推理与证明经典练习题

合集下载

逻辑推理练习题进行逻辑推理与证明

逻辑推理练习题进行逻辑推理与证明

逻辑推理练习题进行逻辑推理与证明逻辑推理练习题:进行逻辑推理与证明1. 现有三个箱子,分别标记为“A”,“B”和“C”。

已知以下三个命题:P1:如果箱子“A”是空的,则箱子“B”不是空的。

P2:如果箱子“B”是空的,则箱子“C”也是空的。

P3:箱子“C”不是空的。

问题:哪些箱子是空的?请用推理与证明进行回答。

解答:首先,根据命题P3,我们得知箱子“C”不是空的。

根据P2,如果箱子“B”是空的,那么箱子“C”也是空的。

但是我们已经知道箱子“C”不是空的,所以箱子“B”也不可能是空的。

根据P1,如果箱子“A”是空的,那么箱子“B”不是空的。

但是我们已经得出结论,箱子“B”不是空的。

所以我们可以推断箱子“A”也不是空的。

综上,根据推理与证明,我们可以得出结论:箱子“C”是非空的,箱子“B”是非空的,箱子“A”是非空的。

2. 在一个小酒吧里,有三个顾客,分别是“A”,“B”和“C”。

已知以下三个命题:P1:如果“A”在酒吧,那么“B”也在酒吧。

P2:如果“B”在酒吧,那么“C”也在酒吧。

P3:如果“C”不在酒吧,那么“A”也不在酒吧。

问题:哪些顾客在酒吧?请用推理与证明进行回答。

解答:首先,根据命题P3,如果“C”不在酒吧,那么“A”也不在酒吧。

但是我们无法确定“C”是否在酒吧。

根据P2,如果“B”在酒吧,那么“C”也在酒吧。

但是我们无法确定“B”是否在酒吧。

根据P1,如果“A”在酒吧,那么“B”也在酒吧。

但是我们无法确定“A”是否在酒吧。

综上所述,由于我们无法获知任何一个顾客是否在酒吧,无法通过推理与证明得出结论。

3. 已知以下三个命题:P1:如果明天下雨,那么我会带雨伞。

P2:明天我没有带雨伞。

P3:我今天没有湿身。

问题:明天会下雨吗?请用推理与证明进行回答。

解答:首先,根据P2,明天我没有带雨伞。

根据P1,如果明天下雨,那么我会带雨伞。

但是我们已经得出结论,明天我没有带雨伞,所以我们可以推断明天不会下雨。

高二数学推理与证明试题答案及解析

高二数学推理与证明试题答案及解析

高二数学推理与证明试题答案及解析1.下列推理合理的是()A.是增函数,则B.因为,则C.为锐角三角形,则D.直线,则【答案】C【解析】根据题意,由于是增函数,则或者f’(x)=0在个别点成立,故错误对于B,因为,则显然不成立,对于D直线,则,可能斜率都不存在,故错误,故选C.【考点】推理与证明点评:主要是考查了合情推理的运用,属于基础题。

2.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的什么位置?()A.正三角形的顶点B.正三角形的中心C.正三角形各边的中点D.无法确定【答案】B【解析】根据题意,由于命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的中心,故可知答案为B.【考点】类比推理点评:主要是考查了类比推理的运用,属于基础题。

3.对大于或等于2的自然数的次方幂有如下分解方式:根据上述分解规律,若的分解中最小的数是73,则的值为 .【答案】9【解析】根据题意,可知,,,,那么可知的分解中最小的数是73,那么可知m的值为9.故答案为9.【考点】归纳推理点评:主要是考查了归纳推理的运用,属于基础题。

4.观察式子:1+<,1++<,1+++<,,则可归纳出一般式子为() A.1++++<(n≥2)B.1++++<(n≥2)C.1++++<(n≥2)D.1++++<(n≥2)【答案】C【解析】根据题意,由于观察式子:1+<,1++<,1+++<,左边是n 个自然数平方的倒数和,右边是项数分之项数的二倍减去1,那么可得到,推广到一般1++++<(n≥2),故选C.【考点】归纳推理点评:主要是考查了归纳推理的基本运用,属于基础题。

5.在平面上,若两个正三角形的边长比为,则它们的面积比为,类似地,在空间中若两个正四面体的棱长比为,则它们的体积比为____________。

推理与证明解答题精选(含答案)

推理与证明解答题精选(含答案)

推理与证明1.(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于60°.(2)已知试用分析法证明: .2.2.用三段论证明:直角三角形两锐角之和为.3.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1) 求出,并猜测的表达式;(2) 求证:+++…+.4.数列的前项和满足.(1)计算的值;(2)猜想数列的通项公式并用数学归纳法证明.5.(本小题满分13分)已知正项数列{an}的首项a1=,函数f(x)=,g(x)=.(1)若正项数列{an}满足an+1=f(an)(n∈N*),证明:{}是等差数列,并求数列{an}的通项公式;(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}满足bn=,证明:b1+b2+…+bn<1;(3)若正项数列{an}满足an+1=g(an),求证:|an+1-an|≤·()n-16.命题“若,,,则.”可以如下证明:构造函数,则,因为对一切,恒有,所以,故得.试解决下列问题:(1)若,,,,求证;(2)试将上述命题推广到n个实数,并证明你的结论.7.已知中至少有一个小于2。

8.已知,且求证:中至少有一个是负数。

9. (本小题满分12分)若数列的通项公式,记.(Ⅰ)计算的值;(Ⅱ)由(Ⅰ)猜想,并证明.10.已知.经计算得,,,,,通过观察,我们可以得到一个一般性的结论.(1)试写出这个一般性的结论;(2)请用数学归纳法证明这个一般性的结论;(3)对任一给定的正整数,试问是否存在正整数,使得?若存在,请给出符合条件的正整数的一个值;若不存在,请说明理由.11.已知定义在R上的函数,定义:.(1)若,当时比较与的大小关系.(2)若对任意的,都有使得,用反证法证明:.12.真命题:若,则.(1)用“综合法”证之(2)用“反证法”证之13.设数列{}的前n项和为,并且满足,(n∈N*). (Ⅰ)求,,;(Ⅱ)猜想{}的通项公式,并用数学归纳法加以证明;(Ⅲ)设,,且,证明:≤.14.数列{x n}由下列条件确定:.(Ⅰ)证明:对n≥2,总有x n≥;(Ⅱ)证明:对n≥2,总有x n≥.15.设函数(Ⅰ)证明其中为k为整数(Ⅱ)设为的一个极值点,证明(Ⅲ)设在(0,+∞)内的全部极值点按从小到大的顺序排列为,证明:16.已知数列{a n}中,S n是它的前n项和,并且S n+1=4a n+2(n=1,2,…),a1=1.(1)设b n=a n+1-2a n(n=1,2,…),求证:数列{b n}是等比数列;(2)设c n=(n=1,2,…),求证:数列{c n}是等差数列;(3)求数列{a n}的通项公式及前n项和公式.17.(本小题满分15分)已知函数.(1)当时,求在最小值;(2)若存在单调递减区间,求的取值范围;(3)求证:().18.设数列的前项和为,且对任意都有:;(1)求;(2)猜想的表达式并证明.19.数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,.(Ⅰ)求;(Ⅱ)猜想,并用数学归纳法证明.20..数列满足:,且(1)设,证明数列是等差数列;(2)求数列、的通项公式;(3)设,为数列的前项和,证明.21.已知C为正实数,数列由,确定.(Ⅰ)对于一切的,证明:;(Ⅱ)若是满足的正实数,且,证明:.22.(本题10分)已知(),(1)当时,求的值;(2)设,试用数学归纳法证明:当时,。

(典型题)高中数学选修1-2第三章《推理与证明》测试(有答案解析)

(典型题)高中数学选修1-2第三章《推理与证明》测试(有答案解析)

