运筹学

合集下载

运筹学的起源与发展

运筹学的起源与发展

02
CATALOGUE
运筹学的发展历程
线性规划与非线性规划阶段
线性规划
线性规划是运筹学的一个重要分支,它研究如何在线性约束 条件下,优化线性目标函数。线性规划在生产计划、物流管 理等领域有广泛应用。
非线性规划
非线性规划是相对于线性规划而言的,它研究的是非线性目 标函数和约束条件下的最优化问题。非线性规划在很多实际 问题中都有应用,如投资组合优化、路径规划等。
人工智能与大数据阶段
人工智能
人工智能是研究如何让计算机模拟人类智能的学科。运筹学与人工智能的结合,使得机 器学习、深度学习等技术在运筹学中得到广泛应用,为解决复杂问题提供了新的思路和
方法。
大数据
大数据是指数据量巨大、处理难度高的数据集合。运筹学与大数据的结合,使得数据挖 掘、数据可视化等技术成为运筹学的重要工具,为解决实际问题提供了海量数据支持。
随机规划
随机规划是处理具有不确定性的优化问题的一种方法,其中某些参数或变量是随机的。随机规划可以使用概率模型或统计模 型来描述不确定性,并使用期望值模型或机会约束模型来定义优化问题。随机规划可以使用蒙特卡洛模拟、期望值迭代法等 求解方法进行求解。
随机规划在风险管理、金融衍生品定价、可靠性优化等领域有着广泛的应用,例如投资组合优化、生产计划等。
古代水利工程
古代水利工程如都江堰、郑国渠等的建设,体现了对资源优化配置 和工程管理的运筹思想。
古代商业活动
古代商业活动中,如汉代的丝绸之路,涉及到了物资调配、路线规 划等运筹问题。
近现代的运筹学萌芽
概率论与统计学
17世纪欧洲的科学家开始研究概率论 和统计学,这些学科为运筹学提供了 数学基础。
军事运筹学
对企业决策的支撑

