值计算方法,用于逼近方程的根或解。

在实际应用中,经常会遇到无法通过代数方法得到准确解的方程,这时候就需要借助数值计算的方法来求得近似解。

迭代法通过不断逼近解的过程,逐步缩小误差,最终得到一个接近精确解的近似值。

2. MATLAB中迭代法的实现MATLAB作为一种强大的数值计算工具,提供了丰富的数值计算函数和工具箱,其中包括了多种迭代法的实现。

在MATLAB中,常用的迭代法有牛顿法、雅各比迭代法、高斯-赛德尔迭代法等。

这些迭代法都可以通过调用MATLAB内置函数或自行编写程序实现。

在编写迭代法程序时,需要注意选择合适的迭代停止条件、初始化的迭代值、迭代步数等参数。

3. 迭代法解方程的优缺点迭代法解方程具有以下优点:1) 适用范围广:迭代法可以解决各种类型的方程,包括线性方程组、非线性方程、微分方程等;2) 可以得到近似解:即使方程无法通过代数方法求解,迭代法也可以得到一个接近精确解的近似值;3) 数值稳定性:在一定条件下,迭代法能够保证解的稳定性和收敛性。

但迭代法也存在一些缺点:1) 收敛速度慢:一些迭代法可能需要较多的迭代次数才能得到满意的解;2) 初始值敏感:迭代法对初始值的选取比较敏感,选取不当可能导致迭代发散或者收敛到错误的解;3) 复杂度高:一些迭代法的实现比较复杂,需要具备较高的数值计算和编程能力。

4. 实例分析:使用MATLAB实现迭代法解方程接下来,我们将以求解非线性方程x^2-3x+2=0为例,使用MATLAB实现迭代法来求得方程的根。

我们选择使用简单而经典的二分法来进行迭代计算。

```MATLABfunction result = iteration_method()f = @(x) x^2 - 3*x + 2;a = 0;b = 2;tol = 1e-6;if f(a)*f(b) > 0error('The function has the same sign at the endpoints.'); endwhile (b - a) > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a)*f(c) < 0b = c;elsea = c;endresult = c;endend```上述代码中,我们通过定义函数f(x)为方程的表达式,并选择区间[a, b]为[0, 2]作为初始迭代区间。

使用Matlab进行迭代计算的方法

使用Matlab进行迭代计算的方法

使用Matlab进行迭代计算的方法引言:在科学计算和工程领域,迭代计算是一种常用的数值计算方法。

它通过多次迭代逼近解决方案,对于复杂问题具有很高的效率和准确性。

Matlab是一种强大的数值计算软件,具备丰富的工具箱和库,为迭代计算提供了便利。

本文将介绍使用Matlab进行迭代计算的方法,并探讨一些常见的迭代算法。

一、迭代计算的基本原理迭代计算是一种通过逐次逼近解决方案的数值计算方法。

它通常开始于一个近似解,通过多次迭代来逐步改进解的准确性,直到满足收敛条件或达到预设的迭代次数。

迭代计算的基本原理如下:1. 选择合适的初值:迭代计算的结果依赖于初始值的选择。

初值应该接近准确解,以便缩小误差范围。

2. 建立迭代模型:根据问题的特性和数学模型,建立迭代计算的基本形式。

通常,问题可以化为一个方程或者一组方程的求解。

3. 迭代逼近:从初始值开始,通过逐次迭代来逼近准确解。

每一次迭代都会产生一个更加精确的解,直到满足收敛条件。

4. 收敛判断:在每一次迭代之后,需要判断是否满足收敛条件。

常见的收敛条件有解的相对误差小于某个阈值,或者迭代次数达到预设的最大次数。

二、常见的迭代算法Matlab提供了多种迭代算法的函数和工具箱,下面将介绍几种常见的迭代算法以及在Matlab中的应用。

1. 简单迭代法:也称为迭代逼近法,是一种基本的迭代算法。

它适用于函数的连续可导且导数在某个区间内的绝对值小于1的情况。

简单迭代法的公式如下: x(i+1) = g(x(i))其中,g(x)为转化后的原方程,x(i)为第i次迭代的解,x(i+1)为第i+1次迭代的解。

在Matlab中,可以使用fzero函数结合匿名函数实现简单迭代法。

2. 牛顿迭代法:也称为牛顿-拉夫逊方法,是一种高效的迭代算法。

它通过利用函数的局部线性逼近来寻找解的迭代近似。

牛顿迭代法的公式如下: x(i+1) = x(i) - f(x(i))/f'(x(i))其中,f(x)为原方程,f'(x)为f(x)的导数,x(i)为第i次迭代的解,x(i+1)为第i+1次迭代的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代.4.1 迭代法和敛散性及其MATLAB 程序4.1.2 迭代法敛散性的判别及其MATLAB 程序根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公用谱半径判别迭代法产生的迭代序列的敛散性的MATLAB 主程序 输入的量:线性方程组b AX =的迭代公式(4.7)中的B ; 输出的量:矩阵B 的所有特征值和谱半径mH )(B ρ=及其有关迭代法产生的迭代序列的敛散性的相关信息.function