人教版数学六年级下册用比例解决问题 教案
人教版六年级数学下册《用比例解决问题》一等奖创新教案
人教版六年级数学下册《用比例解决问题》一等奖创新教案《用比例解决问题》教案设计教学目标知识与技能1.加深对正、反比例意义的理解,能熟练地判断成正、反比例的量。
2.掌握利用正、反比例的意义解决比较简单的实际问题的步骤和方法,巩固和加深对所学的简易方程的认识。
过程与方法1.经历思考量与量之间关系的过程,体会函数思想。
2.经历用比例知识解决问题的过程,体会解决问题的不同方法,培养学生的发散思维。
情感、态度与价值观感受数学知识与实际生活的密切联系,激发学习数学的兴趣,培养学生勤于动脑的习惯。
重点难点重点:掌握用正、反比例知识解决问题的方法和步骤。
难点:能依据正、反比例的关系解决问题。
课前准备教师准备PPT课件学生准备练习本教学过程板块一复习铺垫,引入新课1.复习铺垫。
课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。
(2)一辆汽车从甲地开往乙地,行驶的速度和时间。
提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的两种量成什么比例关系?(学生讨论后解答)预设生1:(1)题中有速度、时间和路程三种量,速度不变,汽车行驶的时间和路程是两种相关联的量,这两种量成正比例关系。
生2:(2)题中有速度、时间和路程三种量,甲地到乙地的路程不变,汽车行驶的速度和时间是两种相关联的量,这两种量成反比例关系。
2.引入新课。
生产、生活中的一些实际问题也可以运用比例知识来解决。
今天,我们就来学习用正、反比例知识解决问题。
(板书课题:用比例解决问题)操作指导通过复习巩固判断两种量成什么比例关系为新知的学习做好铺垫,感受数学知识与实际生活的密切联系,从而激发学习兴趣。
板块二合作交流,探究新知活动1 用正比例知识解决问题1.课件出示教材59页例5。
张阿姨家上个月用了8 t水,水费是40元。
李奶奶家上个月用了10 t水,李奶奶家上个月的水费是多少?2.读题,并汇报题中的已知条件和所求问题。
预设生1:已知条件是张阿姨家上个月用了8 t水,水费是40元;李奶奶家用了10 t水。
人教版数学六年级下册用比例解决问题优秀教案(推荐3篇)
人教版数学六年级下册用比例解决问题优秀教案(推荐3篇) 人教版数学六年级下册用比例解决问题优秀教案【第1篇】用比例解决问题【教学目标】知识目标:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。
能力目标:能进一步熟练地判断成正比例的量和成反比例的量,加深对正反比例概念的理解,沟通知识间的联系。
情感目标:培养学生良好的解答应用题的习惯。
【教学重难点】重点:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。
难点:能进一步熟练地判断成正反比例的量,加深对正反比例概念的理解,沟通知识间的联系。
【教学过程】一、复习铺垫,引入新课(课件出示)判断下面每题中的两种量成什么比例?(1)速度一定,路程和时间.(2)路程一定,速度和时间.(3)单价一定,总价和数量.(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.(5)全校学生做操,每行站的人数和站的行数.二、探究新知1.教学例5(1)学生再次读题,理解题意。
思考和讨论下面的问题:①问题中有哪三种量?哪一种量一定?哪两种量是变化的?②它们成什么比例关系?你是根据什么判断的?③根据这样的比例关系,你能列出等式吗?(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
(3)根据正比例的意义列出方程解:设李奶奶家上个月的水费是元。
=8=28×10==352.教学例6(1)出示例6情境图,你能说出这幅图的意思吗?题目中已知条件和所求的问题分别是什么?(指名回答)(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?(总用电量)已知的两个量成什么关系?为什么?(因为“每天用电量×天数=总用电量”,所以每天用电量和天数成反比例关系。
)(3)学生独立解答,组织交流。
(4)指名板演,全班讲解。
解:设原来5天的用电量现在可以用几x天。
25x=100×5x=(100×5)/25x=20回顾与反思:解决这类问题的关键是什么?(找出哪两个量的乘积一定,只要两个量的乘积一定,就可以用比例关系解答。
2023年人教版数学六年级下册用比例解决问题优秀教案(精选3篇)
人教版数学六年级下册用比例解决问题优秀教案(精选3篇)〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗《用比例解决问题》教学设计【教学内容】义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。
)【教材分析】这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。
教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。
判断过程也是正反比例意义实际应用的过程。
为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。