运筹学重点内容

运筹学重点内容

1.科学决策科学决策是指决策者凭借科学思维,利用科学手段和科学技术所进行的决策。

程序性:在正确的理论指导下,按照一定的程序,正确运用决策技术和方法来选择行为方案。

创造性:决策总是针对需要解决的问题和需要完成的新任务,运用多种思维方法进行的创造性劳动。

择优性:在多个方案的对比中寻求能获取较大效益的行动方案,择优是决策的核心。

指导性:决策结果必须指导实践。

2. 运筹学运筹学是一种科学决策方法。

是依据给定目标和条件从众多方案中选择最优方案的最优化技术。

是一门寻求在给定资源条件下,如何设计和运行一个系统的科学决策方法。

与管理科学关系:管理科学涵盖的领域比运筹学更宽一些。

可以说,运筹学是管理科学最重要的组成部分。

与系统科学、系统分析、工业工程的关系:系统科学、系统分析、工业工程等学科的研究内容比运筹学的研究内容窄一些。

3.运筹学研究的特点科学性:运筹学是在科学方法论的指导下通过一系列规范化步骤进行的;运筹学是广泛利用多种学科的科学技术知识进行的研究。

运筹学研究不仅仅涉及数学,还要涉及经济科学、系统科学、工程物理科学等其它学科。

实践性:运筹学以实际问题为分析对象,通过鉴别问题的性质、系统的目标以及系统内主要变量之间的关系,利用数学方法达到对系统进行最优化的目的。

分析获得的结果要能被实践检验,并被用来指导实际系统的运行。

系统性:运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达到最优状态。

综合性:运筹学研究是一种综合性的研究,它涉及问题的方方面面,应用多学科的知识,因此,要由一个各方面的专家组成的小组来完成。

4.运筹学模型运筹学研究的模型主要是抽象模型:数学模型。

数学模型的基本特点是用一些数学关系(数学方程、逻辑关系等)来描述被研究对象的实际关系(技术关系、物理定律、外部环境等)。

4.1模型特点它们大部分为最优化模型。

一般来说,运筹学模型都有一个目标函数和一系列的约束条件,模型的目标是在满足约束条件的前提下使目标函数最大化或最小化。

运筹学的定义

运筹学的定义

运筹学的定义
运筹学是一门研究决策的学科,它综合了数学、统计学、信息学、经济学、管理学等多个领域的知识和技术,旨在通过科学的方法来解决实际问题。

运筹学在现代社会中拥有广泛的应用,涉及到许多领域,如物流、交通、金融、医疗、能源等。

运筹学的主要目标在于找到最优解决方案。

例如,在物流领域,如何在有限的时间内将货物运输到目的地,同时降低运输成本;在金融领域,如何通过科学的投资策略来最大化收益,同时降低风险。

这些问题都可以通过运筹学的方法来解决。

为了实现这些目标,运筹学应用了许多技术和方法。

其中最常用的是线性规划,即在一组约束条件下最小化或最大化一个线性函数。

除此之外,运筹学还包括非线性规划、整数规划、动态规划、图论、排队论、模拟等等方法。

这些方法都有不同的应用场景,可以根据具体问题的特点选择最合适的方法。

运筹学的应用不仅限于商业领域,也可以用于解决社会问题。

例如,在医疗领域,如何最大化患者的生存率,同时降低医疗成本;在能源领域,如何通过科学的能源规划来提高能源利用效率,降低污染和排放。

这些问题都需要运筹学的方法来提供解决方案。

运筹学是一门非常实用的学科,它可以为我们提供科学的决策方法,解决实际问题。

随着科技的发展和社会的进步,运筹学的应用范围
也将更加广泛。

我们应该深入学习和应用运筹学的知识和方法,为实现更高效、更节约、更可持续的社会发展做出贡献。

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学研究的模型主要是抽 象模型——数学模型。数学模型 的基本特点是用一些数学关系 (数学方程、逻辑关系等)来描 述被研究对象的实际关系(技术 关系、物理定律、外部环境等)。
运筹学模型的一个显著 特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
3、系统性
运筹学用系统的观点来分析 一个组织或系统),它着眼于整 个系统而不是一个局部,通过协调 各组成部分之间的关系和利害冲突, 使整个系统达到最优状态。
4、综合性
运筹学研究是一种综合性的 研究,它涉及问题的方方面面,应 用多学科的知识,因此,要由一个 各方面的专家组成的小组来完成。
三、运筹学模型
都江堰水利工程
丁谓的皇宫修复工程 北宋年间,丁谓负责修复火毁的开 封皇宫。他的施工方案是:先将工程 皇宫前的一条大街挖成一条大沟,将 大沟与汴水相通。使用挖出的土就地 制砖,令与汴水相连形成的河道承担 繁重的运输任务;修复工程完成后, 实施大沟排水,并将原废墟物回填, 修复成原来的大街。丁谓将取材、生 产、运输及废墟物的处理用“一沟三 用”巧妙地解决了。
二、运筹学研究的特点
1、科学性 (1)它是在科学方法论的指导下通 过一系列规范化步骤进行的;
(2)它是广泛利用多种学科的科学 技术知识进行的研究。运筹学研究不 仅仅涉及数学,还要涉及经济科学、 系统科学、工程物理科学等其他学科。
2、实践性
运筹学以实际问题为分析对象, 通过鉴别问题的性质、系统的目标 以及系统内主要变量之间的关系, 利用数学方法达到对系统进行最优 化的目的。更为重要的是分析获得 的结果要能被实践检验,并被用来 指导实际系统的运行。

运筹学综述[全文]

运筹学综述[全文]

运筹学综述运筹学的简介一:什么是运筹学?运筹学是Operations Research的英文单词缩写。

运筹学界的元老说运筹学是执行部门对所控制的业务做出决策提供数量上的依据的科学或利用所有应用科学执行部门对其所属业务作出决策提供数量上依据的一门科学;世界上最早的运筹学协会说运筹学是运用科学方法来解决工业、商业、政府、国防等部门里有关人力、机器、物资、金钱等大型系统的指挥或管理中所出现的复杂问题的一门学科,其目的是“帮助管理者以科学方法确定其方针和行动”。

