鼓式制动器设计方案(设计方案说明书)

合集下载

(完整word版)鼓式制动器说明书(word文档良心出品)

(完整word版)鼓式制动器说明书(word文档良心出品)

第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。

第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。

鼓式制动器设计

鼓式制动器设计

鼓式制动器设计
设计说明书:鼓式制动器设计
第一部分:引言
引言部分介绍了鼓式制动器的作用和设计的背景,解释了为何需要设
计新的鼓式制动器,并概述了本文档的结构和目标。

第二部分:设计要求
设计要求部分列出了鼓式制动器设计的主要目标和性能要求。

这些要
求主要包括制动力、制动效率、制动稳定性、耐久性等方面的要求。

同时,还需要考虑到制动器的重量、尺寸、成本等因素。

第三部分:结构设计
结构设计部分包括制动器的整体结构设计和各个部件的详细设计。

其中,整体结构设计需要考虑到制动器的安装位置和方式,以及与车辆其他
部件的配合关系。

各个部件的设计需要考虑到材料的选择、尺寸的确定、
加工工艺等因素。

第四部分:工作原理
工作原理部分详细介绍了鼓式制动器的工作原理。

包括制动器的构成、制动材料的摩擦特性、制动力的产生机制等内容。

同时,还需要考虑到制
动过程中的热量产生和传递机制,以确保制动器的稳定性和耐久性。

第五部分:性能评估
性能评估部分对鼓式制动器的主要性能进行评估。

主要包括制动力、制动效率、制动稳定性、耐久性等方面的测试和分析。

需要设计相应的测试方法和评估标准,以确保设计的鼓式制动器能够满足要求。

第六部分:结论
结论部分对整个设计过程进行总结,评价了设计的鼓式制动器的优缺点,并提出了进一步改进的建议。

同时,还需要总结设计过程中的经验和教训,以便在将来的鼓式制动器设计中能够有所借鉴。

鼓式制动器 设计说明书

鼓式制动器 设计说明书

车辆工程专业课程设计题目:鼓式制动器设计学院机械与能源工程学院专业车辆工程年级车辆10级班级车辆1012姓名李开航学号 2010715040成绩指导老师赖祥生目录第1章绪论 (1)1.1制动系统设计的目的 (1)1.2制动系统设计的要求 (1)第2章鼓式制动器的设计计算及相关说明 (2)2.1鼓式制动器有关计算 (2)2.1.1基本参数 (2)2.1.2确定前后轴制动力矩分配系数β (2)2.1.3鼓式制动器制动力矩的确定 (3)2.2鼓式制动器的结构参数与摩擦系数的选取 (4)2.2.1制动鼓半径 (4)2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4)2.2.3张开力作用线至制动器中心的距离 (4)2.2.4制动蹄支销中心的坐标位置 (5)2.2.5摩擦片的摩擦系数 (5)2.3后轮制动轮缸直径与工作容积的设计计算 (5)2.4摩擦衬片的磨损特性计算 (6)2.5驻车计算 (8)第3章鼓式制动器主要零件的结构设计 (10)3.1制动鼓 (10)3.2制动蹄 (11)3.3制动底板 (12)3.4支承 (12)3.5制动轮缸 (13)3.6摩擦材料 (13)3.7制动器间隙 (13)第4章鼓式制动器的三维建模 (14)第5章结论 (15)参考文献 (16)第1章绪论1.1制动系统设计的目的汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。

汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。

而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。

汽车的制动性能直接影响汽车的行驶安全性。

随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。

1.2制动系统设计的要求本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。

鼓式制动器设计说明书解析

鼓式制动器设计说明书解析

课程设计小型轿车后轮鼓式制动器设计学生姓名:专业班级:指导教师:学院:年月东北林业大学课程设计任务书小型轿车后轮鼓式制动器设计学生姓名:专业班级:指导教师:学院:小型轿车后轮鼓式制动器设计摘要随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,制动系统是汽车主动安全的重要系统之一。