正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。
从而进一步提高学生分析解答应用题的能力。
【学情分析】学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。
本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。
教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。
在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。
通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。
人教新课标六年级下册数学教案:4.3.6用比例解决问题
人教新课标六年级下册数学教案:4.3.6用比例解决问题一、教学目标1. 让学生掌握比例的基本概念,能正确运用比例解决实际问题。
2. 培养学生运用比例知识进行问题分析、解决的能力。
3. 培养学生合作、交流的学习习惯,提高学生解决问题的策略意识。
二、教学内容1. 比例的基本概念2. 比例的应用3. 比例解决实际问题的方法三、教学重点与难点1. 教学重点:比例的基本概念,比例的应用,比例解决实际问题的方法。
2. 教学难点:如何运用比例解决实际问题,提高解决问题的策略意识。
四、教学过程1. 导入新课利用多媒体展示一些生活中的比例现象,引导学生观察、思考,激发学生的学习兴趣。
2. 探究新知(1)比例的基本概念利用多媒体展示比例的定义,让学生了解比例的含义,并能举出生活中的比例现象。
(2)比例的应用通过实例,让学生了解比例在生活中的应用,如按比例分配任务、按比例计算等。
(3)比例解决实际问题的方法通过例题,让学生学会如何运用比例解决实际问题。
教师引导学生分析问题,找出问题中的比例关系,然后列出比例式,求解。
3. 巩固练习设计一些具有代表性的练习题,让学生独立完成,巩固所学知识。
4. 总结与反思教师引导学生对本节课所学内容进行总结,反思自己在解决问题时的策略和方法。
五、课后作业设计一些课后作业,让学生运用比例知识解决实际问题,巩固所学知识。
六、板书设计1. 比例的基本概念2. 比例的应用3. 比例解决实际问题的方法七、教学反思本节课通过实例让学生掌握了比例的基本概念和应用,学会了运用比例解决实际问题。
在教学过程中,要注意引导学生分析问题,找出问题中的比例关系,培养学生的解决问题的策略意识。
同时,要关注学生的学习情况,及时给予指导和鼓励。
需要重点关注的细节是“比例解决实际问题的方法”。
这个部分是本节课的核心内容,也是学生学习的重点和难点。
因此,教师需要在这个环节上多花时间,详细讲解和示范,确保学生能够理解和掌握。
2024年人教版数学六年级下册用比例解决问题教案模板精选3篇
人教版数学六年级下册用比例解决问题教案模板精选3篇〖人教版数学六年级下册用比例解决问题教案模板第【1】篇〗教学内容:教材第84页例4,练习十七第2、4----7题。
教学目标:1、理解正、反比例的意义。
能正确判断两种量是否成正比例或反比例。
能熟练地运用比例来解决有关问题。
2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力3、培养学生用发展变化的观点来分析问题的能力,渗透函数思想。
教学重点:掌握正、反比例的意义。
教学难点:正确判断两种量成什么比例。
教具准备:多媒体课件。
教学过程:一、明确学习任务出示课题二、正、反比例的意义1、例4:你是怎样判断两种量成正比例还是成反比例的?正比例①两种相关联的量;②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;③两种量的比值一定。
反比例①两种相关联的量;②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;③两种量的积一定。
2、你能用字母表示正、反比例的关系吗? =k(一定)成正比例y =k(一定)成反比例三、判断两种量是否成正比例或反比例。
成什么比例?①速度一定,路程和时间。
②正方形的边长和它的面积。
③订《少年报》数量和所需钱数。
④小明从家到学校,行走的速度和时间。
⑤圆的周长和半径。
⑥圆的面积和半径。
四、用比例解决问题。
1、说一说用比例解决问题的步骤。
2、举例:修一条公路,全长12km,开工3天修了1.5km。
照这样计算,修完这条公路一共需要多少天?A.两种相关联的量是什么?B.两种量成什么比例?说明理由,写出等量关系式C.设未知数X,列出比例式D.解比例并检验五、知识应用独立完成练习十七第2、4----7题。
六、课堂总结回顾本节课的学习,说一说你有哪些收获?板书设计:比和比例(二)A.认真审题,找出两种相关联的量;B.判断两种量成时难免比例;用比例解决问题的过程、步骤C.设未知数X;D.列出比例式(含有未知数);E.解比例、检验。
六年级数学下册教案《4.3.3 用比例解决问题》37-人教版
六年级数学下册教案《4.3.3 用比例解决问题》37-人教版一、教学目标1.理解比例的概念,能正确应用比例的性质解决实际问题。
2.训练学生用比例相关知识解决问题的能力。
3.培养学生对于数学问题的分析和思考能力。
二、教学重难点重点: 1. 深入理解比例的概念,能够熟练运用比例的性质解决实际问题。
2. 通过案例分析与实践,巩固学生对比例的理解。