二:运筹学的三个来源1、军事二战期间例一:在第二次世界大战期间,鲍德西雷达站的研究——“布莱克特马戏团”的出色工作,Bawdsey雷达站—Blackett杂技班专门就改进空防系统进行研究。

成员组成:心理学家3,数学家2,数学物理学家2,天文物理学家1,普通物理学家1,陆军军官1,测量员1。

研究的问题是设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力协调等获得成功,大大提高了英国本土的防空能力,不久以后在对抗德国对英伦三岛的狂轰滥炸中发挥了极大的作用,堪称运筹学的发祥与典范,展示了运筹学的本色与特色。

二战期间例二:大西洋反潜战——Morse小组的重要工作。

1942年麻省Morse教授应美国大西洋舰队反潜战官员Baker舰长的请求担任反潜战运筹组的计划与监督工作,其最出色的工作之一是协助英国打破了德国对英吉利海峡的海上封锁,研究所提出的两条重要建议是:将反潜攻击由反潜舰艇投掷水雷改为飞机投掷深水炸弹,起爆深度由100米改为25米左右,即当德方潜艇刚下潜时攻击效果最佳;运送物资的船队及护航舰艇的编队由小规模、多批次改为大规模、少批次,从而减少了损失率丘吉尔采纳Morse的建议,从而打破德国封锁;重创德国潜艇部队;Morse同时获得英国及美国战时最高勋章二战期间例三:英国战斗机中队援法决策。

运筹学(重点)

运筹学(重点)

两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000




34
Z
cij xij 0.3 300 1.1 400 0.9 200

运筹学的概念

运筹学的概念

运筹学的概念运筹学是一种综合性学科,它在现代管理中起着至关重要的作用。

运筹学是一种运用数学、统计学、计算机科学以及其他相关领域的方法和理论来帮助制定最优决策的学科。

它的主要目标是通过通过信息分析和决策模型来使决策者在制定决策时更加合理、科学和精准。

下面是对运筹学概念的详细介绍。

一、运筹学的基本定义运筹学(Operations Research,简称OR)是一门科学,通过使用计算机和数学模型,研究如何最好地利用有限资源来达到预期目标,主要研究方法包括优化、数理统计、决策分析、模拟等。