一、选择题1.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人B .3人C .4人D .5人2.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+3.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 4.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .655.甲、乙、丙、丁四位同学一起去向老师询问考试成绩,老师说:你们4人中有2位优秀,2位良好,我给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看完后甲对大家说:我不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道4人的成绩 C .丁可以知道自己的成绩 D .丁可以知道4人的成绩6.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6,10记为数列{}n a ,将可被5整除的三角形数,按从小到大的顺序组成一个新数列{}n b ,可以推测:19b =( ) A .1225B .1275C .2017D .20187.定义两个运算:1212a b a lgb ⊗=+,132a b lga b -⊕=+.若925M =⊗,1227N =,则(M N += ) A .6B .7C .8D .98.已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2. 表1 田径综合赛项目及积分规则 项目积分规则100米跑 以13秒得60分为标准,每少0.1秒加5分,每多0.1秒扣5分跳高以1.2米得60分为标准,每多0.02米加2分,每少0.02米扣2分掷实心球 以11.5米得60分为标准,每多0.1米加5分,每少0.1米扣5分 姓名 100米跑(秒)跳高(米)掷实心球(米)甲 13.3 1.24 11.8乙 12.61.3 11.4 丙 12.91.2611.7丁13.11.2211.6A .甲B .乙C .丙D .丁9.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了B .甲说对了C .乙说对了D .甲做对了10.已知222233+=,333388+=,44441515+=,⋅⋅⋅,若66n nm m+=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4311.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9612.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定 二、填空题13.设1250,,,a a a 是从1-,0,1这三个整数中取值的数列,若12509a a a +++=,且()()()2221250111107a a a ++++++=,则1250,,,a a a 中数字0的个数为________ .14.若ABC 的三边之长分别为a 、b 、c ,内切圆半径为r ,则ABC 的面积为()2r a b c ++.根据类比思想可得:若四面体A BCD -的三个侧面与底面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为r ,则四面体的体积为__________.15.设,a b 是两个实数,给出下列条件:①1a b +>;②2a b +=;③2a b +>;④222a b +>;⑤1ab >. 其中能推出:“,a b 中至少有一个大于1”的条件是____________. 16.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为____ 18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的逻辑排名比乙同学的逻辑排名更靠前②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 则所有正确结论的序号是_________.20.刘徽是中国古代最杰出的数学家之一,他在中国算术史上最重要的贡献就是注释《九章算术》,刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,体现了无限与有限之间转化的思想方法,这种思想方法应用广泛.如数式12122+++⋅⋅⋅是一个确定值x (数式中的省略号表示按此规律无限重复),该数式的值可以用如下方法求得:令原式x =,则12x x+=,即2210x x --=,解得12x =正数得21x =.666+++⋅⋅⋅=_____________.三、解答题21.已知正三角形ABC 的边长是a ,若O 是ABC △内任意一点,那么O 到三角形三边的距离之和是定值32a .这是平面几何中一个命题,其证明常采用“面积法”.如图,设O 到三边的距离分别是OD 、OE 、OF ,则111222S a OD a OE a OF =⋅+⋅+⋅=11()22a OD OE OF a h ⋅++=⋅,h 为正三角形ABC 的高32a ,即32OD OE OF a ++=.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.22.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①22sin 30cos 60sin30cos60︒+︒+︒︒; ②22sin 15cos 45sin15cos 45︒+︒+︒︒; ③22sin 20cos 50sin 20cos50︒+︒+︒︒; ④22sin (18)cos 12sin(18)cos12-︒+︒+-︒︒; ⑤22sin (25)cos 5sin(25)cos5-︒+︒+-︒︒.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 23.某同学在一次研究性学习中,发现以下五个式子的值都等于同一个常数. (1)22sin 10sin 70sin10sin 70︒+︒-︒︒ (2)22sin 20sin 80sin 20sin80︒+︒-︒︒ (3)22sin 30sin 90sin30sin90︒+︒-︒︒(4)()()22sin13sin 47sin 13sin 47-︒+︒--︒︒ (5)()()()()22sin 78sin 18sin 78sin 18-︒+-︒--︒-︒(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明该结论. 24.下面(A ),(B ),(C ),(D )为四个平面图形:(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整;(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为,,E F G ,试猜想,,E F G 之间的数量关系(不要求证明).25.已知()33xf x =+,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论. 26.设0a >,0b >,且11a b a b+=+. 证明:(1) 2a b +≥;(2) 22a a +<与22b b +<不可能同时成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:用,,A B C 分别表示优秀、及格和不及格,显然语文成绩得A 的学生最多只有1个,语文成绩得B 也最多只有1个,得C 的最多只有1个,因此人数最多只有3人,显然(),(),()AC BB CA 满足条件,故选B .考点:合情推理的应用.2.C解析:C 【分析】利用等差数列和等比数列的通项公式及性质逐一计算判断即可. 【详解】在等比数列{}n b 中,0n b >,公比1q ≠,0q ∴>,即01q <<或1q >, 在A 中,3526b b b b =,故A 错误;在B 中,29561b b b q =,23231b b b q =,故当01q <<时,5623b b b b <,当1q >时5623b b b b >,故B 错误;在C 中,()3351b b b q q q+=+,()42611b b b q q +=+,而()()()()()()243332111110q q q q q q q q q +-+=---=-++>,得431qq q +>+,故3526b b b b +<+,故C 正确;在D 中,()45611b b b q q +=+,()2311b b b q q +=+,故当01q <<时,5623b b b b +<+,当1q >时5623b b b b +>+,故D 错误.故选:C. 【点睛】本题考查了等差数列和等比数列的综合应用,属于中档题.3.D解析:D 【分析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案. 【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学 (另外武汉大学、清华大学、北京大学、复旦大学也满足). 故选:D . 【点睛】本题考查了逻辑推理,意在考查学生的推理能力.4.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.5.A解析:A 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案. 【详解】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩,乙、丙必有一优一良,(若为两优,甲会知道自己的成绩,若为两良,甲也会知道自己的成绩);乙看到了丙的成绩,知道自己的成绩; 丁看到甲、丁也为一优一良,丁知自己的成绩,【点睛】该题是一道逻辑推理的题目,掌握此类题目的推理方法是解题的关键.6.A解析:A 【分析】通过寻找规律以及数列求和,可得n a ,然后计算21k b -,可得结果. 【详解】根据题意可知:12...n n a =+++ 则()12n a n n +=由14254556,,22b b a a ⨯⨯==== 394109101011,22b b a a ⨯⨯==== …可得()215512k k k b --=所以()19510510112252b ⨯⨯⨯-==故选:A 【点睛】本题考查不完全归纳法的应用,本题难点在于找到21k b -,属难题,7.B解析:B 【分析】根据定义的新运算,求出M 、N 的值,相加即可得答案. 【详解】根据题意,121925925352M lg lg =⊗=+=+, 13112()232727N lg -===+,则(35)(23)1337M N lg lg +=+++=++=。

推理及证明试题及答案

推理及证明试题及答案

推理及证明试题及答案一、单项选择题(每题5分,共20分)1. 如果一个命题的逆命题为真,那么原命题的真假性是:A. 真B. 假C. 不确定D. 以上都不对答案:C2. 下列哪个推理是演绎推理?A. 因为小明是学生,所以小明会做作业。

B. 因为小明会做作业,所以小明是学生。

C. 因为小明是学生,所以小明是人。

D. 因为小明是人,所以小明会做作业。

答案:C3. 如果一个命题的否定为真,那么原命题的真假性是:A. 真B. 假C. 不确定D. 以上都不对答案:B4. 以下哪个选项是直接证明?A. 反证法B. 归纳法C. 构造法D. 排除法答案:C二、填空题(每题5分,共20分)1. 一个命题的逆否命题与原命题的真假性是________。

答案:相同2. 归纳推理的结论是________的。

答案:或然3. 演绎推理的结论是________的。

答案:必然4. 反证法的证明过程是先假设命题的________,然后推导出矛盾。

答案:否定三、解答题(每题10分,共20分)1. 证明:若a > b,b > c,则a > c。

证明:假设a > b,b > c,则a - b > 0,b - c > 0,所以a - c = (a - b) + (b - c) > 0,因此a > c。

证毕。

2. 证明:若a,b,c是正整数,且a^2 + b^2 = c^2,则a,b,c中至少有一个是偶数。

证明:假设a,b,c都是奇数,则a^2,b^2,c^2都是奇数,但a^2 + b^2 = c^2,这与奇数加奇数等于偶数矛盾,因此假设不成立,所以a,b,c中至少有一个是偶数。