难点: 1. 确保学生掌握比例的运用过程中,能够准确把握问题的核心点。
2. 帮助学生提高解题的方法能力,培养学生的综合思维能力。
三、教学准备1.教师准备:课本、课件、教案、黑板、彩色粉笔等。
2.学生准备:笔记本、铅笔、尺子等学习用品。
四、教学内容1.复习比例的基本概念。
2.引导学生认识比例解决问题的重要性。
3.通过例题让学生掌握比例解决问题的基本方法。
4.实例分析,让学生在实际问题中运用比例来解决问题。
五、教学步骤第一步:复习比例的相关概念,引入比例解决问题的话题。
第二步:通过简单案例讲解,让学生熟悉比例解决问题的基本方法。
第三步:让学生分组合作,通过小组讨论解决复杂问题。
第四步:教师进行总结,引导学生进一步理解比例在问题中的应用。
第五步:布置练习作业,巩固所学内容。
六、教学反馈1.教师可以通过课堂练习、提问等方式检查学生掌握情况。
2.学生可通过课下习题完成情况,反馈自己的学习情况并提出问题。
七、教学延伸1.鼓励学生在日常生活中发现并解决问题时运用比例的方法。
2.引导学生思考比例在实际生活中的重要性和应用价值。
八、教学资源•人教版六年级数学下册教材•课件:PPT等•教学视频:相关比例问题解析九、教学总结在本节课中,学生通过学习比例解决问题的方法,掌握了比例在实际问题中的应用。
教师通过理论讲解、实例分析等方式,帮助学生深入理解比例的概念,提高了学生的问题解决能力和综合思维能力。
在接下来的教学中,将继续引导学生通过比例解决不同类型的实际问题,巩固所学内容。
2024年人教版数学六年级下册用比例解决问题优秀教案推荐3篇
人教版数学六年级下册用比例解决问题优秀教案推荐3篇〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗人教小学数学六年级下册《用比例解决问题》教案用比例解决问题教学目标:1.能使学生进一步熟练地判断成正、反比例的量,同时加深对正、反比例意义的理解。
2.能利用正、反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。
3.经历用比例知识解决问题的过程,体会解决问题的不同策略,培养学生的发散思维能力。
4.感受数学知识与实际生活的密切联系,激发研究数学的兴趣,培养学生勤于动脑思考的惯。
教学重点:正确判断题中涉及的量是否成正、反比例关系,准确运用正、反比例的意义解决实际问题。
教学难点:能够利用正、反比例的关系列出含有未知数的等式。
教学过程:一、导入1.复铺垫出示⑴一辆汽车行驶的速度不变,行驶的时间和路程。
⑵一辆汽车从甲地开往乙地,行驶的速度和时间。
提问:每道题中各有哪三种量?其中哪种量是不变的?哪两种量是相关联的?如何变化?成什么比例?学生讨论后回答。
2.引入新课出产、生活中的一些实际问题也能够使用比例知识来解决。
今天,我们就来研究用正、反比例知识解决问题。
教师板书课题。
二、新授1.用正比例知识解决问题。
出示例5主题图,学生汇报题中的已知条件和所求问题。
再指名学生完整叙述题意,根据学生的回答,课件出示例5:XXX家上个月用了8t水,水费是28元,XXX家用了10t水。
XXX奶家上个月的水费是多少钱?让学生讨论用什么方法解决例5的问题。
算术方法:28÷8×10正比例知识解答:(用水的吨数和船脚是两种相联系关系的量,船脚与用水吨数的比值稳定,可用正比例知识解答)解:设XXX奶奶家上个月的船脚是x元。
8x=28×10x=35答:XXX奶家上月的船脚是35元。
拓展:XXX家上个月的水费是42元,上个月用了多少吨水?解:设上个月用了xt水。
28x=42×8x=12答:上个月用了12吨水。
2023年人教版数学六年级下册用比例解决问题教案范文(优选3篇)
人教版数学六年级下册用比例解决问题教案范文(优选3篇)〖人教版数学六年级下册用比例解决问题教案范文第【1】篇〗教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。
3. 使学生会画出反比例函数的图象。
4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。
假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.2.自变量v的取值是v>0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x>0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.2.反比例函数的解析式又可以写成:( k是常数,k≠0).3.要求出反比例函数的解析式,只要求出k即可.实践应用例1 下列函数关系中,哪些是反比例函数(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积s的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.例2 当m为何值时,函数是反比例函数,并求出其函数解析式.例3 将下列各题中y与x的函数关系与出来.(1),z与x成正比例;(2)y与z成反比例,z与3x成反比例;(3)y与2z成反比例,z与成正比例;例4 已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y 的值.分析因为y与 x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值.