二、运筹学的发展历程运筹学是在二战期间发展出来的,主要应用于军事后勤问题的解决。

之后,运筹学学科马不停蹄地在各个领域快速发展,至今已经成为了一门广泛的学科。

三、运筹学的应用范围运筹学在各个领域都有广泛的应用,例如生产制造、物流管理、金融风险管理、医疗管理、资源分配等。

它在实践中的应用能够使企业和组织在有限的资源下获得最大收益。

例如,电商企业可以利用运筹学和网络优化技术来解决配送问题。

医院可以利用运筹学与供应链的整合优化来提高采购成本的效率。

银行等金融机构则可以利用运筹学来建立风险管理模型,减轻市场波动造成的经济损失。

四、运筹学的关键技术该学科主要基于优化、数学建模、统计推断和计算机仿真等关键技术。

对于不同的问题,会采用不同的技术手段。

例如,对于线性规划问题,使用线性规划算法进行求解;对于决策树问题,可以使用决策树算法进行求解;对于复杂的大规模问题,可以使用数学建模与计算机仿真技术进行求解。

总之,运筹学是为了解决实际问题而产生的一种学科,它在生产、经济、政策等许多领域有广泛应用,发展迅速,使得成本降低、管理规范化、业务流程优化等问题得到了解决。

运筹学简介

运筹学简介



Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想 田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
9
为此,一些科学家就如何合理运用雷达开始了研究。 1939年,英国皇家空军指挥部组织了一个小组,即成立了 英国第一个运筹小组,组长是曼彻斯特大学物理学家、英 国战斗机司令部顾问P.M.S.Blackett(战后因在宇宙射线 方面的研究成果而获得诺贝尔物理学奖)。组员:2位理论 数学家,2位应用数学家,1位天文物理学家, 1位普通物 理学家,3位心理学家,1位海军军官,1位陆军军官,l位 测量员)。——“Blackett杂技团”。 他们研究的问题是:设计将雷达信息传递到指挥系统和武 器系统的最佳方式;雷达与武器的最佳配置。他们对探测、 信息传递、作战指挥、战斗机与武器的协调等做了系统的 研究,并获得成功。他们在秘密报告中使用了 “Operational Research”一词,即“运筹学”。
6
2. 运筹学在国外 运筹学的产生 运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中 将纳尔森亲自制定了周密的战术方案。1805年10月21日, 这场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰 队,由27艘战舰组成;另外一方是由费伦钮夫(Villenuve) 率领的法国-西班牙联合舰队,共有33艘战舰。在一场海战 后,法国-西班牙联合舰队以惨败告终:联合舰队司令费伦 钮夫连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。

运筹学简介

运筹学简介

课程内容
线性规划 非线性规划 动态规划
参考书
运筹学(Operations Research) 数学规划原理与方法(Mathematic Programming) 线性与非线性规划 线性规划(Linear Programming) 非线性规划(Nonlinear Programming) 最优化方法(Optimization) 动态规划(Dynamic Programming)
运筹学简介
运筹学简史
运筹学(Operations Research)的起源 • 起源:古代战争、娱乐、建设 • 学科产生:第二次世界大战
从1945年到50年代初,被称为创建时期。1951年 莫尔斯和金博尔合著的《运筹学方法》标志着 这门学科的形成。 50年代初期到末期。电子计算机的发展起到非常 重要的作用,是的诸如单纯形法、动态规划等 得以在实际管中应用。
发展形成的分支: 线性规划 非线性规划 动态规划 对策论 决策论 图论与网络 排队论等
运筹学的应用
生产计划 市场营销 运输安排 优化设计 库存管理 人事管理
优化模型
目标函数 约束条件 模型
min(max) f ( x) s.t. x ∈ S ( g ( x) ≥ 0)
运筹学的工作步骤
提出和活动与军事活 动中能用数量来表达有关运用、筹划与 管理方面的问题.它根据问题的要求, 通过数学的分析与运算,作出综合性的 合理安排.以达到较经济较有效地使用 人力物力。” 《中国企业管理百科全书》: “应用分析、 试验、量化的方法,对经济管理系统中 人、财、物等有限资源进行统筹安排, 为决策者提供有依据的最优方案,以实 现最有效的管理。”
• 扩展:战后用于民用事业 • 成型:各个分支成熟 • 成熟:计算机、信息技术结合

运筹学

运筹学

当然对价格还要有非负限制。 当然对价格还要有非负限制。即:
y1 , y2 , y3 ≥ 0
将该厂所有的资源都用来加工外来产品, 将该厂所有的资源都用来加工外来产品,其 总收入(即对方的总支出) 总收入(即对方的总支出)是
W = 18 y1 + 4 y2 + 12 y3
从工厂的决策者来看当然是W越大越好。但是根据 从工厂的决策者来看当然是W越大越好。 第二条原则,也应该使对方的支出尽可能的少; 第二条原则,也应该使对方的支出尽可能的少; 从而这个问题就可以转化为下述数学问题: 从而这个问题就可以转化为下述数学问题:
§1 . 1 线性规划问题
例1 生产计划问题-Product Mix 某企业要在计划期内安排生产甲、乙两种产品, 某企业要在计划期内安排生产甲、乙两种产品,这 个企业现有的生产资料是:设备 台时 原材料A 吨 台时, 个企业现有的生产资料是:设备18台时,原材料 4吨, 原材料 B 12吨;已知单位产品所需消耗生产资料及利润 吨 如下表。问应如何确定生产计划使企业获利最多。 如下表。问应如何确定生产计划使企业获利最多。
问题分析 分别表示这三种资源的收费单价。 设y1,y2,y3分别表示这三种资源的收费单价。则 由第一条原则: 由第一条原则:将用于加工产品甲或乙的所有资 源,如用来加工外来产品所获得的收回的费用, 如用来加工外来产品所获得的收回的费用, 应不低于可获得的利润, 应不低于可获得的利润,即
3 y1 + y2 ≥ 3 2 y1 + 2 y3 ≥ 5
Amount of Resource Available b1 b2 … bm
资源利用问题的数学模型为: 资源利用问题的数学模型为:
max z = c1 x1 + c2 x2 + ⋯ cn xn