证毕。

四、论述题(每题20分,共20分)1. 论述归纳推理与演绎推理的区别。

论述:归纳推理是从个别事实出发,通过观察和分析,得出一般性结论的推理方法。

它的结论是或然的,即结论的正确性不是必然的,但有一定的可信度。

归纳推理的结论需要通过进一步的观察和验证来确认。

数学逻辑练习题进行数学逻辑的推理与证明

数学逻辑练习题进行数学逻辑的推理与证明

数学逻辑练习题进行数学逻辑的推理与证明数学逻辑是数学的一个重要分支,它研究的是数学命题的合理性、推理的方法和结论的正确性。

通过数学逻辑的推理和证明,我们可以深入理解和应用数学知识,提高自己的思维能力和解决问题的能力。

在学习数学逻辑时,经常会遇到各种练习题,这些题目旨在让我们锻炼逻辑思维和分析问题的能力。

下面我将通过几个数学逻辑练习题,进行推理和证明的演示,帮助大家更好地理解数学逻辑推理的过程。

1. 题目一:证明直角三角形的斜边最长。

解析:假设有一个直角三角形ABC,其中∠ABC=90°。

我们需要证明斜边AC最长。

首先,根据勾股定理得知直角三角形中的两个直角边的平方和等于斜边的平方,即AC² = AB² + BC²。

我们知道,平方值大于零,所以AB²和BC²都大于等于零。

假设AB² > 0 且 BC² > 0,则有 AC² > 0。

由于AC²> 0,那么AC也大于零,即AC > 0。

再次根据勾股定理,如果一个直角三角形的两个直角边都大于零,则斜边最长。

因此,我们可以得出结论:直角三角形的斜边最长。

2. 题目二:证明若a、b为正整数,且a² + b²为偶数,则a和b必须同时为偶数或者同时为奇数。

解析:根据题目的条件,a² + b²为偶数。

我们要证明当a、b为正整数时,a和b必须同时为偶数或者同时为奇数。

首先,我们观察到一个规律:任意正整数 n 的平方模4的余数只可能是0或1。

证明如下:当 n 为偶数时,n=2k (k为正整数),则 n² = (2k)² = 4k²,余数为0。

当 n 为奇数时,n=2k+1 (k为正整数),则 n² = (2k+1)² = 4k² + 4k + 1 = 4(k² + k) + 1,余数为1。

推理与证明单元测试题及答案

推理与证明单元测试题及答案

A B C 1. 用数学归纳法证明“22111(1)1n n a a a a a a++-++++=≠-”,在验证1n =成立时,等号左边的式子是_________. 2. 由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是3.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 .4. 设函数)12ln()(-++=x a x x f 是奇函数的充要条件a = . 5. 如图,在每个三角形的顶点处各放置一个数,使位于ABC △的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,则所有顶点上的数之和等于 .6.已知a b c >>,且0a b c ++=,求证:23b ac a -<.7. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+16.证明:(分析法)因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->,所以()(2)0a c a c -+>成立,故原不等式成立.17.解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=则1212n n b n b n ++=,所以121211135721·······2462n n b b b n b b b n++++=⋅⋅ 下面用数学归纳法证明不等式121211135721 (1246)2n n b b b n n b b b n ++++=⋅⋅>+成立. ① 当1n =时,左边=32,右边=2,因为322>,所以不等式成立. ② 假设当n k =时不等式成立,即121211135721·······12462k k b b b k k b b b k ++++=⋅⋅>+成立.则当1n k =+时,左边=11212111113572123·······246222k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+ 2223(23)4(1)4(1)111(1)1(1)1224(1)4(1)4(1)k k k k k k k k k k k ++++++>+⋅===+++>++++++ 所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.。

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。

高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析

高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析

高考数学《推理与证明》练习题一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.4.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于0 1111111112226a b c a b c a b c b c a a b c a b c+++++=+++++≥⋅+⋅+⋅= 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.5.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.6.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2n B .n nC .2nD .222n -【答案】B 【解析】 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D【解析】【分析】根据题意分别计算出物理等级为A,化学等级为B的学生人数以及物理等级为B,化学等级为A的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】-+-=人根据题意可知,36名学生减去5名全A和一科为A另一科为B的学生105858(其中物理A化学B的有5人,物理B化学A的有3人),表格变为:对于A选项,物理化学等级都是B的学生至多有13人,A选项错误;对于B选项,当物理C和D,化学都是B时,或化学C和D,物理都是B时,物理、化--=(人),B选项错误;学都是B的人数最少,至少为13724对于C选项,在表格中,除去物理化学都是B的学生,剩下的都是一科为B且最高等级为B的学生,因为都是B的学生最少4人,所以一科为B且最高等级为B的学生最多为1391419++-=(人),C选项错误;对于D选项,物理化学都是B的最多13人,所以两科只有一科等级为B且最高等级为B -=(人),D选项正确.的学生最少14131故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010【答案】A 【解析】 【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n 项和公式和对数恒等式即可求解 【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg 230021010=≈.故选:A 【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n 项和公式应用,属于中档题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223344552,33,4,55338815152424====888n n=“穿墙术”,则n =( ) A .35 B .48C .63D .80【答案】C 【解析】 【分析】通过观察四个等式,发现存在相同性质,从而得出78763n =⨯+=即可. 【详解】 因为22222233121==⨯+33333388232==⨯⨯+ 444441515343==⨯⨯+,5555552424454==⨯⨯+ 所以8888888878763n n ==⨯=⨯+63n =. 故选:C. 【点睛】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc =B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.15.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( ) A .379 B .383C .381D .377【答案】C 【解析】 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数, 所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.16.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )A .53B .63C .73D .83【答案】C【解析】【分析】 根据题意分别求出第1,2,3次操作后,图形中的小正三角形的个数,然后可归纳出一般结论,得到答案.【详解】如图,根据题意第1次操作后,图形中有3个小正三角.第2次操作后,图形中有3×3=23个小正三角.第3次操作后,图形中有9×3=33个小正三角.…………………………所以第7次操作后,图形中有73 个小正三角.故选:C【点睛】本题考查归纳推理,属于中档题.17.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.18.三角形的面积为1()2S a b c r=++⋅,其中,,a b c为三角形的边长,r为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为()A.13V abc =B.13V Sh =C.1()3V ab bc ca h=++,(h为四面体的高)D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)【答案】D【解析】【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案.【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D .【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.19.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x =+,则a 、b 、c 三数( ) A .都小于2B .至少有一个不大于2C .都大于2D .至少有一个不小于2【答案】D【解析】【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论.【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=, 当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.20.设x ,y ,z >0,则三个数,,y y z z x x x z x y z y+++ ( )A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2【答案】C【解析】【分析】【详解】假设这三个数都小于2,则三个数之和小于6,又yx+yz+zx+zy+xz+xy=(yx+xy)+(yz+zy)+(zx+xz)≥2+2+2=6,当且仅当x=y=z时取等号,与假设矛盾,故这三个数至少有一个不小于2.。