如何开发出高性能的制动器系统,为安全行驶提供保障是我们要解决的主要问题。

另外,随着汽车市场竞争的加剧,如何缩短开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。

本说明书主要介绍了小型轿车(0.9t)后轮鼓式制动器的设计计算,主要零部件的参数选择的设计过程。

关键词:汽车;鼓式制动器目录摘要1 绪论 ..................................................................................................................... 错误!未定义书签。

1.1 概述................................................................................................................... 错误!未定义书签。

1.2 设计要求.......................................................................................................... 错误!未定义书签。

1.3 设计目标.......................................................................................................... 错误!未定义书签。

领从蹄鼓式制动器设计说明书

领从蹄鼓式制动器设计说明书

领从蹄鼓式制动器设计说明书一、整车性能参数............................................................ 1 1. 发动机............................................................1 2. 整车基本参数...................................................1 3. 制动系统参数 (1)二、设计计算.................................................................. 2 1. 制动器主要参数的确定 (2)1) 制动鼓内径D (2),2) 摩擦村片宽度b和包角 (2),3) 摩擦衬片起始角………………………………3 04) 制动器中心到张开力P作用线的距离a (3)5) 制动体制动蹄支撑点位置坐标k和c (3)6) 制动鼓厚度n (3)f7) 摩擦片摩擦系数....................................32. 制动力与制动力矩分配系数.................................4 3. 制动器因数......................................................5 4. 制动蹄自锁能力................................................6 5. 摩擦衬片的磨损特性计算....................................7 6. 制动轮缸直径d的确定.......................................8 7. 制动蹄支承销剪切应力计算 (9)三、参考文献 (10)一(整车性能参数1.发动机:最大转矩/ 157/2800Nm/rpm最大功率/ 65/4500Kw/rpm2.整车基本参数:整车装备质量(空车质量)/kg 1470 满载总质量/kg 2495轴荷分配//kg空载前轴 895后轴 575满载前轴 800后轴 1695车长/mm 4085轴距/mm 2515最小离地间隙/mm后桥下 195最高车速/km/h 105轮胎型号: 165/60R143.制动系统参数前轮后轮制动器类型领从蹄鼓式双领蹄鼓式制动效能因数 1.4 3.3二(计算及说明结论1.制动器主要参数的确定(1)制动鼓内径D输入力一定时,制动鼓内径越大,制动力矩越大,且散热能力也越强。

鼓式制动器毕业设计

鼓式制动器毕业设计

鼓式制动器在智能交通系统中的应用前景和挑战
应用前景:鼓式制动器在智能交通系统中具有广泛的应用前景,如自 动驾驶、智能交通管理等。
挑战:鼓式制动器在智能交通系统中的应用面临着技术、成本、安全 等方面的挑战。
技术挑战:需要解决鼓式制动器在智能交通系统中的稳定性、可靠性、 响应速度等方面的问题。
成本挑战:需要降低鼓式制动器的制造成本,提高其在智能交通系统 中的竞争力。
添加标题
添加标题
优化制动器材料:提高耐磨性,降 低热衰退
优化制动器散热设计:提高散热效 率,降低热衰退
鼓式制动器设计评估方法
制动力评估:计算制动力大小,确保满足车辆制动需求 热负荷评估:计算制动器温度,确保不会因过热导致制动失效 磨损评估:计算制动器磨损量,确保使用寿命满足要求 噪音评估:计算制动器噪音,确保不会因噪音过大影响驾驶体验
铝合金鼓式制动器:重量轻,散热性能好,但强度和耐磨性相对较差 碳纤维鼓式制动器:重量极轻,散热性能极佳,但成本较高,耐磨性一 般 陶瓷鼓式制动器:耐磨性极佳,重量轻,但成本较高,散热性能一般
新型材料的鼓式制动器的研发和应用
碳纤维复合材料:轻量化、高 强度、耐高温
陶瓷材料:耐磨损、耐高温、 耐腐蚀
钛合金材料:轻量化、高强度、 耐腐蚀
鼓式制动器的装配技术要求和方法
装配前检查: 确保零件清洁、
无损伤
装配顺序:按 照图纸要求进
行装件之间的
配合精度
装配质量:确 保装配质量符
合要求
装配完成后的 检查:检查装 配是否正确, 有无漏装、错
装等问题
鼓式制动器的质量检测和控制方法
性能测试:进行制动性能测 试,如制动距离、制动力等
制动稳定性要求