H=ddpbj(B)H=eig(B);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:')elsedisp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:')end mH4.1.3 与迭代法有关的MATLAB 命令(一) 提取(产生)对角矩阵和特征值可以用表4–1的MATLAB 命令提取对角矩阵和特征值.MATLAB 命令 功 能DX=diag(X) 若输入向量X ,则输出DX 是以X 为对角元的对角矩阵; 若输入矩阵X ,则输出DX 是以X 的对角元构成的向量;DX=diag(diag(X))输入矩阵X ,输出DX 是以X 的对角元构成的对角矩阵,可用于迭代法中从A 中提取D .lm=eig(A) 输入矩阵A ,输出lm 是A 的所有特征值.(二) 提取(产生)上(下)三角形矩阵第四章 解线性方程组的迭代法可以用表4–2的MATLAB 命令提取矩阵的上三角形矩阵和下三角形矩阵.MATLAB 命令 功 能U=triu(A) 输入矩阵A ,输出U 是A 的上三角形矩阵. L=tril(A) 输入矩阵A ,输出L 是A 的下三角形矩阵.U=triu(A,1) 输入矩阵A ,输出U 是A 的上三角形矩阵,但对角元为0,可用于迭代法中从A 中提取U .L=tril(A,-1)输入矩阵A ,输出L 是A 的下三角形矩阵,但对角元为0,可用于迭代法中从A 中提取L .(三)稀疏矩阵的处理对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB 进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB 命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算.MATLAB 命令 功 能ZA=sparse(r,c,v,m,n)表示在第r 行、第c 列输入数值v ,矩阵共m 行n 列,输出ZA ,给出 (r , c ) 及v 为一稀疏矩阵.MA=full(ZA) 输入稀疏矩阵ZA ,输出为满矩阵MA (包含零元)4.2 雅可比(Jacobi )迭代及其MATLAB 程序4.2.2 雅可比迭代的收敛性及其MATLAB 程序判别雅可比迭代收敛性的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A ; 输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关雅可比迭代收敛性的相关信息.[n m]=size(A); for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛')return end end if a(i)<0disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') end例4.2.2 用判别雅可比迭代收敛性的MATLAB 主程序,判别由下列方程组的雅可比迭代产生的序列是否收敛?(1)⎪⎩⎪⎨⎧=+--=-+-=--;2.45,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x 解 (1)首先保存名为jspb.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];a=jspb(A)运行后输出结果请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛a =-8 -8 -1(2)在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5];a=jspb(A)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 a =-8.0000e+000 -8.0000e+000 3.5000e+0004.2.3 雅可比迭代的两种MATLAB 程序利用MATLAB 程序和雅可比迭代解线性方程组b AX =的常用的方法有两种,一种方法是根据雅可比迭代公式(4.11)、(4.12)式、定理4.3和公式(4.14)编写一个名为jacdd.m 的M 文件并保存,然后在MATLAB 工作窗口输入对应的命令,执行此文件;另一种方法是根据雅可比迭代的定义,利用提取对角矩阵和上、下三角矩阵的MATLAB 程序解线性方程组b AX =.下面我们分别介绍这两种方法.用雅可比迭代解线性方程组b AX =的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X 0,范数的名称P = 1, 2, inf 或 'fro .',近似解X 的误差(精度)wucha 和迭代的最大次数max1;输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关雅可比迭代收敛性的相关信息及其b AX =的精确解jX 和近似解X .