推理与论证解答题专项练习30题(有答案)ok

推理与论证解答题专项练习30题(有答案)ok

推理和论证解答题专项练习30题1.推理能力都很强的甲、乙、丙站成一列,丙可以看见甲、乙,乙可以看见甲但看不见丙,甲看不见乙、丙.现有5顶帽子,3顶白色,2顶黑色.老师分别给每人戴上一顶帽子(在各自不知道的情况下).老师先问丙是否知道头上的帽子颜色,丙回答说不知道;老师再问乙是否知道头上的帽子颜色,乙也回答说不知道;老师最后问甲是否知道头上的帽子颜色,甲回答说知道.请你说出甲戴了什么颜色的帽子,并写出推理过程.2.暑假期间,小丽、小杰决定定期到敬老院打扫卫生,小丽每4天去一次,小杰每6天去一次,如果8月1日他们俩都在敬老院打扫卫生,那么,他们下一次同时在敬老院打扫卫生的时间是几月几日?3.某校开校运会时,某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?4.用1,2,3三个数字组成六位数,若每个数字用两次,相邻位不允许用相同的数字.(1)试写出四个符合上述条件的六位数;(2)请你计算出符合上述条件的六位数共有多少个?5.10位小运动员,他们着装的运动服号码分别是1﹣10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?6.现有质量分别为5克和23克的砝码若干只,在天平上要称出质量为4克的物体,问至少要用多少只这样的砝码才能称出?并证明你的结论.7.10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少?8.世界预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分在A组,进行主客场比赛.规定每场比赛胜者得三分,平局各得一分,败者不得分.比赛结束后前两名可以晋级.由于4支队伍均为强队,每支队伍至少得3分.于是甲专家预测:中国队只要得11分就能确保出线.问:(1)这四支队的总得分之和最多有几分?(2)甲专家的预测正确吗?为什么?9.请你参与亮亮在翻转扑克牌游戏时的思考.(1)亮亮同学把3张正面都朝上的扑克牌每次都翻转2张,改变它们的朝向.他发现无论经过多少次这样的操作都不能使3张扑克牌的正面全部朝下.他的结论对吗?(2)把4张正面都朝上的扑克牌每次都翻转2张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?(3)把4张正面都朝上的扑克牌每次都翻转3张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?若能,至少要经过几次这样的操作?若不能,请说明理由.10.某车间新调来三名青年工人,车间赵主任问他们三人的年龄:①小刘说:“我比小陈小2岁.”②小陈说:“小李和我差三岁.”③小李说:“我比小刘年岁小,小刘23岁.”请你帮助赵主任分析出他们三人各是多少岁?11.A,B,C,D,E五名学生猜测自己能否进入市中国象棋前三强. A说:“如果我进入,那么B也进入.”B说:“如果我进入,那么C也进入.”C说:“如果我进入,那么D也进入.”D说:“如果我进入,那么E也进入.”大家都没有说错,请问:进入前三强的是哪三个人?12.某校初中一年(6)班有44人,老师给同学布置这样一个作业题:请你为班级设计一个联络网,并提出如下问题供同学研究:①借助电话传递一条信息,对于不同的方案打电话次数是否相同?②如果打一次电话需要1分钟,那么从开始到结束,不超过9分钟传递一条信息,请你设计一种方案.13.我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.14.有一座三层楼房不幸起火,一个消防员搭梯子爬往三楼去救一个小孩子,当他爬到梯子正中1级时,二楼窗口喷出了火,他就往下退了3级,等到火过了,他又爬了7级,这时屋顶有两块杂物掉下来,他又往下退了2级,幸好没有打中他.他又向上爬了8级,这时他距离梯子最高层还有1级,问这个梯子共有几级?15.用一个平底锅烙饼,每次只能烙两块饼,烙熟一张饼需要2分钟(正、反面各需1分钟).问烙熟3张饼至少需要几分钟怎样烙?16.有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且(1)红箱子盖上写着:“苹果在这个箱子里”(2)黄箱子盖上写着:“苹果不在这个箱子里”(3)蓝箱子盖上写着:“苹果不在红箱子里”已知(1)、(2)、(3)中只有一句是真的,问苹果在哪个箱子里?17.老师与学生小王、小张、小李玩帽子游戏,老师先给三位学生看了四顶帽子,其中二顶是红色的,一顶蓝色的,还有一顶是黄色的.然后让他们先闭上眼睛,给他们每人戴上一顶帽子后,睁开眼睛看其他学生帽子的颜色,然后说出自己所戴帽子的颜色,小李看到的颜色是:小王的帽子是红色的,小张的帽子是黄色的,同时看到小王,小张无法马上说出自己帽子的颜色,这时小李立刻猜出自己所戴帽子的颜色,小李帽子的颜色是什么?为什么?18.有一个人用装10斤油的瓶装了一瓶油拿到市场上去卖,正好来了两个买油的,每人要买5斤,但是没有秤,只有二只空瓶,一个能装7斤油,另一个能装3斤油.试用这3个瓶把10斤油分成两份各为5斤的油.你有什么好方法呢?19.一个老大爷要过河,随身携带的有一只羊、一篮子青草和一只狼.他发现系在河边的小船一次只能载他和一样物体过河,他不能让狼和羊留在一起,因为狼会吃掉羊;他也不能把羊和青草留在一起,因为羊会吃掉青草,怎么办呢?请你帮助老大爷过河.20.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?21.11个学生到书店去买书,每人都买了若干本.其中买书最多的人买了100本书.证明:这11个学生中必有2人,他们买的书相差不到10本.22.某次初二数学竞赛,共有99所学校中学报名参加,每校参赛者中既有男选手,也有女选手,证明:存在其中的50所学校的男选手总数不小于全部男选手总数的一半,且其参赛的女选手总数也不小于全部女选手总数的一半.23.三个口袋里,一个口袋装有两个红球,一个口袋装有两个白球,一个口袋装一红一白两个球,但口袋外面贴的标签都是错的.现在请你从其中一个口袋里取出一个球,使你能根据这个球的颜色判断出这三个口袋里球的颜色.写出你的过程和结论.24.某夏令营共8名营员,其中3人来自甲校,3人来自乙校,2人来自丙校.在一项游乐活动中,他们分乘4辆2座位的游乐车.为加强校际间交流,要求同一学校的营员必须分开乘车,每一辆车上的营员必须来自不同的学校.问这能够做到吗?若能,请设计一个乘车方案;若不能,请说明理由.25.国际象棋比赛中,胜一局得1分,平一局得0.5分,负一局得0分,今有8名选手进行单循环比赛(每两人均赛一局),赛完后,发现各选手的得分均不相同,当按得分由大到小排列好名次手,第四名选手得4.5分,第二名的得分等于最后四名得分总和,问前三名选手各得多少分?说明理由.26.在一次数学竞赛中,a1,a2,a3,a44位学生分别获得了前4名的某一名次,赛前甲、乙、丙3位老师作了预测.甲说:a3第一,a1第三;乙说:a2第一,a4第四;丙说:a4第二,a3第三.比赛结果公布后发现每位老师各猜中一个学生的名次,你能得出四个学生的准确名次吗?27.一种玩具,其中有一个红色的按钮,一个黄色的按钮和100个能站能坐的小木偶.按一次红色的按钮就会有一个站着的小木偶坐下;按一次黄色的按钮就可以使站着的木偶增加一倍;现在只有三个小木偶站着,要使站着的小木偶变为21个,最少需按几次按钮就够了?每次按哪个按钮?28.退休工人张师傅家里有一只老式挂钟,每隔一小时打一次钟,两点整打两下,八点整打八下,总之,几点整就打几下.一天,张师傅在家看书,10分钟后,听到打了一次钟,他又继续看书,看完书,抬头看钟,时针和分针恰好重合在一起,张师傅把这个过程告诉儿子,并且说:“我看书时,记得总共打了12下,但不知分几次打的,你给我算一算,我看了多少时间的书?”29.某商店有5只分别装有麻油、豆油、菜油,其重量如图,其中麻油一桶,豆油的公斤数恰好是菜油的两倍,五只桶分别装的是哪种油?并请说明推理过程.30.开动脑筋,巧移硬币;在一个水平桌面上,如图放着6枚硬币.若把左图的形状改成如下图的摆放形状,即围成一圈,中间还有一个能放1枚硬币的空间,但是每次只能移动1枚硬币,同时不能移其他的硬币,并且硬币也不能离开桌面.请问:我们怎样才能使移动的次数最少呢?参考答案:1.解:甲戴的是白帽子.理由如下:因为丙说不知道,说明甲、乙中至少有一个人戴白帽子(如果甲、乙都戴黑帽子,丙马上知道自己戴的是白帽子).因为乙也说不知道,说明甲戴的是白帽子(如果甲戴黑帽子,甲、乙中至少有一个人戴白帽子,则乙马上知道自己戴的是白帽子)2.解:4、6的最小公倍数是12,所以他们应在12天以后,即第13日再相遇.答:他们下一次同时在敬老院打扫卫生的时间是8月13日3.