例5 已知y=y1+y2, y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.小结一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.练习21.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;(2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值.3.已知y=y1+y2, y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm.(1)写出用高表示长的函数式;(2)写出自变量x的取值范围;(3)当x=3cm时,求y的值.5.试用描点作图法画出问题1中函数的图象.上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.二、探究归纳1.画出函数的图象.解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.上述图象,通常称为双曲线(hyperbola).提问这两条曲线会与x轴、y轴相交吗为什么画出反比例函数的图象1.这个函数的图象在哪两个象限和函数的图象有什么不同2.反比例函数(k≠0)的图象在哪两个象限内由什么确定3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化有什么规律反比例函数有下列性质:(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.注 1.双曲线的两个分支与x轴和y轴没有交点;2.双曲线的两个分支关于原点成中心对称.以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.三、实践应用例1 若反比例函数的图象在第二、四象限,求m的值.分析由反比例函数的定义可知: ,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.解由题意,得解得.例2 已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.例3 已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上例4 已知函数为反比例函数.(1)求m的值;(2)它的图象在第几象限内在各象限内,y随x的增大如何变化(3)当-3≤x≤时,求此函数的最大值和最小值.例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.小结本节课学习了画反比例函数的图象和探讨了反比例函数的性质.1.反比例函数的图象是双曲线(hyperbola).2.反比例函数有如下性质:(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.五、课堂练习1.在同一直角坐标系中画出下列函数的图象:2.已知y是x的反比例函数,且当x=3时,y=8,求:(1)y和x的函数关系式;(2)当时,y的值;(3)当x取何值时,3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.4.已知反比例函数经过点A(2,-m)和B(n,2n),求:(1)m和n的值;(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0< x2,试比较y1和 y2的大小四、课后作业布置课后练习卷一份六、课后教学反思〖人教版数学六年级下册用比例解决问题教案范文第【2】篇〗整理和复习教学要求:1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2023年人教版数学六年级下册用比例解决问题教案(精选3篇)
人教版数学六年级下册用比例解决问题教案(精选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗一、学生知识状况分析学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。
从而认识了线段的比,成比例线段。
二、教学任务分析本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。
平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。
在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。
学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
教学目标:(一)知识目标理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
(二)能力目标通过应用,培养识图能力和推理论证能力。
(三)情感与价值观目标(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点:平行线分线段成比例定理和推论及其应用。
教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