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学概述

运筹学概述

2.多学科的配合
一个企业的有效管理涉及很多方面,运筹学研究中吸收了来自不同领域、具 有不同经验和技能的专家。由于专家们来自不同的学科领域,具有不同的经历经 验 ,因此增强了集体提出问题和解决问题的能力。这种多学科的协调配合在研究 的初期、在分析和确定问题的主要方面、在选定和探索解决问题的途径时,显得 尤其重要。
(1)运筹学的概念 运筹学( Operations Research )是一门新兴的应用学科。由于它所研究的对象极其 广泛,所以有着许多不同的定义。
英国《运筹学》杂志认为:“运筹学是运用科学方法(特别是数学方法)来解决那 些在工业、商业、政府和国防部门中有关人力、机器、物质、金钱等大型系统的 指挥和管理方面出现的问题的科学,目的是帮助管理者科学地决定其策略和行 动。”
(2)五规划。在一定约束条件下寻求某种目标最大或最小的方法就是规划方法要解 决的问题,包括线性规划、整数规划、非线性规划、目标规划与动态规划。一个 典型的应用就是企业在一定资源限制下寻求利润最大或成本最小。
(3)五论。在决策过程中,首先要考虑的就是竞争对手的情况,这就需要应用对 策论方法;企业必须维持一定的原料或产品的库存量以满足需求,同时为控制成 本又必须压低库存,这就是库存论要解决的问题:而图论是用图形来描述问题, 图形是由一些点以及一些点之间的连线表示,可用于解决运输设计、信息系统的 设计以及工程时间表的设计;有时也需要解决各种服务系统在排队等待现象中的 概率特性,这就需要排队论,而非常重要的产品、工程的可靠性问题就需要可靠 性模型和决策论来解决。
美国运筹学会(1976年)的定义是:“运筹学是研究用科学方法来决定在资源不充分 的情况下如何最好地设计人机系统,并使之最好地运行的一门学科。”这从侧面 描写了运筹学的特点。 《联邦德国科学辞典》(1978年)上的定义是:“运筹学是从事决策模型的数学解 法的一门科学。”