解:只参加游泳比赛的人数:15﹣3﹣3=9(人);同时参加田径和球类比赛的人数:8+14﹣(28﹣9)=3(人)4.解:(1)以1开头的数有121323 131232 123123 123132 132123 132132 123213 132312 132321 123231 等10个数;(2)121323,131232,123123,123132,121323,121332,132123,132132,123213,132312,213123,213132,312123,312132,212313,213213,312312,313212,213231,312321,231213,231312,321213,321312,231231,231321,321231,321321,232131,323121则共30个符合条件的六位数5.解:不能.理由如下:因为所有号码的总和为55,如果每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,故第10个号码数不小于10,即只能为10.同理,后9个号码数的和不大于45,故第1个号码数不小于10,因此,也必须为10,显然这是不可能的6.证明:易知只用一种砝码是不行的,所以要两种都用,先考虑23克砝码的个数,设为x,设5克砝码是y个,则23x=5y加减4,所以23x的尾数必然是1,4,6,9中的一个,所以x的尾数必然是2,3,7,8的一个,从小往大依次试验,x=2,y=10,x=3,y=13,x=7,…可知随着x的增大,y值也是增大的,所以最少用10+2=12个砝码7.解:设第k名选手的得分为a k(1≤k≤10),依题意得:a1>a2>a3>…a9>a10a1≤1+2×(9﹣1)=17,a2≤a1﹣1=16,a3+20=a1+a2,∴a3≤13 ①,又后四名棋手相互之间要比赛=6场,每场比赛双方的得分总和为2分,∴a7+a8+a9+a10≥12,∴a4≥12而a3≥a4+1≥13,②∴由①②得:a3=13,∴a1+a2=33,∴a1=17,a2=16,又∵a1≤a3﹣1=12,∴a4=12,∵a1+a2+a3+…a8+a9+a10=×2=90,∴17+16+13+12+a5+a6+12=90,而a5+a6≤a5+a5﹣1,即:a5≥10\frac{1}{2},又a5<a4=12,∴a5=11,a6=9,故前六名得分分别是:17,16,13,12,11,98.解:(1)∵每场比赛胜者得三分,平局各得一分,败者不得分∴每场比赛最多得3分,又四个队之间需要打比赛12场,∴这四支队的总得分之和最多有3×12=36分;(2)甲专家的预测正确.若得11分不出线,则必为第三名,故前两名至少也得11分,而最后一名至少得3分,故各队之和至少有36分,由(1)可知比赛中没有平局,而中国队已经得了11分,所以必有平局,3个奇数的和是奇数,所以翻动的总张数为奇数时,才能使3张牌的牌面都向下,而每次翻动2张,不管翻多少次,翻动的总张数都是偶数,所以无论他翻动多少次,都不能使3张牌画面都向下,故他的结论正确;(2)能.因为把4张正面都朝上的扑克牌每次都翻转2张,最少两次即可做到将4张牌全部正面都朝下;(3)能,至少4次.理由:利用4个奇数的和是偶数,所以翻动的总张数为偶数时,才能使4张牌的牌面都向下;而每次翻动3张,至少要经过4次这样的操作使4张扑克牌的正面都朝下10.解:根据③知小刘23岁,结合①知小陈25岁,结合②和③知小李22岁11.解:若A进入前三强,那么进入前三强的有A、B、C、D、E共5人,显然不合题意,同理,当B进行前三强时,也不合题意,所以应从C开始进入前三强.即进入前三强的是C,D,E12.解:①相同;②可以让老师先告诉9个同学,这样第一个同学还有8分钟时间,可以告诉8个人,第二个得到电话的同学有7分钟时间,可以告诉7个人,以此类推到第八个得到电话的再告诉一个人,那么通知的总人数就是9+8+7+6+…+2=44人13.解:第一个人必胜;因为是第一个人先说,所以主动权在第一个人,他肯定按2,5,8,11,17,20,报数,故第一个人必胜14.解:设消防队员向上爬的方向为正、往下退的方向为负,并设这个楼梯共有x级.根据题意,我们知道这个楼梯的级数是奇数(因为只有奇数级的楼梯正中间才可以站人),列得:﹣3+7﹣2+8=x﹣1,整理得:x+1+20=2x﹣2,解得:x=23,则梯子共有23级15.解:至少需要3分钟.方法:先取两张饼烙1分钟,取出其中一张,另一张的反面和新放入的第三张饼烙1分钟,把烙好的第一张饼取出,剩下两张饼烙反面1分钟16.解:若苹果在红箱子里⇒(1)(2)正确(3)错误若苹果在黄箱子里⇒(1)(2)错误(3)正确若苹果在蓝箱子里⇒(1)错(2)(3)正确故苹果在黄箱子里17.解:红色.理由如下:小李看到小王、小张戴红色和黄色帽子,则小李可能戴蓝色或红色帽子,若小李戴蓝色帽子,则小王必能说出自己帽子颜色为红色,但小王、小张都无法马上说出自己帽子颜色,所以小李的帽子颜色为红色18.解:先倒满7斤瓶,再分两次从7斤瓶倒满3斤瓶,3斤瓶每次都倒回10斤瓶,再将7斤瓶中的1斤倒入3斤瓶中,再将7斤瓶倒满,再将7斤瓶中多余的2斤倒入3斤瓶中,此时7斤瓶中刚好5斤,最后将3斤中的油倒回10斤瓶中就实现了19.解:先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河20.解:∵站内原有的6辆车全部开出用时为4×(6﹣1)=20分钟.此时站内又有出租车(20﹣2)÷6+1=4(辆)设再经过x分钟站内无车.+4=x=4848+20=68(分钟)答:经过至少68分钟站内无车.就不能正点发车而题中说买书最多的人买了100本书,所以假设不成立,即这11个学生中必有2人,他们买的书相差不到10本22.解:(1)如果有50所学校的男选手总数大于或等于全部男选手总数的一半,那就无需证明成立了,(2)如果有50所学校的男选手总数小于全部男选手总数的一半,那么剩下的49所学校的男选手总数就应该超过全部男选手总数的一半,因此,这49所学校的男选手数再任加1所学校的男选手数,其总数也必超过男选手总数的一半,同样道理,可证参赛的女选手总数也不小于全部女选手总数的一半23.解:从贴有一红一白标签的口袋里取出一球,如果是白球,则由题设可推出这个口袋里的球是两个白球,贴红标签的口袋里必是一红一白,否则,若是两红,就与标签贴错矛盾,而贴两白标签的口袋里必是两个红球.如果取出的是红球,类似可以判断24.解:能.乘车方案如下:25.解:设第i个运动员为A i,得分为a i(i=1,2,7,8),则a1>a2>…>a7>a8,由于8名选手每人参加7局比赛,胜的最多者得(7分),即a1≤7,共赛局,总积分为2(8分)所以a1+a2+…+a7+a8=28①因为每局得分为0,,1三种,所以只能在{0,,1,1.5,2,2.5,6,6.5,7}中取值,又知a 4=4.5,a2=a5+a6+a7+a8②若a3≥5.5,则a2≥6,a1≥6.5⇒a1+a2+a3≥6.5+6+5.5=18由①,a4+a5+a6+a7+a8≤10,但a4=4.5,所以a5+a6+a7+a8≤10﹣4.5=5.5这与a2≥6矛盾,故a3<5.5但a3>a4=4.5,所以a3=5这时a1+a2+a5+a6+a7+a8=28﹣5﹣4.5=18.5也就是a1+2a2=18.5若a2=5.5⇒a1=18.5﹣11=7.5>7≥a1,这不可能若a2≥6.5⇒a1=18.5﹣2a1≤18.5﹣13>5.5<a2,矛盾.所以,只能a2=626.解:把题目所述列成下表:a1a2a3a4甲③①乙①④丙③②若a3第一(对应①),则a2不能在对应①,从而a4对应④,那么丙的预测就没有猜中,矛盾;于是a2对应①,a3不能对应①,知a1对应③,a4对应②,从而a3只能是第四.故四个学生的名次依次为a2,a4,a1,a3.27.解:最少可以按5次按钮.首先按黄色按钮,3个小木偶变成6个小木偶,再按黄色按钮,6个小木偶变成12个小木偶,再次按红色按钮,12木偶变成11个小木偶,接下来按黄色按钮,11小木偶变成22个小木偶,最后按红色按钮,22个木偶变为21个按钮.如图所示:28.解:∵2:50﹣5:00中间3、4、5点各打3+4+5=12下钟,看书时间就是2:50,当5点后大约5:27分时钟与分钟重合,∴看完书时是5:27分,∴看了一共看书时间为:2:50﹣5:27,一共是2小时37分钟.∴张师傅看了2小时37分钟的书29.解:∵商店有5只分别装有麻油、豆油、菜油,其中麻油一桶,∴豆油、菜油各两桶,且麻油重量一定不是60kg,又∵豆油的公斤数恰好是菜油的两倍,∴豆油的公斤数至少是(60+60)的2倍,∴豆油公斤数是:90+150=240,菜油的公斤数是:120,∴五只桶分别装的是:60kg菜油,60kg菜油,80kg麻油,90kg豆油,150kg豆油30.解:如图所示:只需3步就可以达到目的。