三、教学过程分析本节课设计了五个教学环节:第一环节:创设情景,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业.一:创设情景,引入新课下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,你能猜想出什么结果呢?通过一个生活中的实例激发学生探究的欲望,从而紧扣学生的好奇心,引入新课。
六年级下册数学人教版用比例解决问题(第2课时)优秀教学案例
二人教版用比例解决问题(第2课时)的教学中,我们旨在让学生在掌握比例的基本概念和性质的基础上,进一步深化对比例的应用。通过本节课的学习,学生应能熟练运用比例解决实际问题,提高他们的数学应用能力。
六年级下册数学人教版用比例解决问题(第2课时)优秀教学案例
一、案例背景
在六年级下册数学人教版中,第二课时主要讲述用比例解决问题。这一节内容是在学生已经掌握了比例的基本概念和性质的基础上进行教授的,旨在让学生能够运用比例解决实际问题,提高他们的数学应用能力。
本节课的教学内容主要包括两个方面:一是比例的应用,二是如何通过比例解决问题。在比例的应用方面,学生需要掌握比例的计算方法,包括求比值、求比例和求未知数等。在如何通过比例解决问题方面,学生需要学会将实际问题转化为比例问题,并通过比例计算得出答案。
五、案例亮点
本节课作为六年级下册数学人教版用比例解决问题(第2课时)的优秀教学案例,具有以下五个亮点:
1.贴近生活的情境创设:本节课通过引入购物等实际情境,让学生感受到数学与生活的紧密联系。这样的情境创设使得学生能够更好地理解和珍视数学知识,提高他们的学习动力。
2.问题导向的教学策略:本节课采用问题导向的教学策略,引导学生主动探索和发现比例的应用规律。通过提出一系列问题,激发学生的思考和探索欲望,培养他们的逻辑思维能力和解决实际问题的能力。
为了达到这个目标,我们将教授比例的计算方法,包括求比值、求比例和求未知数等。学生将通过对实际问题的分析,将其转化为比例问题,并通过比例计算得出答案。在这个过程中,学生不仅需要理解比例的计算方法,还需要学会如何将实际问题转化为比例问题,从而提高他们的数学应用能力。
2024年人教版数学六年级下册解比例优秀教案3篇
人教版数学六年级下册解比例优秀教案3篇〖人教版数学六年级下册解比例优秀教案第【1】篇〗教学目的1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.教学重点通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.教学难点通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.教学过程一、复习准备.下面每题中的两种量成什么比例关系?(1)速度一定,路程和时间.(2)总价一定,每件物品的价格和所买的数量.(3)小朋友的年龄与身高.(4)正方体每一个面的面积和正方体的表面积.(5)被减数一定,减数和差.谈话引入:我们今天运用正反比例的知识来解决实际问题.(板书:用比例知识解应用题)二、探讨新知.(一)教学例5(用比例解答下题)修一条公路,总长12千米,开工3天修了1。
5千米.照这样计算,修完这条路还要多少天?1.学生读题,独立解答.2.学生反馈:3.分析:(1)为什么需要用正比例解答?(2)12和要求的天数之间有什么关系?4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的`对应关系.(二)反馈.1.某车队运送一批救灾物品,原计划每小时行60千米,6。
5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?三、巩固反馈.1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?四、课堂总结.通过这堂课的学习,你有什么收获?〖人教版数学六年级下册解比例优秀教案第【2】篇〗教学目标:1、了解比在生活中的广泛应用。
人教版六年级下册《用比例解决问题》教学设计
本节课的核心素养目标主要包括:
1. 数学抽象:通过实际问题,让学生理解比例的概念,抽象出比例的基本性质,培养学生的数学抽象能力。
2. 逻辑推理:引导学生运用比例解决实际问题,培养学生根据已知条件进行逻辑推理的能力。
3. 数学建模:让学生学会从实际问题中建立比例模型,运用比例解决生活中的问题,培养学生的数学建模能力。
反应物A的摩尔质量是2克/摩尔,所以消耗的反应物A的摩尔数是x / 2。
反应物B的摩尔质量是4克/摩尔,所以消耗的反应物B的摩尔数是y / 4。
因为摩尔比是1:2,所以我们可以列出比例方程:x / 2 = y / 4。
解这个方程,我们可以得到:x = 2 * y / 4 = y / 2。
所以,消耗的反应物A和反应物B的质量比是1:2。
鼓励学生相互讨论、互相帮助,共同解决比例解决问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与比例解决问题相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
因为我们没有给出总距离,所以无法具体计算出x的值。
例题5:
一个化学反应中,反应物A和反应物B的摩尔比是1:2。如果反应物A的摩尔质量是2克/摩尔,反应物B的摩尔质量是4克/摩尔,那么在反应中消耗的反应物A和反应物B的质量比是多少?