运筹学的起源与发展

运筹学的起源与发展

运筹学的起源与发展运筹学是一门研究优化资源配置、提高系统效率的学科。

从古代的军事思想和管理哲学中起源,运筹学经过多个阶段的发展,已成为解决现实问题不可或缺的工具。

1、运筹学的起源运筹学的思想可以追溯到古代。

例如,古代的军事家在策划战役时,会考虑兵力、战略和战术等因素,力求以最小的代价取得最大的胜利。

这种对资源优化配置的追求,正是运筹学的核心思想。

在管理哲学中,运筹学也得到了应用,如古代的皇帝在治理国家时,会考虑各种资源、政策和社会稳定等因素,以制定出最优的政策。

2、运筹学的发展运筹学真正的发展是在20世纪初。

当时,由于工业革命的出现,人们开始面对更加复杂的大规模问题,如生产计划、物资管理和交通运输等。

这些问题的出现促进了运筹学的诞生。

2.1产生阶段20世纪初,一些科学家开始运用数学和统计学方法来解决实际问题。

例如,亨利·福特在生产线上采用流水线生产方式,大大提高了汽车的生产效率。

这个阶段的主要成果是确定了运筹学的基本研究方法和应用领域。

2.2发展阶段在20世纪中叶,运筹学得到了进一步发展。

随着计算机技术的进步,运筹学开始采用更加高效的算法和优化技术,以解决更加复杂的问题。

例如,兰德公司在这个时期为美国军方提供了一系列重要的优化方案,为美国在冷战中的胜利做出了贡献。

2.3成熟阶段进入21世纪,运筹学已经发展成为一门成熟的学科。

随着大数据和人工智能等新技术的出现,运筹学开始与这些领域深度融合,形成了诸多新的研究方向和应用领域。

例如,机器学习和人工智能技术在运筹学中的应用,为解决实际问题提供了更加强大的支持。

3、运筹学的应用运筹学在各个领域都有广泛的应用。

在商业领域,运筹学被用来制定供应链管理、生产计划和库存管理等策略,以提高企业的效率和竞争力。

例如,亚马逊通过运用运筹学算法来优化其物流和仓储系统,从而实现了高效的商品配送和服务。

在工业领域,运筹学被应用于生产过程优化、设备维护和能源管理等方面。

运筹学的名词解释

运筹学的名词解释

运筹学的名词解释运筹学(Operations Research),又被称为运筹学、管理科学或决策科学,是一门综合运用数学、经济学和工程学等多学科的方法和技术,解决复杂问题的学科。

运筹学的主要目标是通过最优化方法和决策分析,提高系统的效率、效果和可行性。

运筹学的应用范围非常广泛,几乎涉及到各个领域,包括工业制造、物流管理、交通运输、金融投资、医疗卫生、军事战略、环境保护等等。

无论是企业的生产调度、供应链管理,还是城市交通的拥堵优化、航空航线的规划,运筹学都能发挥重要作用。

在运筹学的分析中,最为常见的方法之一是最优化。

最优化在数学中是一个非常重要的概念,它可以帮助我们找到一个系统或者问题的最佳解决方案。

最优化方法可以通过建立数学模型和运用优化算法来实现。

在实际应用中,最优化方法可以用来解决资源利用、成本控制、风险管理等问题,从而提高整个系统的效率和竞争力。

除了最优化方法,运筹学还涉及到决策分析。

决策分析是通过建立决策模型,分析不同决策方案的优劣,并选择最佳的决策方案。

决策分析可以帮助管理者在不确定性和风险下作出明智的决策。

在现实生活中,决策分析可以应用于项目管理、投资决策、市场营销、风险评估等方面,对于优化资源配置和风险控制起到关键作用。

运筹学的研究方法可以分为定量研究和定性研究两大类。

定量研究是基于数学、统计和计算机等工具,通过数据分析和模型建立,进行量化分析的研究方法。

定量研究可以提供精确的数据和结果,有助于准确判断问题的本质和解决方案的有效性。

而定性研究则更注重于描述性和解释性的研究方法,通过文字叙述、案例分析等方式,挖掘问题背后的隐含规律和原因。

定性研究可以帮助我们深入理解问题的本质,从而更好地制定解决方案。

运筹学的发展离不开计算机的支持。

随着计算机技术的进步,运筹学得以快速发展并取得了重大的突破。

计算机可以进行大规模的数据分析和模型求解,提高运筹学的效率和精确度。

同时,计算机还可以完成复杂的运算和优化算法,为决策提供多种方案,并通过模拟实验进行验证。

运筹学

运筹学

绪论一、运筹学一词起源于20世纪30年代。

据《大英百科全书》释义,“运筹学是一门应用于管理有组织系统的科学”,“运筹学为掌管这类系统的人提供决策目标和数量分析的工具”。

我国《辞海》中有关运筹学条目的释义为:“运筹学主要研究经济活动与军事活动中能用数量来表达有关运用、筹划与管理方面的问题。

它根据问题的要求,通过数学的分析与运算,做出综合性的合理安排,以达到较经济较有效地使用人力物力”。

运筹学一词的英文原名,美国英语Operations Research,英国英语Operational Research (缩写为O.R.),可直译为“运用研究”或“作业研究”。

1957年我国从“夫运筹于帷幄之中,决胜于千里之外”这句古语中摘取“运筹”二字,将O.R.正式译作运筹学,比较恰当地反映了这门学科的性质和内涵。

由于运筹学涉及的主要领域是管理问题,研究的基本手段是建立数学模型,并且比较多地运用各种数学工具,从这点出发,曾有人将运筹学称作“管理数学”。

二、朴素的运筹学思想在我国古代文献中就有不少记载,例如齐王赛马和丁渭主持皇宫的修复等事。

二战后,运筹学的发展大致可分为三个阶段:1、从1945年到20世纪50年代初,被称为创建时期。

2、20世纪50年代初期到20世纪50年代末期,被认为是运筹学的成长时期。

3、自20世纪60年代以来,被认为是运筹学迅速发展和开始普及的时期。

国际上著名的运筹学刊物有:Management Science,Operations Research,Journal of Operational Research Society,European Journal of Operations Research等,国内运筹学的刊物或较多刊登运筹学理论和应用的刊物主要有:运筹学学报,运筹与管理,系统工程学报,系统工程理论与实践,系统工程理论方法应用,数量经济技术经济研究,预测,系统工程,系统科学与数学等等。