推理与证明精选训练题(有答案)

推理与证明精选训练题(有答案)

推理与证明精选训练题一、选择题1.如下图所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(n>l ,n ∈N *)个点,相应的图案中总的点数记为a n ,则239a a +349a a +459a a +…+201220139a a =A .20102011B .20112012C .20122013D .201320122.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则cb a S r ++=2;类比这个结论可知:四面体S -ABC 的四个面的面积分别为1S 、2S 、3S 、4S ,内切球半径为R ,四面体P -ABC 的体积为V ,则R =( ) A .4321S S S S V+++ B .43212S S S S V+++C .43213S S S S V+++ D .43214S S S S V+++3.下面使用类比推理正确的是( )A .“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”B .“若(a+b )c=ac+bc”类推出“(a·b )c=ac·bc”C .“若(a+b )c=ac+bc”类推出“(0)a b a b c ccc+=+≠”D .“()nnnab a b =”类推出“()nnna b a b +=+”4.已知“*”表示一种运算,定义如下关系:①1*1=a ②)*(3*)1(a n a n =+(n ∈N *)则=a n * ( )A .23-nB .13+nC .13-nD .n 3 5.观察下图,可推断出“?”应该填的数字是 ( )A .19B .192C .117D .118?81642475947165316.我们知道十进制数有10个数码即0~9,进位规则是“逢十进一”,如47+56=103;由此可知八进制数有8个数码即0~7,进位规则是“逢八进一”,则在八进制下做如下运算47+56= ( ) A .85 B .103 C .125 D .185 7.下列说法正确的是 A .合情推理就是归纳推理B .合情推理的结论不一定正确,有待证明C .演绎推理的结论一定正确,不需证明D .类比推理是从特殊到一般的推理8.有一段演绎推理是这样的:“指数函数都是增函数;已知x y )21(=是指数函数;则x y )21(=是增函数”的结论显然是错误的,这是因为 ( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误9.下列几种推理过程是演绎推理的是 ( )A .两条平行直线与第三条直线相交,内错角相等,如果A ∠和B ∠是两条平行直线的内错角,则B A ∠=∠B .金导电,银导电,铜导电,铁导电,所以一切金属都导电C .由圆的性质推测球的性质D .科学家利用鱼的沉浮原理制造潜艇10.如下图,根据图中的数构成的规律,a 所表示的数是 ( )A .12B .48C .60D .14411.长方形的对角线与过同一个顶点的两边所成的角为βα,,则1cos cos 22=+βα,将长方形与长方体进行类比,长方体的一条体对角线与长方体过同一个顶点的三个面所成的角分别为γβα,,,则正确的结论为 ( ) A .1cos cos cos 222=++γβαB .2cos cos cos 222=++γβαC .3cos cos cos 222=++γβαD .4cos cos cos 222=++γβα12.若点P 是正三角形ABC 的内部任一点,且P 到三边的距离分别为321,,h h h ,正三角形ABC的高为h ,根据等面积法可以得到321h h h h ++=,由此可以类推到空间中,若点P 是正四面体A -BCD 的内部任一点,且P 到四个面的距离分别为4321,,,h h h h ,正四面体A -BCD 的高为h ,则有 ( )A .4321h h h h h +++>B .4321h h h h h +++=C .4321h h h h h +++<D .4321,,,h h h h 与h 的关系不定13.已知(0,)x ∈+∞,观察下列各式:21≥+xx ,3422422≥++=+xx x xx ,4273332733≥+++=+xx x x xx ,...,类比有nxa x n≥+(n ∈N *),则=a( )A .nB .2nC .2nD .n n二、填空题14.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C四点共面的充要条件.在平面中,类似的定理是 .15.已知213cos=π,4152cos5cos=ππ,8173cos 72cos7cos=πππ,…,根据以上等式,可猜想出的一般结论是 .16.经计算发现下列正确的等式:231323133333++=++,352535253333++=++,682868283333++=++,...,根据以上等式的规律,试写出一个对正实数b a ,成立的等式 .17.在数学解题中,常会碰到形如“xyy x -+1”的结构,这时可类比正切的和角公式.如:设ba ,是非零实数,且满足158tan 5sin5cos 5cos5sinπππππ=-+b a b a ,则ab = ( )A .4B .15C .2D .318.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如下图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2012次互换座位后,小兔的座位对应的是 ( )A .编号1B .编号2C .编号3D .编号4三、解答题19.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,将此操作称为C 变换,将P 1分成两段,每段2N 个数,并对每段作C 变换,得到2p ;当2≤i ≤n-2时,将P i 分成2i段,每段2iN 个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N=16时,x 7位于P 2中的第___个位置;(2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置.试卷答案1.B2.C因为a h a S ⋅⋅=21,h S V ⋅⋅=底21,所以S 2类比V 3,故选择C 。