的M 文件如下:function X=jacdd(A,b,X0,P,wucha,max1) [n m]=size(A); for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛')return end end if a(i)<0disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') endfor k=1:max1kfor j=1:mX(j)=(b(j)-A(j,[1:j-1,j+1:m])*X0([1: j-1,j+1:m]))/A(j,j);endX,djwcX=norm(X'-X0,P); xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')enda,X=X;jX=X1',例4.2.3用 范数和判别雅可比迭代的MATLAB主程序解例4.2.2 中的方程组,解的精度为0.001,分别取最大迭代次数max1=100,5,初始向量X0=(0 0 0)T,并比较它们的收敛速度.解(1)取最大迭代次数max1=100时.①首先保存名为jacdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8 -8 -1jX =1.1000 1.2000 1.3000X =1.0994 1.1994 1.2993②在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]';X=jacdd(A,b,X0,inf, 0.001,100)运行后输出结果请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:a =-8.0000 -8.0000 3.5000jX =24.5000 24.6000 106.6000X =24.0738 24.1738 104.7974(2)取最大迭代次数max1=5时,①在MATLAB工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 5];b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,5)运行后输出结果请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,雅可比迭代收敛请注意:雅可比迭代次数已经超过最大迭代次数max1a =-8 -8 -1jX =1.1000 1.2000 1.3000 X =1.0951 1.1951 1.2941②在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=jacdd(A,b,X0,inf, 0.001,5)运行后输出结果请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛 请注意:雅可比迭代次数已经超过最大迭代次数max1 a =-8.0000 -8.0000 3.5000 jX =24.5000 24.6000 106.6000 X =5.5490 5.6490 27.6553由(1)和(2)可见,如果系数矩阵A 是严格对角占优的,则雅可比迭代收敛的速度快;如果系数矩阵A 不是严格对角占优的,则雅可比迭代收敛的速度慢.因此,kk nki j kj a a a -=∑≠=1 ),,2,1(n k =的值越小,雅可比迭代收敛的速度越快.(二)利用雅可比迭代定义编写的解线性方程组的MATLAB 程序利用雅可比迭代定义编写解线性方程组(4.5)的MATLAB 程序的一般步骤 步骤1 将线性方程组(4.5)的系数矩阵A 分解为U L D A --=,其中=D ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn nn a a a a a a diag22112211),,(, -=L⎪⎪⎪⎪⎪⎭⎫⎝⎛-0001,2121n n n n a a aa -=U ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000,1112nn n a a a . 在MATLAB 工作窗口输入程序>> A=[a11 a12 …a1n; a21 a22 …a2n;…; an1 an2 …ann;]; D=diag(A) U=triu(A,1), L=tril(A,-1)运行后即可输出U L D A ,,的; 步骤2 若对角矩阵D 非奇异(即),,1,0n i a ii =≠,则(4.5)化为 b D X U L D X 11)(--++=.若记b D f U L D B 1111),(--=+=.