运筹学PPT完整版

运筹学PPT完整版

C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效

THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:工商C122
学号:
姓名:
河北工业大学城市学院
管理学院
2014年6月11日
目录
一、线性规划 (3)
二、整数规划问题 (7)
三、目标规划 (9)
四、运输问题 (10)
五、指派问题 (12)
六、图与网络分析 (13)
七、网络计划 (15)
实验内容
(一) 线性规划问题: 用EXCEL 表求解下面各题,并从求解结果中读出下面要求的各项,明确写
出结果。

例如:原问题最优解为X*=(4,2)T 1、
① 原问题的最优解(包括决策变量和松弛变量)、最优值; ② 对偶问题的最优解;
③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。

(注:第①②③④问从灵敏度分析表得出,下题同)
解:
由工作表-线性规划
1
得出敏感性报告
50
10521≤+x x 1
21≥+x x 4
2≤x 0,21≥x x 213max x x z +
=
所以得:
①最优解x*=(2,4,0,5,0)T ,最优值z=14
②影子价格即为对偶问题的y 值,则对偶问题的最优解z*=0.2*50+0*1+1*4=14 ③目标函数价值系数对应的允许的增量为0.5,1E+30,允许的减量为1,1 即0 <= C1 <= 1.5,同理可得:2 <= C2 <= 3
故C1的取值范围为[0,1.5], C2的取值范围为[2,3],
④与(3)题同理可得b1的取值范围为[40,50], b2的取值范围为[1,6] ,b3
的取值范围为[0,5]
2、
⎪⎪⎩⎪⎪

⎧≥≤++≤++≤++++=0
,,420101324008510300
10289.223max 3213213213213
21x x x x x x x x x x x x x x x z (1)求解:① 原问题的最优解(包括决策变量和松弛变量)、最优值;
② 对偶问题的最优解;
③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。

解:由工作表-线性规划2
得到敏感性报告:
①最优解x*=(22.53, 23.2, 7.333, 0,0,0)T,最优值z=135.27
②影子价格即为对偶问题的y值,则对偶问题的最优解
z*=0.03*300+0.266666667*400+0.046666667*420=135.266667
③目标函数价值系数对应的允许的增量为0.3,0.2,1.6;允许的减量为1.45,
0.78,0.15
即1.55 <= C1 <= 3.3,同理可得:1.22<= C2 <= 2.2, 2.75<=C3<=3.06
故C1的取值范围为[1.55,3.3], C2的取值范围为[1.22,2.2],
C3的取值范围为[2.75,3.06]
④与(3)题同理可得b1的取值范围为[263.3,465.7] ,b2的取值范围为[277.1,
444], b3的取值范围为[200,817.6]
(2)对产品I进行改进,改进后系数列向量为(9,12,4)T,价值系数为4.5
①原问题的最优解(包括决策变量和松弛变量)、最优值;
②对偶问题的最优解;
③目标函数价值系数的变化范围;
④右端常数的变化范围;
⑤对原问题的最优解有什么影响。

解:由表线性规划2
得出敏感性报告
①最优解x*=(22.79, 25.29, 0, 44.26, 0,0)T ,最优值z=153.16 ②影子价格即为对偶问题的
y
值,则对偶问题的最优解
z*=0*300+0.371323529*400+0.011029412*420=153.16176
③ 目标函数价值系数对应的允许的增量为:0.3,12.625,0.125;与允许的减量
为0.46,0.125,1E+30,即4.04 <= C1 <=4.8,故C1的取值范围为[4.04,4.8], C2的取值范围为[1.875,14.625],C3的取值范围为[2.9,3.025]
④与(3)题同理可得b1的取值范围为[255.74,300], b2的取值范围为[161.54,
455.23] ,b3的取值范围为[133.33,1040]
⑤使原问题的最优解全发生了变化,尤其是使得松弛变量有了不为零的数值。