高考数学一轮总复习数学推理与证明题经典题目

高考数学一轮总复习数学推理与证明题经典题目

高考数学一轮总复习数学推理与证明题经典题目数学推理与证明题是高考数学中的一种重要题型,对学生的逻辑思维和推理能力提出了较高的要求。

在高考中,这类题目常常考查学生的分析和推理能力,对于学生而言,掌握一定的解题技巧和方法是非常重要的。

本文将为大家介绍一些经典的高考数学推理与证明题,帮助大家加深对这一题型的理解和应对能力。

一、数列推导与证明题数列是高考数学中经常出现的题型,其推导与证明题目主要考查学生的数学归纳法和推理能力。

下面我们来看一个经典的数列推导与证明题。

例题1: 已知数列{an}满足a1=2,an+1=an+1/n,证明该数列单调递增。

解析: 首先我们将证明该数列是递增的,即an+1≥an。

当n=1时,根据题目条件有a2=a1+1/1=3/1=3,显然3≥2,满足条件。

假设当n=k时,an+1≥an成立,即ak+1≥ak。

当n=k+1时,根据题目条件有a(k+1)+1=a(k+1)+1/(k+1)=ak+1+1/(k+1)。

由假设条件可得a(k+1)+1≥ak+1+1/(k+1)≥ak+1。

综上所述,根据数学归纳法,可证明该数列是递增的。

通过这个例子,我们可以看到数学归纳法在数列推导与证明题中的重要性。

在解这类题目时,我们要善于利用归纳法的思想,合理运用数学推理的方法。

二、平面几何推理与证明题平面几何推理与证明题是高考数学中的又一个重要考点,其解题过程需要注意严谨的逻辑推理和几何图形的分析。

下面我们来看一个经典的平面几何推理与证明题。

例题2: 在平面直角坐标系xOy中,点A(a,0),B(b,0)与C(0,c)所构成的三角形ABC为正三角形,证明ab=3c²。

解析: 首先我们知道如果三角形ABC为正三角形,则其三个内角均为60°。

利用点A、B和C的坐标可以得到三条边的长度分别为√((a-b)²+c²),|a-b|和√(a²+b²)。

初二数学几何证明与推理练习题及答案20题

初二数学几何证明与推理练习题及答案20题

初二数学几何证明与推理练习题及答案20题1. 题目:已知ABCD是一个平行四边形,证明AC=BD。

证明:由平行四边形的定义,可知AB∥CD和AD∥BC。

在ABCD中,我们连接AC和BD,假设它们的交点为E。

因为AB∥CD,所以∠ABC+∠BCD=180°(内错角性质)。

又由于AD∥BC,所以∠BCD+∠CDE=180°(内错角性质)。

综上,∠ABC+∠CDE=180°,即△ABC与△CDE互补。

根据互补角的性质,△ABC与△CDE全等,因此AC=BD得证。

2. 题目:已知ABCD是一个矩形,证明BD是直径。

证明:由矩形的定义,可知AB∥CD和AD∥BC。

在矩形ABCD中,我们连接角BAD的角平分线BE和角BCD的角平分线CF,它们相交于点O。

因为角BAD和角BCD都是直角(矩形的性质),所以∠BAE=∠CFO=90°。

由于角平分线的性质,∠BAE=∠CAE,∠CFO=∠CDO。

因此,在△BAE和△CFO中,∠CAE=∠CDO,且∠BAE=∠CFO。

根据AA相似三角形的性质,△BAE与△CFO相似。

因此,AE/CF=BA/CO=1/2(相似三角形的对应边比例相等)。

由此可得,CO=2AE,即CO=2BO。

由于OC=OC(公共边),所以△BOC为等腰三角形,即BO=BC。

综上所述,BD=2BO=2BC,即BD是直径。

3. 题目:已知△ABC中,AB=AC,垂直平分线BM过点B交AC于点M,证明∠ABM=∠ACM。

证明:由题意可得AB=AC,BM⊥AC,且BM平分∠ABC。

连接AM和CM。

在△ABC中,由于AB=AC,所以∠ABC=∠ACB。

由垂直平分线的性质,BM平分了∠ABC,所以∠ABM=∠CBM。

同理,在△ACB中,由于AB=AC,所以∠ACB=∠ABC。

由垂直平分线的性质,BM平分了∠ACB,所以∠CBM=∠ACM。

综上所述,∠ABM=∠CBM=∠ACM得证。

数学北师大版高中选修2-2第一章 推理与证明练习题

数学北师大版高中选修2-2第一章 推理与证明练习题

第一章 推理与证明练习题1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是: ;2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为: ;3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于: ;4.否定结论“至多有两个解”的说法是: ;5.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为: ;6.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于: ;7.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定: ;8.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于: ;9.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.10.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图111.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.12.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.13.已知a +b +c =0,比较ab +bc +ca 的大值与0的大小;14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第五个等式为________________________.15.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n .16.(2014·银川模拟)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N +)B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N +)C .假设n =k 时正确,再推n =k +1时正确(k ∈N +)D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N +)17.f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.推测:当n ≥2时,有____________.18.(2014·陕西文,14)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x )的表达式为________.19.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.20.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明.21.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.22.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1恒成立.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.18.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解:(1)f 1(x )=x1+x2(x >0),f 2(x )=x1+x21+x 21+x 2=x1+2x 2,f 3(x )=x1+2x 21+x 21+2x2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x1+nx2,下面用数学归纳法证明: ①当n =1时,命题显然成立.②假设当n =k 时,f k (x )=x1+kx2,那么f k +1(x )=x1+kx 21+x21+kx2=x1+kx 2+x2=x 1+k +x 2.这就是说,当n =k +1时命题成立.由①②,可知f n (x )=x1+nx2对所有n ∈N +均成立.20.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.[分析] 利用不完全归纳法猜想归纳出a n ,然后用数学归纳法证明.解题的关键是根据已知条件和假设寻找a k 与a k +1和S k 与S k +1之间的关系.[解析] (1)由已知,得a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a3=5+5+10=20,a n =⎩⎪⎨⎪⎧n =5×2n -2n .(2)①当n =2时,a 2=5×22-2=5,表达式成立.当n =1时显然成立,下面用数学归纳法证明n ≥2时结硫化亦成立.②假设n =k (k ≥2,k ∈N +)时表达式成立,即a k =5×2k -2, 则当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k=5+5+10+…+5×2k -2=5+-2k -11-2=5×2k -1=5×2(k +1)-2.故当n =k +1时,表达式也成立.由①②可知,对一切n (n ≥2,n ∈N +)都有a n =5×2n -2.[点评] 本题先用不完全归纳法猜想出通项,然后用数学归纳法证明,考查了由特殊到一般的数学思想,也考查了数列知识,在高考中这类题往往是压轴题.解决方法是观察与分析法,也就是说解决这类题要注意观察数列中各项与其序号的变化关系,归纳出构成数列的规律,同时还要注意第一项与其他各项的差异,从而发现其中的规律.21.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1恒成立.第一章 推理与证明 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是( )A .演绎推理B .归纳推理C .类比推理D .以上都不对【解析】 由部分推断全体,是归纳推理. 【答案】 B2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( ) A .25 B .6 C .7 D .8【解析】 将数列分组得(1),(2,2),(3,3,3),(4,4,4,4),…,这样每一组的个数为1,2,3,4,…;其和为n n +2,令n =6,则有6×72=21,所以第25项在第7组,因此第25项是7.【答案】 C3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于( )A .1B .1+12C .1+12+13D .1+12+13+14【解析】 中间的式子共有2n 项,故n =2时,中间的式子等于1+12+13+14.【答案】 D4.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解 B .有两个解C .至少有三个解D .至少有两个解【解析】 “至多有两个解”包含有两解,仅有一解,和无解,故其否定为至少有三个解.【答案】 C5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定【解析】 a =1c +1+c ,b =1c +c -1,显然a <b .【答案】 B6.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)【解析】 设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .【答案】 C 7.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于( )A .f (n -1)+1B .f (n -2)+2C .f (n -2)+1D .f (n -1)+f (n -2)【解析】 要到达第n 级台阶有两种走法:(1)在第n -2级的基础上到达;(2)在第n -1级的基础上到达.【答案】 D8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A .大于零B .等于零C .小于零D .正负都可能【解析】 f (x )=x 3+x 是奇函数且在R 上是增函数,由a +b >0,得a >-b ,故f (a )>f (-b ),可得f (a )+f (b )>0.同理f (a )+f (c )>0,f (b )+f (c )>0.所以f (a )+f (b )+f (c )>0.【答案】 A9.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【答案】 C10.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A.12B .-1C .2D .3【解析】 ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *)∴a 2 013=a 3+3×670=a 3=2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)11.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.【解析】 数列可写成35,48,511,614,717,….猜想通项公式a n =n +23n +2.【答案】 n +23n +212.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图1【解析】根据规律和第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.【答案】 28 n +n +213.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.【解析】 就x 是否等于a ,b 而言有四种情形:①x =a ,x ≠b ;②x ≠a ,x =b ;③x =a ,x =b ;④x ≠a ,x ≠b .故应假设x =a 或x =b . 【答案】 x =a 或x =b14.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.【解析】 根据等差、等比数列中运算的性质知: 在等比数列{b n }中会有10a 11·a 12·…·a 20=30a 1·a 2·…·a 30.【答案】 10a 11·a 12·…·a 20=30a 1·a 2·…·a 30三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.【证明】 假设x 2+2x -1=0, 则解得x 1=2-1,x 2=-2-1.又x 1<12,x 2<12,这与已知x >12矛盾.故假设不成立,x 2+2x -1≠0成立.16.(本小题满分12分)试比较2n 与n 2(n ∈N *)的大小关系,并用数学归纳法证明.【证明】 当n =1时,21>12,即2n >n 2,当n =2时,22=22,即2n =n 2,当n =3时,23<32,即2n <n 2,当n =4时,24=42,即2n =n 2,当n =5时,25>52,即2n >n 2,当n =6时,26>62,即2n >n 2, …猜测,当n ≥5时,2n >n 2.下面用数学归纳法证明猜测成立. ①当n =5时,由上可知猜测成立.②设n =k (k ≥5)时,命题成立,即2k >k 2. ∴2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时命题也成立.由①和②可得,n ≥5时,2n >n 2(n ∈N *).17.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n-1-1n)=1+12(1-1n)=32-12n.18.(本小题满分14分)已知a、b、c>0,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).【证明】∵a、b、c>0,∴a2+b2≥2ab,∴(a2+b2)(a+b)≥2ab(a+b),∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2,∴a3+b3≥a2b+ab2.同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,将三式相加得,2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a2+b2+c2)(a+b+c).∴a3+b3+c3≥13(a2+b2+c2)(a+b+c).。