则方程组的迭代形式可写作1)(1)1(f X B Xk k +=+ )2,1,0( =k 可以利用下面的MATLAB 程序完成>>dD=det(D); if dD==0disp('请注意:因为对角矩阵D 奇异,所以此方程组无解.') elsedisp('请注意:因为对角矩阵D 非奇异,所以此方程组有解.') iD=inv(D); B1=iD*(L+U);f1=iD*b;for k=1:max1X= B1*X0+ f1; X0=X; djwcX=norm(X-X0,P);xdwcX=djwcX/(norm(X,P)+eps); X1=A\b;if (djwcX<wucha)&(xdwcX<wucha)disp('请注意:雅可比迭代收敛,此方程组的精确解jX和近似解X如下:')returnendendif (djwcX>wucha)|(xdwcX>wucha)disp('请注意:雅可比迭代次数已经超过最大迭代次数max1 ')endenda,X=X;jX=X1',4.3 高斯-塞德尔(Gauss-Seidel)迭代及其MATLAB程序4.3.3 高斯-塞德尔迭代两种MATLAB程序AX=的常用方法有两种,一利用MATLAB程序和高斯-塞德尔迭代解线性方程组b种方法是根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14)编写一个名为gsdd.m的M文件并保存,然后在MATLAB工作窗口输入对应的命令,执行此文件;另一种方法是根据高斯-塞德尔迭代的定义,利用提取对角矩阵和上、下三角矩阵的AX=.下面我们分别介绍这两种方法.MATLAB程序解线性方程组b(一)高斯-塞德尔迭代定义的MATLAB程序1AX=的MATLAB主程序1 用高斯-塞德尔迭代定义解线性方程组bAX=的系数矩阵A和b, 初始向量X0,范数的名称P = 1, 2, 输入的量:线性方程组binf, 或'fro.',近似解X的误差(精度)wucha和迭代的最大次数max1.A()n n ij a⨯的对角元构成的对角矩阵D、A的上三角形矩阵输出的量:以系数矩阵=U,但对角元为0、A的下三角形矩阵L,但对角元为0和有关高斯-塞德尔迭代收敛性的AX=的精确解jX和近似解X.相关信息及其bD=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); dD=det(D);if dD==0disp('请注意:因为对角矩阵D奇异,所以此方程组无解.')elsedisp('请注意:因为对角矩阵D非奇异,所以此方程组有解.')iD=inv(D-L); B2=iD*U;f2=iD*b;jX=A\b; X=X0; [n m]=size(A);for k=1:max1X1= B2*X+f2; djwcX=norm(X1-X,P);xdwcX=djwcX/(norm(X,P)+eps);if (djwcX<wucha)|(xdwcX<wucha)returnelsek,X1',k=k+1;X=X1;endendif (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX和迭代向量X如下:')X=X';jX=jX' end endX=X';D,U,L,jX=jX'例4.3.3 用高斯-塞德尔迭代定义的MATLAB 主程序解下列线性方程组,取初始值)0,0,0(),,()0(3)0(2)0(1=x x x ,要求当3)()1(10-∞+<-k k x x 时,迭代终止.(1)⎪⎩⎪⎨⎧=+--=-+-=--.2.45.0,3.8210,2.7210321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++--=+-+=-+-=+-+.2132127,11613514,22382,575434321432143214321x x x x x x x x x x x x x x x x解 (1)首先保存名为gsdddy.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[10 -1 -2;-1 10 -2;-1 -1 0.5]; b=[7.2;8.3;4.2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代收敛,此A 的分解矩阵D,U,L 和方程组的精确解jX 和近似解X 如下:此近似解与例4.2.3中的(1)中②的解X =(24.073 8, 24.173 8, 104.797 4)T比较,在相同的条件下, 高斯-塞德尔迭代比雅可比迭代得到的近似解的精度更高.(2)在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -8 3 -2;4 51 -13 16;7 -2 21 3];b=[5;2;-1;21]; X0=[0 0 0 0]';X=gsdddy(A,b,X0,inf,0.001,100)运行后输出结果请注意:因为对角矩阵D 非奇异,所以此方程组有解.请注意:高斯-塞德尔迭代发散,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jX 和迭代向量X 如下:jX =0.1821 -0.2571 0.7286 1.3036X = 1.0e+142 *0.2883 0.1062 0.3622 -3.1374(二) 高斯-塞德尔迭代公式的MATLAB 程序2 根据高斯-塞德尔迭代公式(4.16)、(4.17)、定理4.3和公式(4.14),现提供名为用高斯-塞德尔迭代解线性方程组b AX =的MATLAB 主程序2 输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X 0,范数的名称P = 1, 2, inf, 或 'fro.',近似解X 的误差(精度)wucha 和迭代的最大次数max1.