鼓式制动器设计方案(设计方案说明书)

鼓式制动器设计方案(设计方案说明书)

毕业设计设计说明书题目 SC6408V 商用车鼓式制动器总成设计专业车辆工程<汽车工程)班级 2006级汽车一班学生 ___ 廖械兵指导老师___ 文孝霞重庆交通大学2018年前言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。

然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。

对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。

但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。

对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。

但是,钳-盘式制动器的缺点在于:其制动效能因数很低<只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。

因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。

鼓式制动器设计说明书

鼓式制动器设计说明书

第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。

第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。

(完整word版)鼓式制动器说明书

(完整word版)鼓式制动器说明书

第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。

第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。

鼓式制动器毕业设计

鼓式制动器毕业设计

毕业设计说明书题目:轿车后轮制动器的设计学院(直属系):交通与汽车工程学院年级、专业: 2010级车辆工程姓名:李旺学号: 332010********* 指导教师:向阳完成时间: 2014年6月 1 日1 目录摘 要 (4)Abstract (5)1 绪论 (7)1.1概述 (7)1.2制动器研究现状和进展 (7)1.3制动器的设计意义 (8)2 制动器类型及方案的选择 (9)2.1 盘式制动器 (9)2.2 鼓式制动器 (10)2.3 制动器型式及方案的确定 (14)3制动系的主要参数的选择 (15)3.1理想的前、后制动力分配曲线 (15)3.2制动力分配系数与同步附着系数的确定 (16)3.3 制动力分配的合理性分析 (17)4制动器的设计计算 (24)4.1鼓式制动器主要参数的确定 (24)4.2 蹄片上力矩的计算 (27)4.3制动器效能因数 (32)4.4 制动器制动力的计算 (32)4.5 驻车制动的计算 (33)4.6 摩擦片磨损特性的计算 (35)4.7制动蹄支承销剪切应力的计算 (37)5 制动效能的评价 (39)5.1 制动减速度 (39)5.2 制动距离 (39)5.3 制动效能的稳定性 (40)6 液压操纵机构的设计 (41)6.1 工作轮缸的工作容积 (41)6.2 制动主缸的工作直径与工作容积 (41)6.3 制动踏板力与制动踏板行程的校核 (42)7 鼓式制动器的优化设计 (43)7.1 设计变量 (43)7.2 目标函数的建立 (43)7.3 建立约束函数 (43)7.4 优化求解 (44)7.5 优化结果 (45)8 制动器主要零部件的结构设计 (47)8.1 制动鼓的结构设计 (47)8.2 制动蹄的结构设计 (48)8.3 摩擦衬片的结构设计 (48)8.4 制动底板的结构设计 (49)8.5 支承形式的设计 (49)8.6 制动轮缸 (49)8.7 蹄与鼓之间的间隙调整装置 (49)9结论 (51)总结与体会 (52)致谢 (53)【参考文献】 (54)附录一 (55)附录二 (57)轿车后轮制动器的设计摘要制动系的功能是使汽车减速停车,在下坡行驶时稳定车速以及使汽车能可靠地驻留在平地或一定角度的坡道上。

鼓式制动器设计

鼓式制动器设计

5 鼓式制动器5.1 制动距离S S=6.31(t 1+22t )V 1+max2192.25j V (m)= 6.31(0.1+0.2/2)⨯50+86.692.25502⨯=14.8m m ax f F <F ϕ=ϕFz =7330⨯9.8⨯0.7=5028.38N m ax j =a f m F max=5028.38÷7330=6.86(m/s 2) (J>5.9)最大制动距离 St =0.15v+v 2/115=0.15⨯50+502÷115=29.2mS<St 所以符合要求。