解答:
设消耗的反应物A的质量为x克,消耗的反应物B的质量为y克。
根据题意,反应物A和反应物B的摩尔比是1:2,所以消耗的反应物A和反应物B的摩尔数之比也是1:2。
人教版 六年级下册《用比例解决问题》 教学设计
2024年人教版数学六年级下册用比例解决问题优秀教案精选3篇
人教版数学六年级下册用比例解决问题优秀教案精选3篇〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗【教材分析】本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。
本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。
从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。
【学情分析】本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。
例3分析的是两个量之间的关系,教学方法与例1相同。
【教学目标】1、使学生掌握解答稍复杂的`求一个数几分之几是多少的应用题的思路,并能正确解答。
2、提高学生分析解答应用题的能力,培养探索精神。
【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。
【教学难点】分析和理解两个数量的比校对于学生来说比较难些。
【教学过程】备注活动一:创设情境,初步感知题意。
1、教师出示例2的情境图。
2、让学生结合图叙述题意。
活动二:动手画图,分析题意。
1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?学生动手画线段图,分析。
小组交流。
与教师共同再一次感受如何画线段图。
(教师板书)重点让学生明确谁是单位1。
2、让学生说一说是怎样想的?确定解题的思路。
3、可能会有两种不同的思路。
教师让学生用自己喜欢的方法解答。
4、全班交流,订正。
5、问:这两种解法有什么区别?有什么联系?活动三:教学例3.教师出示例3。
1、引导学生读题,理解题意。
2、根据这句话应当把什么看单位1?3、学生试画出线段图,分析数量关系。
4、学生自己解答。
订正时,让学生说说是怎样分析的?与全班交流。
人教版数学六年级下册《用比例解决问题》教案
人教版数学六年级下册《用比例解决问题》教案一. 教材分析人教版数学六年级下册《用比例解决问题》这一章节主要让学生掌握用比例解决问题的方法,培养学生运用比例知识解决实际问题的能力。
在本章节中,学生将学习到如何运用比例解决行程问题、收入与支出问题等。
通过本章节的学习,学生能更好地理解和运用比例知识,提高解决问题的能力。
二. 学情分析六年级的学生已经掌握了比例的基本知识,能够理解比例的概念,求解比例式。
但学生在实际应用比例解决问题时,往往会存在对问题理解不深、列式不准确等问题。
因此,在教学过程中,教师需要引导学生深入理解问题,明确比例关系,正确列式求解。
三. 教学目标1.知识与技能:学生会运用比例知识解决实际问题,提高解决问题的能力。
2.过程与方法:学生通过自主探究、合作交流,掌握用比例解决问题的方法。
3.情感态度与价值观:学生增强对数学的兴趣,培养积极解决问题的态度。
四. 教学重难点1.重点:学生能够运用比例知识解决实际问题。
2.难点:学生能准确找出问题中的比例关系,正确列式求解。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现并提出问题,激发学生解决问题的兴趣。
2.启发式教学法:引导学生独立思考,自主探究,培养学生解决问题的能力。
3.合作交流法:学生在小组内讨论问题,分享解题方法,提高交流与合作能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:学生自主准备相关问题资料。
七. 教学过程1.导入(5分钟)教师通过多媒体课件展示生活实例,如购物时发现商品打折,原价与现价之间的比例关系。
引导学生发现并提出问题,激发学生解决问题的兴趣。
2.呈现(10分钟)教师给出具体问题,如“一件衣服原价120元,现在打八折出售,现价是多少?”引导学生列出比例式,求解现价。
学生在小组内讨论问题,分享解题方法。
3.操练(10分钟)教师给出多个类似问题,让学生独立解决。
学生通过自主探究,掌握用比例解决问题的方法。
人教版数学六年级下册用比例解决问题教案模板(精推3篇)
人教版数学六年级下册用比例解决问题教案模板(精推3篇)〖人教版数学六年级下册用比例解决问题教案模板第【1】篇〗一、教学目标(一)知识与技能在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。
(二)过程与方法通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
(三)情感态度和价值观主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。
【目标解析】本节课的主要内容是用正比例的意义解决问题。
学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。
这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。