推理证明练习题初二

推理证明练习题初二

推理证明练习题初二[正文]推理证明是逻辑思维的一种重要应用形式,通过对事实和信息的分析推理,以及逻辑推理链条的拼接,可以得出合理的结论。

推理证明不仅让我们在解决问题时更加有条理,也培养了我们的思辨能力。

下面是一些初二水平的推理证明练习题,希望能够帮助大家提升推理能力。

1. 题目:假如所有的狗都会叫,那么小明一定是狗。

推理证明:首先,假设前提“所有的狗都会叫”为真。

根据这一前提,我们可以得出结论“小明一定是狗”。

这是因为前提中明确指出所有狗都会叫,而小明是会叫的,所以小明符合这一前提的条件,可以得出结论小明是狗。

2. 题目:如果天下雨,那么地面湿。

推理证明:假设前提“天下雨”为真。

根据这一前提,我们可以得出结论“地面湿”。

这是因为下雨会导致降水,降落到地面上形成湿气,因此地面会变湿。

3. 题目:如果小红是小李的妹妹,那么小李一定是小红的哥哥。

推理证明:假设前提“小红是小李的妹妹”为真。

根据这一前提,我们可以得出结论“小李一定是小红的哥哥”。

这是因为妹妹的定义就是指某人的妹妹,而小红是小李的妹妹,所以小李一定是小红的哥哥。

4. 题目:如果昨天没下雨,那今天也不会下雨。

推理证明:假设前提“昨天没下雨”为真。

根据这一前提,我们可以得出结论“今天也不会下雨”。

这是因为下雨是与昨天下雨有关的,如果昨天没有下雨,那么今天很可能也不会下雨。

5. 题目:如果所有的人都需要呼吸氧气,那么小明肯定需要呼吸氧气。

推理证明:首先,假设前提“所有的人都需要呼吸氧气”为真。

根据这一前提,我们可以得出结论“小明肯定需要呼吸氧气”。

这是因为前提中明确指出所有人都需要呼吸氧气,而小明是人,所以小明符合这一前提的条件,可以得出结论小明肯定需要呼吸氧气。

通过以上的推理证明练习题,我们可以看到,推理证明需要根据给定的前提进行逻辑推理,以得出合理的结论。

在处理这些练习题时,我们要认真分析前提的真实性,并运用我们的推理能力得出正确的结论。

通过不断练习和思考,我们的推理能力将会逐渐提升,为我们解决问题提供更加准确的思路和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学《推理与证明》练习题
一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ⋅=⋅ C .4578b b b b ⋅=⋅ D .4758b b b b ⋅=⋅
2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *
N n ∈,试归纳猜想出n S 的
表达式为( )
A 、
12+n n B 、112+-n n C 、112++n n D 、2
2+n n
3.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =⋅⋅⋅'
1()()n n f x f x +=,n ∈N ,则2015()f x =
( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( )
A.
()112n n + B.()1
12
n n - C.()1n n + D.()1n n - 5.已知2()
(1),(1)1()2
f x f x f f x +==+,*x N ∈()
,猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2
()21
f x x =+
6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( )
A .10
B .13
C .14
D .100
7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面所有直线;已知直线b ⊆/平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( )
A .必要条件
B .充分条件
C .充要条件
D .必要条件或充分条件 9.
2+7与3+6的大小关系是( )
A.2+7≥3+6
B.2+7≤3+6
C.2+7>3+6
D.2+7<3+ 6
10.[2014·卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )
A. 方程x 2+ax +b =0没有实根
B. 方程x 2+ax +b =0至多有一个实根
C. 方程x 2+ax +b =0至多有两个实根
D. 方程x 2+ax +b =0恰好有两个实根 11.若f (n )=1+1
21
3121++
⋅⋅⋅++n (n ∈N*),则当n =1时,f (n )为 (A )1
(B )31 (C )1+3
121+ (D )非以上答案
12.用数学归纳法证明111111111()234212122n N n n n n n
-
+-+⋅⋅⋅+-=++⋅⋅⋅+∈-++,则从k 到k +1时,左边应添加的项为 ( )
(A) 121+k (B) 4
21
221+-+k k (C) -221+k (D) 121+k -2
21
+k
13 用数学归纳法证明*111
1(,1)2321
n n n N n +++⋅⋅⋅+<∈>-时,第一步应验证不等式
( )
A. 2211<+
B. 231
211<++ C. 331211<++ D. 34131211<+++
14. 用数学归纳法证明))(12(312)()3)(2)(1(*
N n n n n n n n n ∈-⋅⋅⋅=++++ 时,从
n=k 到n=k+1,左端需要增加的代数式为( )
A. 12+k
B. )12(2+k
C. 112++k k
D. 13
2++k k
15. 若命题)(n p 对n=k 成立,则它对2+=k n 也成立,又已知命题)2(p 成立,则下列
结论正确的是( )
A. )(n p 对所有自然数n 都成立
B. )(n p 对所有正偶数n 成立
C. )(n p 对所有正奇数n 都成立
D. )(n p 对所有大于1的自然数n 成立 16.某个命题与自然数n 有关,如果当n =k (k ∈N *)时,该命题成立,那么可推得当
n =k +1时命题也成立.现在已知当n =5时,该命题不成立,那么可推得 (A )当n =6时该命题不成立; (B )当n =6时该命题成立 (C )当n =4时该命题不成立 (D )当n =4时该命题成立 17.下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁角互补,如果A ∠和B ∠是两条平行直线的同旁角,则
180A B ∠+∠=°
B.由平面三角形的性质,推测空间四面体的性质
C.三角形角和是180°,四边形角和是360°,五边形角和是540°,由此得凸多边形角
和是(2)180n -· D.在数列{}n a 中,11a =,1111(2)2n n n a a n a --⎛⎫=+ ⎪⎝⎭
≥,由此归纳出{}n a 的通项公式
18. 使不等式2
21n n >+对任意n k ≥的自然数都成立的最小k 值为( )
(A )2 (B )3 (C )4 (D )5 19.设+
111
,,,,,x y z R a x b y c z y z x
∈=+
=+=+,则,,a b c 三数( ) A .至少有一个不大于2 B .都小于2 C .至少有一个不小于2 D .都小于2
20.若把正整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为( )
二、填空题
21.已知x>0,由不等式1x x +
,24x x +=24
22x x x
++≥…,启发我们可以得出推广结论:n a
x x
+≥n+1 (n ∈N *),则a=_________ ______.
22.如果>,a b 满足的条件是 . 23. 已知ABC ∆的三边长为c b a ,,,切圆半径为r
(用的面积表示ABC S ABC ∆∆),
则ABC S ∆)(2
1
c b a r ++=
;类比这一结论有:若三棱锥BCD A -的切球半径 为R ,则三棱锥体积=-BCD A V
24.用反证法证明命题:“若整系数一元二次方程2
0(0)ax bx c a ++=≠有有理数根,那么,,a b c 中至少有一个是偶数” 时,则做假设是 ; 25.若数列{a
n },(n ∈N *
)是等差数列,则有数列b n =
n
a a a n +⋯++21(n ∈N *
)也是等
差数列,类比上述性质,相应地:若数列{C n }是等比数列,且C n >0(n ∈N *),则有d n =______________ (n ∈N *
)也是等比数列.
26.在平面几何里,有勾股定理:“设ABC ∆的两边AB 、AC 互相垂直,则
222BC AC AB =+。

”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则 ” 27.观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
……
照此规律,第n 个等式为 。

28.设*111()()122f n n N n n n
=
++⋅⋅⋅+∈++,那么)()1(n f n f -+等于 29.用数学归纳法证明:*111
1(,1)2321
n n n N n +++⋅⋅⋅+<∈>-时, ,第一步验证不等式
成立;在证明过程的第二步从n=k 到n=k+1成立时,左边增加的项数是 .
30.
三、解答题
31、设,(0,)a b ∈+∞,且a b ≠,求证:3
3
2
2
a b a b ab +>+.
32、证明:21
61n -+能被7整除。

33.设1212(1)2,()0(),()()()f f n n N f n n f n f n +
=>∈+=⋅且,试猜出()f n 的解析式,并证明你的猜想。

34.已知数列
1111,,,,,,122334(1)
n n ⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯+先计算前几项之和123,,,S S S 在推测前n 项之和n S 的表达式,并给出证明。

35.已知,,a b c 是互不相等的实数,求证:由22y ax bx c =++,2
2y bx cx a =++和
22y cx ax b =++确定的三条抛物线至少有一条与x 轴有两个不同的交点。

推理与证明练习题答题纸
二、填空题
21、22、
23、24、
25、26、
27、28、
29、30、
三、解答题
31、
32、
33、
34、
35、。

相关文档
最新文档