式中 t 1:机构滞后时间0.1 s ;t 2:制动力增长时间 0.2s ;v 1:制动初速度50km/h ;J max :最大稳定制动减速度;m a :满载质量7330kg ;F fmax :最大地面制动力。

5.2 制动力分配系数β0ϕ=hgb L -β 代入数据得β=0.46式中 0ϕ:满载同步附着系数 0.6;L :汽车轴距 4000mm ;b :满载时汽车质心至后轴距离 1400mm ;h g :满载时质心高度 745mm 。

5.3 前后轴制动器总制动力F f =F μ=F μ1+F μ2 =24155.1+37389.6=61544.7(N)F μ1=βF μ<L g m a ϕ(b+ϕh g )=47.08.97330⨯⨯)(745.07.04.1⨯+⨯=24155.1(N) F μ2=(1-β)F μ<L g m a ϕ(a-ϕh g )= 47.08.97330⨯⨯)(745.07.06.2⨯-⨯=37389.6(N) 式中 F μ:前后轴制动器总制动力;F μ1 、F μ2:前、后轴制动器制动力;β:制动力分配系数0.46;g :重力加速度 9.8m/s ;L :汽车轴距 4000mm ;a 、b :分别为汽车质心至前、后轴中心的距离 a=2600mm ,b=1400mm ; ϕ:地面附着系数 0.7(干沥青路面);h g :汽车质心高度 hg=745mm ;ma :汽车满载质量 7330kg5.4 驻车所需制动力F z =a m g sin α5.4.1 汽车可能停驻的极限上坡路倾斜角αhgL a ϕϕα-=arctan =745.07.046.27.0arctan⨯-⨯ =27.6式中 ϕ:车轮与地面摩擦系数,取0.7;a :汽车质心至前轴间距离;L :轴距;hg :汽车质心高度。

鼓式制动器设计说明书

鼓式制动器设计说明书
2.绘制鼓式制动器结构装配图
工作进度安排:
阶段
设计内容
设计任务
时间
1
设计前准备
准备设计资料、手册、图册。分析设计任务及给定资料、总体布置,小组成员分工。
2
2
总体设计
方案构思、算则与方案设计、设计计算、总体布置。
5
3
绘图
用CAD软件绘图。
5
4
编写说明书
设计图的校对;说明书撰写。
2
5
答辩
其中:
参考文献篇数:
为了计算有一个自由度的制动蹄片上的制动力均 ,在摩擦衬片表面上取一横向单元面积,并使其位于与 轴的交角 处,如 所示。若令摩擦衬片的宽度为 ,则单元面积为 .其中 为制动鼓半径, 为单元面积的包角。制动鼓作用在摩擦衬片单元面积的法向力为:
而摩擦力 产生的制动力矩为:
在 至 区段上积分上式,得:
当法向力均匀分布时,则有:
课 程设 计
小型轿车后轮鼓式制动器设计
学生姓名:
专业班级:
指导教师:
学 院:
年月
东北林业大学
课程设 计任 务 书
小型轿车后轮鼓式制动器设计
学生姓名:
专业班级:
指导教师:
学 院:
题目名称:小型轿车后轮鼓式制动器设计
任务内容(包括内容、计划、时间安排、完成工作量与水平具体要求)
内容:
1.设计轿车后轮鼓式制动器
(2)活塞杆外径
可根据活塞杆受力状况来确定,
受拉力作用时, 。
受压力作用时: 时, ; 时, ; 时, 。
已知 ,所以可知
(3)缸筒长度
缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:
式中: 为活塞的最大工作行程; 为活塞宽度,一般为 ; 为活塞杆导向长度,取 ; 为活塞杆密封长度,由密封方式定; 为其他长度。一般缸筒的长度最好不超过内径的 倍。