(二)整数规划:写出下面问题的最优解和最优值
(1)
⎪⎪⎩
⎪⎪

⎧≥≤++-≤+-≤-++=且为整数0,,5
5
6544264max 32132121213
21x x x x x x x x x x x x x z 解:由表整数规划1得
所以:最优解:x*=(2,1,6)T 最优值:z=26
(2)
⎪⎪

⎪⎪

⎧=≥+≥++≤+-++=10,,133********min 321323213213
21或x x x x x x x x x x x x x x z 解:由表整数规划2得
所以:最优解:x*=(0,0,1)T 最优值:z=2
(三)目标规划 (1)
⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥-=-+=-+=-=-+++++++=+-+-++
-+
-+
-
+
+--+-4,3,2,1,0,,104570
80
)
53()35(min 21441
33222111213233234211i d d x x d d d d d x d d x d d x x d d P d d P d P d P z i
i
求解:① 问题的解,并判断是满意解还是最优解;
② 若目标函数变为+
++---+++++=4332232211)53()35(min d P d d P d d P d P z ,
问原解有什么变化;
③ 若第一个约束条件的右端项改为120,原解有什么变化。

解:①
由表得,问题的是满意解,解为解为x*=(70,20)T

修改目标函数后,问题的解为解为x*=(70,45)T
变量x1不变,x2增加。


第一个约束条件的右端项改为120后,问题的解为x*=(75,45)T
变量x1,x2增加
(四)运输问题
(1)求解下面运输问题,并求出最优解和最优值
解:
最优解是:(期初)生产1销往一,生产1销往二;(一正常)生产2运往销地一;(一加班)不生产;(二正常)生产3运往销地二;(二加班)不生产;(三正常)生产1运往销地三;(三加班)生产3运往销地三。

总成本是:1400
(2)求解下面运输问题,并求出最优解和最优值
解:最优解是:产地1生产20,运往销地丙。

产地2生产20,运往销地甲;生产10,运往销地丁。

产地3生产5,运往销地甲;生产25,运往销地乙。

总成本是235。

(五)指派问题
分配甲乙丙丁四人去完成五项任务,每人完成各项任务时间如下表,由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每人完成一项,试确定花费时间最少的指派方案。

解:
的工作;丁做A 的工作。

(六)图与网络分析
1、最短路径:写出下图从v 1到各点的最短路径及路长 (1)
解;
所以:
v1到v2最短路径:v1 → v2 最短路长:2
v1到v3最短路径:v1 → v2 → v3 最短路长:4
v1到v4最短路径: :v1 → v2 → v3 → v4 最短路长:5 v1到v5最短路径:v1 → v2 → v5 最短路长:8
v1到v6最短路径: v1 → v2 → v3 → v4 → v6 最短路长:6
v1到v7最短路径: v1 → v2 → v3 → v4 → v6 → v7最短路长:8
V 1
V 2 2 V 3 5 2 6 1 4 4 3
V 4 4 1 V 5 1
V 7
2
V 6
2、最大流量
(1)写出下图的最大流量(弧上数字为容量和当前流量)
解:
所以得,最大流量为18。

(2)如下图,从三口油井 ① ② ③ 经管道将油输至缩水处理厂 ⑦ ⑧ ,中间经过 ④ ⑤ ⑥ 三个泵站。

已知图中弧旁数字为各管道通过的最大能力(吨/小时),求从油井每小时能输送到处理厂的最大流量。

v 7
10
v 1 v 8
v 2 v 5 v 4 v 6
10
10 14
5 5 4 7 5 4 9
13
6
v 3
解:
所以得从油井每小时能输送到处理厂的最大流量110。

(七)网络计划
寻找下列网络计划的关键路线,并写出工程总时间。

解:
所以得:
关键路线: 1 → 3 → 6 → 7 → 10 总共程时间:11
(2)
解:
所以:关键路线:1 → 2 → 7 → 8 → 9 总共程时间:37。

相关文档
最新文档