输出的量:系数矩阵=A ()nn ija ⨯的kk nki j kja a a -=∑≠=1 ),,2,1(n k =的值和有关D =10.0000 0 0 0 10.0000 0 0 0 0.5000 U =0 1 2 0 0 2 0 0 0L =0 0 0 1 0 0 1 1 0 jX =24.5000 24.6000 106.6000 X =24.4996 24.5996 106.5984AX=的精确解jX和近似解X.高斯-塞德尔迭代收敛性的相关信息及其b[n m]=size(A);for j=1:ma(j)=sum(abs(A(:,j)))-2*(abs(A(j,j)));endfor i=1:nif a(i)>=0disp('请注意:系数矩阵A不是严格对角占优的,此高斯-塞德尔迭代不一定收敛')returnendendif a(i)<0disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且高斯-塞德尔迭代收敛')endfor k=1:max1for j=1:mif j==1X(1)=(b(1)-A(1,2:m)*X0(2:m))/A(1,1)endif j==mX(m)=(b(m)-A(m,1:M1)*X(1:M1)')/A(m,m);endfor j=2:M1X(j)=(b(j)-A(j,1:j-1)*X(1:j-1) -A(j,j+1:m)*X(j+1:m))/A(j,j);endenddjwcX=norm(X'-X0,P);xdwcX=djwcX/(norm(X',P)+eps); X0=X';X1=A\b;if (djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-塞德尔迭代收敛,此方程组的精确解jX和近似解X 如下:')returnendendif (djwcX>wucha)&(xdwcX>wucha)disp('请注意:高斯-塞德尔迭代次数已经超过最大迭代次数max1 ') enda,X=X;jX=X1',4.4 解方程组的超松弛迭代法及其MATLAB程序用雅可比迭代法和高斯-塞德尔迭代法解线性方程组时,有时收敛速度很慢,为了提高收敛速度,我们介绍超松弛迭代法,它是对高斯-塞德尔迭代的一种加速方法,适用于大型稀疏矩阵方程组的求解.4.4.2 超松弛迭代法收敛性及其MATLAB程序根据定理4.5和谱半径定义,现提供名为ddpbj.m的M文件,用于判别超松弛迭代用谱半径判别超松弛迭代法产生的迭代序列的敛散性的MATLAB主程序AX=的系数矩阵A和松弛因子om;输入的量:线性方程组b输出的量:矩阵])1([)(1D U L D B ωωωω-+-=-的所有特征值和谱半径mH)(ωρB =及其有关超松弛迭代法产生的迭代序列的敛散性的相关信息.D=diag(diag(A));U=-triu(A,1); L=-tril(A,-1); iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D); H=eig(B2);mH=norm(H,inf); if mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH和B 的所有的特征值H 如下:') elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH和B 的所有的特征值H 如下:') end mH例4.4.1 当取ω=1.15,5时,判别用超松弛迭代法解下列方程组产生的迭代序列是否收敛?⎪⎪⎩⎪⎪⎨⎧-=+++-=---=+++=--+372364213824254321432143214321x x x x x x x x x x x x x x x x 解 (1)当取ω=1.15时,首先保存名为ddpbj.m 的M 文件,然后在MATLAB 工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7]; H=ddpbj(A,1.15)运行后输出结果请注意:因为谱半径小于1,所以超松弛迭代序列收敛,谱半径mH 和B 的所有的特征值H 如下:mH =0.1596 H =0.1049 + 0.1203i 0.1049 - 0.1203i -0.1295 + 0.0556i -0.1295 - 0.0556i (2)当取ω=5时,然后在MATLAB 工作窗口输入程序>> H=ddpbj(A, 5)运行后输出结果请注意:因为谱半径不小于1,所以超松弛迭代序列发散,谱半径mH 和B 的所有的特征值H 如下:mH =14.1082 H =-14.1082 -2.5107 0.5996 + 2.6206i 0.5996 - 2.6206i4.4.3 超松弛迭代法的MATLAB 程序用超松弛迭代法解线性方程组b AX =的MATLAB 主程序输入的量:线性方程组b AX =的系数矩阵A 和b , 初始向量X ,范数的名称P = 1, 2, inf, 或 'fro.',松弛因子om ,近似解X 的误差(精度)wucha 和迭代的最大次数max1.