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计摘要汽车是现代人们生活中重要的交通工具其是由多个系统组成的,制动系统就是其中一个重要的组成部分。

它既要使行驶中的汽车减速,又要保证车辆能稳定的停驻在原地不动。

因此,汽车制动系对于汽车的安全行驶起着举足轻重的作用。

在本次设计中,根据已有的 CA1046 车辆的数据对制动系统进行设计。

其中对制动系统的组成、制动系统主要部件的方案论证、制动力矩的计算、鼓式制动器结构参数的设计、制动器相关部件的校核、制动主缸和制动轮缸的直径工作容积的计算、制动踏板力与踏板行程的计算等方面进行了设计分析。

设计所附的多张图纸对设计的思想、制动系统的布置设计表达的非常清晰。

希望在翻阅说明书的过程中能够结合图纸,这样就可以更加有效的理解设计的思想和意图。

关键词:汽车;鼓式制动器;制动系统;制动力矩;制动主缸全套 CAD 图纸,加 153893706 ABSTRACT Automobile is the important transportation tools in the modern life. It iscompositive by many systems. The most important parts are the brake system. Thesystem made the autocar slowdown what’s more the automobile is stopped steadily.There by the brake system play an important part in security steer. In the designwhich based on the data of brake system used in CA1041. Decompose of the brakesystem is designed. And the main piece applied with CA1041 is demonstrated. Thebraking force and the parameters of drum brake’s configuration are included inthisdesign also. What’s more the validating of correlation parts in the brake system andthe diameter of the main crock of braking and the crock applied in brake wheel aredesigned . Meantime the its stroke volume are referred to The force effected thefootplate when braking and the travel of footplate and so on are analyzed . The drawings are very detail to explain the ideas of design and the dispositionfor the brake system . When you thumb the annotation text you can combine thedrawings which made you understand the ideas and meaning in this designeffectively.Key words: Automobile;Braking system;Braking torque;Drum type brake;Brakethe master cylinder. 第 1 章绪论1.1制动系统绪论汽车制动系功用是使汽车以适当的减速度降速行驶至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠地停在原地或坡道上。

鼓式制动器说明书

鼓式制动器说明书

第一章概述随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系统的工作可靠性显得日益重要。

也只有制动性能良好、制动装置工作可靠的汽车,才能充分发挥其动力性能。

制动器是制动系统中用以产生阻碍车辆的运动或运动趋势的部件。

一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与路面的附着作用,产生路面对车轮的制动力以使汽车减速。

凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器,都称为摩擦制动器。

各类汽车所用的摩擦制动器可分为鼓式和盘式两大类。

前者的摩擦副中的旋转元件为制动鼓,其工作表面为圆柱面;后者的旋转元件则为圆盘状的制动盘,以端面为工作表面。

目前发动机排量较小的车型的制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,汽车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%~80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此,为了节省成本,就采用前盘后鼓的制动方式。

不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式制动的设计,而且还因为鼓式制动器还有其它优点:自刹作用:鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能祗有大型采气动辅助,而小型车采真空辅助来帮助刹车。

成本较低:鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。

制动器的设计应满足如下要求:(1)能适应有关标准和法规的规定。

各项性能指标除应满足设计任务书的规定和国家标准、法规制定的有关要求外,也应考虑销售对象国家和地区的法规和用户要求。

鼓式制动器设计方案

鼓式制动器设计方案

鼓式制动器设计方案设计方案说明书:鼓式制动器设计方案一、设计背景在现代汽车工业中,制动器是车辆行驶安全的重要组成部分。

鼓式制动器是目前广泛使用的制动系统之一,其结构简单、制动性能稳定,因此在汽车行业得到了广泛应用。

本设计方案旨在开发一种具有较高性能和可靠性的鼓式制动器。

二、设计目标1.提高制动效果:通过优化制动力的分配,提高制动器的整体性能,从而达到更高的制动效果。

2.减少制动器的磨损:通过优化制动器的材料和结构设计,减少制动器的磨损,延长使用寿命。

3.提高制动器的散热性能:通过改进散热器的设计,提高制动器的散热性能,避免制动过程中产生的高温对制动器产生不利影响。

4.提高制动器的可靠性:通过提升制动器的结构设计和选用优质材料,提高制动器的可靠性,降低故障率和维修成本。

5.提高制动器的安全性能:通过增加制动器的安全性能,保证车辆在刹车过程中能够稳定停车,防止制动失效等意外事故。

三、技术方案1.优化制动力分配系统:通过电子控制系统,合理调配前后轮制动力的比例,实现智能化的制动力分配,提高制动效果和安全性。

2.采用新型摩擦材料:选用高温耐磨的摩擦材料,并进行优化设计,在提高制动力的同时降低摩擦损失,减少制动器的磨损。

3.改进鼓式制动器的散热器设计:增加散热片的数量和密度,增强散热器的散热能力,有效降低制动器的温度,提高制动器的散热性能。

4.引入电子控制系统:采用电子控制系统对制动器进行智能监控和调控,实现制动力的实时监测和调整,提高制动器的可靠性和安全性。

5.优化制动器的结构设计:通过改进制动器的结构设计,提高制动器的稳定性和刹车性能,减少制动失效的风险,保证车辆在紧急情况下能够及时停车。

6.选用优质材料:选用高强度、高耐磨、高温抗氧化的材料,提高制动器的耐久性和抗热性能。

四、预期效果通过以上的技术方案的实施,预计能够实现以下效果:1.制动器的制动效果显著提高,提高车辆的制动安全性。

2.降低制动器的磨损程度,延长使用寿命,减少维修成本。

鼓式制动器说明书

鼓式制动器说明书

hg)/L
(4-10)
即:β=L2/L+ hg/L
(4-11)
其中 L1=835mm L2=535mm L=1370mm hg=745mm 取 =0.6
得到
β=L2/L+ hg/L
=(535+0.6 ×745) ÷1370
=0.72
( 2)同步附着系数
0=(Lβ-L2 )/ hg
(4-12)
=(1370×0.72 -535) ÷745=0.61
满载时质心高度:
hg =745mm
空载时质心高度:
hg' =850mm
质心距前轴的距离:
L 1 =835mm L 1' =726mm
质心距后轴的距离:
L 2 =535mm L 2'=644mm
对汽车制动性有影响的重要参数还有:制动力及其分配系数、
同步附着系数、 制动强度、 附着系数利用率、 最大制动力矩与制动因
足够的间隙,通常要求该间隙不小于
20mm.否则不仅制动鼓散
热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制
动鼓直径与轮辋直径之比的范围如下:
乘用车 D / Dr =0.64 ~0.74
货车: D / Dr =0 .70 ~ 0 .83
制动鼓内径尺寸应参照专业标准
ZB T24 D05 — 89《制动鼓
因此过分延伸衬片的两端以加大包角,对减小单位压力的作用
不大,而且将使制动不平顺,容易使制动器发生自锁。因此,
包角一般不宜大于 120°。
取 β =100°
衬片宽度 b 较大可以减少磨损, 但过大将不易保证与制动鼓全
面接触。 中华人民共和国专业标准 QC/T 309 —1999 《制动鼓工