输出的量:谱半径mH ,以系数矩阵A 的对角元构成的对角矩阵D 、A 的上三角形矩阵U ,但对角元为0、A 的下三角形矩阵L ,但对角元为0, 迭代次数i ,有关超松弛迭代收敛性的相关信息及其b AX =的精确解jX 和近似解X .function X=cscdd (A,b,X,om,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);H=eig(B2);mH=norm(H,inf);for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2;X=X1; djwcX=norm(X1-jX,inf); xdwcX=djwcX/(norm(X,inf)+eps);if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,returnif i> max1disp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX,迭代次数i如下:')mH,D,U,L,jX=jX', i=k-1,endendendif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.')disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:')i=k-1,mH,D,U,L,jX,elsedisp('因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:') end或function X=cscdd1 (A,b,X,om,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1); jX=A\b;[n m]=size(A);iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);H=eig(B2);mH=norm(H,inf);for k=1:max1iD=inv(D-om*L); B2=iD*(om*U+(1-om)*D);f2= om*iD*b; X1= B2*X+f2; X=X1; djwcX=norm(X1-jX,inf);xdwcX=djwcX/(norm(X,inf)+eps);endif mH>=1disp('请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsedisp('请注意:因为谱半径小于1,所以超松弛迭代序列收敛.')if (djwcX<wucha)|(xdwcX<wucha)disp('谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX和近似解X 如下:')mH,D,U,L,jX=jX',elsedisp('迭代次数已经超过最大迭代次数max1,谱半径mH,方程组的精确解jX和迭代向量X如下:')mH,D,U,L,X=X1';jX=jX'returnendend例4.4.3用超松弛迭代法(取ω=1.15和5)解例4.4.1中的线性方程组.解(1)当取ω=1.15时,首先保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,1.15,0.001,100),运行后输出结果谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i如下:mH =0.1596D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX =0.4491 0.2096 -1.4850 -0.0299i =3因为谱半径小于1,所以超松弛迭代序列收敛,近似解X如下:X =0.44840.2100-1.4858-0.0303(2)当取ω=5时,保存名为cscdd.m的M文件,然后在MATLAB工作窗口输入程序>> A=[5 1 -1 -2;2 8 1 3;1 -2 -4 -1;-1 3 2 7];b=[4;1;6;-3];X=[0 0 0 0]';X=cscdd (A,b,X,5,0.001,100),运行后输出结果如下:请注意:因为谱半径不小于1,所以超松弛迭代序列发散.谱半径mH,A的分解矩阵D,U,L和方程组的精确解jX,迭代次数i和迭代序列X如下:i = mH =99 14.1082D =5 0 0 00 8 0 00 0 -4 00 0 0 7U =0 -1 1 20 0 -1 -30 0 0 10 0 0 0L =0 0 0 0-2 0 0 0-1 2 0 01 -3 -2 0jX = X =1.0e+114 *0.4491 -0.31220.2096 1.0497-1.4850 -3.7174-0.0299 3.9615。

相关文档
最新文档