农用拖拉机鼓式制动器毕业设计

农用拖拉机鼓式制动器毕业设计

农用拖拉机鼓式制动器毕业设计
引言
这份文档是关于农用拖拉机鼓式制动器的毕业设计的详细说明。

本文将介绍制动器的原理和设计要求,并提供一个简单的设计方案。

制动器原理
拖拉机鼓式制动器是一种常见的制动装置,采用摩擦力将车轮
减速或停止。

其工作原理包括制动鼓、制动片、制动系统等重要组
成部分。

当制动踏板踩下时,制动液将通过液压系统传递,使制动
片与制动鼓接触,从而实现制动效果。

设计要求
在进行农用拖拉机鼓式制动器的毕业设计时,需要考虑以下几
个设计要求:
1. 制动效果:制动器需要能够有效减速或停止拖拉机,保证行
驶安全。

2. 结构可靠:制动器的结构需要牢固可靠,能够耐受长时间的
使用和重负荷。

3. 制动平衡:制动器在两侧车轮上需要保持平衡的制动效果,以确保稳定的行驶。

4. 维修便捷:制动器设计应考虑维修和更换零部件的方便性,以降低维护成本。

设计方案
基于以上设计要求,我们提供以下简单的设计方案:
1. 制动片材料选择:选用高温耐磨损的制动片材料,如特殊合金材料。

2. 制动鼓设计:制动鼓应具备良好的散热性能,以避免制动效果下降。

3. 制动液选择:选择耐高温、低凝固点的制动液,以确保在各种工况下都能正常工作。

4. 液压系统设计:设计合理的液压系统,确保制动压力均匀分布并能快速响应。

该设计方案着重于简单且传统的设计方法,以确保设计过程中不存在法律复杂性和不确定性。

请注意,本文仅为毕业设计提供简要指导,具体细节和数据应根据实际需求和情况进行研究和分析。

---
完成以上内容后,请注意修改标题中的字数要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计设计说明书题目 SC6408V 商用车鼓式制动器总成设计专业车辆工程<汽车工程)班级 2006级汽车一班学生 ___ 廖械兵指导老师___ 文孝霞重庆交通大学2018年前言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。

然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。

对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。

但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。

对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。

但是,钳-盘式制动器的缺点在于:其制动效能因数很低<只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。

因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。

2 商用车制动系概述汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上>驻留不动的机构。

从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。

近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。

也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

汽车制动系统种类很多,形式多样。

传统的制动系统结构型式主要有机械式、气动式、液压式、气—液混合式。

它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。

汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置,牵引汽车应有自动制动装置等。

作为制动系的主要组成部分,在车辆上常用的传统蹄-鼓式制动器包括领从蹄型、双领蹄型、双从蹄型、双向自增力型等不同的结构型式。

3 鼓式制动器技术研究进展和现状长期以来,为了充分发挥蹄-鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对蹄-鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。

这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。

1978 年,Brian Ingram 等提出一种蹄平动的鼓式制动器形式;这种制动器的制动蹄因为受到滑槽的限制,只能平动不能转动,因此没有增势效应,也没有减势效应,与盘式制动器类似,理论上制动效能和摩擦系数的关系是线性的,制动稳定性较好,同时,可以有效地防止传统鼓式制动器普遍的摩擦片偏磨现象,但制动效能因数较低。

1997年,提出了一种“电控自增力鼓式制动器”设计方案,该制动器是通过机械的方法来实现鼓式制动器的自增力,制动效能因数的变化范围为2~6。

应用一套电控机械装置调整领蹄的支承点来提高制动器的制动效能数,以补偿由于摩擦材料的热衰退而引起的摩擦系数降低。

该制动器达到相同的制动力矩所要求的输入力是盘式制动器1/7。

该系统的控制装置允许每个制动器单独工作,从而提高了行车的安全性,另外对驾驶和操纵舒适性也有所提高,但仍然存在一些问题,诸如系统复杂、高能耗、高成本、维护困难等。

1999年提出一种四蹄八片<块)式制动器,通过对结构参数合理匹配设计,制动效能因数有一定地提高,同时制动效能_因数对摩擦系数的敏感性也可以有适当地改善,这就在一定程度上改善了制动效能的稳定性。

2000 年,提出一种具有多自由度联动蹄的新型蹄-鼓式制动器,该型式的制动器使得制动效能因数及其稳定性得到显著提高;摩擦副间压力分布趋于均匀,可保证摩擦副间接触状态的稳定,并延长摩擦片使用寿命;性能参数可设计性强,可根据对制动效能的需要,较灵活地进行制动器设计。

另外,近年来则出现了一些全新的制动器结构形式,如磁粉制动器、湿式多盘制动器、电力液压制动臂型盘式制动器、湿式盘式弹簧制动器等。

对于关键磁性介质——磁粉,选用了抗氧化性强、耐磨、耐高温、流动性好的军工磁粉;磁毂组件选用了超级电工纯铁DT4,保证了空转力矩小、重复控制精度高的性能要求;在热容量和散热等方面,采用了双侧带散热风扇,设计了散热风道等,使得该技术有着极好的应用前景[3]。

尽管对蹄-鼓式制动器的设计研究取得了一定的成绩,但是对传统蹄-鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可为后续设计提供理论参考。

4 研究重点以及目的研究重点:根据设计车型的特点,合理计算该车型制动系统制动力及制动器最大制动力矩、鼓式制动器的结构形式及选择、鼓式制动器主要参数的计算与确定、摩擦衬块的磨损特性计算、制动器热容量和温升的核算、制动力矩的计算与校核、在二维或三维设计平台AUTO CAD中完成鼓式制动器零件图以及装配图的绘制、设计合理性的分析和评价等。

本次设计的目的是通过合理整和已有的设计,阅读大量文献,掌握机械设计的基本步骤和要求,以及传统的机械制图的步骤和规则;掌握鼓式制动器总成的相关设计方法,以进一步扎实汽车设计基本知识;学会用AUTO CAD,UG等三维软件进行基本的二维或三维建模和制图,同时提高分析问题及解决问题的能力。

提出将各种设计方法互相结合,针对不同的设计内容分别应用不同的方法,以促进其设计过程方法优化、设计结果精益求精。

目录中文摘要I英文摘要II第1章鼓式制动器结构形式及选择11.1鼓式制动器的形式结构11.2 鼓式制动器按蹄的属性分类21.2.1 领从蹄式制动器21.2.2 双领蹄式制动器61.2.3 双向双领蹄式制动器71.2.4 单向増力式制动器91.2.5 双向増力式制动器9第2章制动系的主要参数及其选择132.1 制动力与制动力分配系数132.2 同步附着系数182.3制动器最大制动力矩202.4 鼓式制动器的结构参数与摩擦系数212.4.1 制动鼓内径D222.4.2 摩擦衬片宽度b和包角β23242.4.3 摩擦衬片起始角2.4.4 制动器中心到张开力P作用线的距离a242.4.5 制动蹄支承点位置坐标k和c242.4.6 衬片摩擦系数f24第3章制动器的设计计算253.1浮式领—从蹄制动器(平行支座面> 制动器因素计算253.2制动驱动机构的设计计算273.2.1所需制动力计算273.2.2制动踏板力验算283.2.3 确定制动轮缸直径293.2.4轮缸的工作容积293.2.5 制动器所能产生的制动力计算303.3制动蹄片上的制动力矩313.4制动蹄上的压力分布规律353.5 摩擦衬片的磨损特性计算373.6 制动器的热容量和温升的核算403.7行车制动效能计算413.8 驻车制动的计算42第4章制动器主要零件的结构设计454.1制动鼓454.2 制动蹄464.3 制动底板474.4 制动蹄的支承474.5 制动轮缸474.6 摩擦材料474.7 制动器间隙48结论50致谢52参考文献51附录 153附录 254摘要鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动蹄位于制动轮内侧,刹车时制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。

制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。

本设计就摩擦式鼓式制动器进行了相关的设计和计算。

在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的结构形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此基础上进行制动器主要零部件的结构设计。

最后,完成装配图和零件图的绘制。

关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTDrum brake, also known as block-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.In the vehicle braking system has a very important role, failure will result in disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the actual product, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then calculate the braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major components. Finally, assembly drawings and parts to complete mapping.KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature rising第1章鼓式制动器结构形式及选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。

相关文档
最新文档