同时也巩固和加深对所学的简易方程的认识。
二、教学重难点教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题教学难点:利用正比例的关系列出含有未知数的等式。
三、教学准备课件。
四、教学过程(一)复习回顾1.说说正比例、反比例的相同点和不同点。
2.判断下列每题中的两个量是不是成比例,成什么比例?(1)已知 A÷B=C。
当A一定时,B和C()比例;当B一定时,A和C()比例;当C一定时,A和B()比例。
(2)购买课本的单价一定时,总价和数量的关系。
(3)总路程一定时,速度和时间的关系。
【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
(二)探究新知,培养能力1.提出问题。
教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。
课件出示教材第61页例5。
思考:题中告诉了我们哪些信息?要解决什么问题?教师:你能利用数学知识帮李奶奶算出上个月的水费吗?2.解决问题。
(1)学生尝试解答。
六年级下册数学教案-《用比例解决问题》(人教版)
二、核心素养目标
《用比例解决问题》核心素养目标如下:
1.培养学生运用数学知识解决实际问题的能力,提高学生的数学应用意识;
2.培养学生分析问题、提出问题、解决问题的能力,发展学生的逻辑思维和创新思维;
3.引导学生通过自主探究、合作交流的方式,培养团队协作能力和表达能力;
(3)对于一些复合型的比例问题,如何正确列出并求解比例关系。
举例:
难点一:在速度与时间的问题中,学生需要理解速度、时间、路程三者之间的比例关系,并能够根据题目条件列出相应的比例式;
难点二:在单价与总价的问题中,学生需要从描述中抽象出单价、数量和总价之间的比例关系,如“某商品单价为x元,购买数量为y个,总价为z元”,并能将其转化为比例式求解;
在学生小组讨论环节,我鼓励学生提出自己的观点,并与其他同学交流。这种开放式的讨论有助于培养学生的创新思维和表达能力。但同时,我也发现,有些学生在讨论中显得比较被动,可能是因为他们对主题不够熟悉或者缺乏自信。针对这个问题,我计划在后续的教学中,多给予这些学生鼓励和支持,帮助他们更好地参与到讨论中来。
1.加强对学生的个别辅导,针对不同水平的学生制定个性化教学计划;
在新课讲授环节,我尝试通过理论介绍和案例分析相结合的方式,让学生们了解比例在实际问题中的应用。从学生的反馈来看,这种方法是有效的,但我也发现,对于一些难点问题,比如复合型比例关系的建立,仅仅通过讲解可能还不够,我需要设计更多的互动环节,让学生在实践中掌握这些难点。
实践活动环节,分组讨论和实验操作给了学生很大的自由发挥空间,他们能够通过合作解决问题,这有助于培养他们的团队协作能力。然而,我也观察到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的活动中加强引导,确保讨论的方向和深度。
六年级数学下册人教版第四单元第10课时用比例解决问题优秀教学案例
在教学过程中,我注重启发式教学,鼓励学生主动探究、勇于表达,培养他们的逻辑思维和解决问题的能力。同时,我还关注学生的个体差异,针对不同程度的学生给予适当的指导,使他们在课堂上都能有所收获。
三、教学策略
(一)情景创设
1.生活情境导入:以学生们熟悉的生活场景为例,如购物、烹饪等,引导学生发现生活中的比例现象,激发学生的学习兴趣。
2.设计具有挑战性的问题情境:通过设置一些与实际生活相关的问题,让学生思考并解决问题,从而引出比例知识的应用。
(二)问题导向
1.引导学生提出问题:在教学过程中,鼓励学生主动提出问题,培养他们独立思考和解决问题的能力。
(三)学生小组讨论
1.分组讨论:将学生分为若干小组,让他们在小组内讨论问题,培养学生的团队合作意识和沟通能力。
2.小组讨论素材:提供一些实际问题,让学生结合所学知识进行讨论,提出解决问题的方法。
(四)总结归纳
1.引导学生总结比例解答问题的步骤和方法:让学生回顾所学内容,总结比例解答问题的基本步骤和方法。
1.自我反思:让学生在课后对自己的学习情况进行反思,总结自己在学习过程中的优点和不足,为今后的学习制定合理的计划。
2.同伴评价:学生互相评价,给出建设性的意见,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予适当的鼓励和指导。
四、教学内容与过程
(一)导入新课
1.生活情境导入:以学生们熟悉的生活场景为例,如购物、烹饪等,引导学生发现生活中的比例现象,激发学生的学习兴趣。
人教版数学六年级下册《用比例解决问题》教案
人教版数学六年级下册《用比例解决问题》教案
一、教学目标
1.了解比例的概念,能够应用比例解决实际问题;
2.能够运用比例的知识计算物体的实际尺寸;
3.提高学生的逻辑思维和问题解决能力。
二、教学重点
1.比例的概念理解;
2.比例的运用能力提升;
3.实际问题的计算能力。
三、教学难点
1.将实际问题转化为比例关系;
2.确定比例的应用范围。
四、教学准备
1.教材《人教版数学六年级下册》教科书;
2.课堂板书工具;
3.习题练习题目。
五、教学过程
1. 导入(5分钟)
通过展示两个不同尺寸的相似图形,引导学生思考如何确定它们之间的比例关系。
2. 讲解比例概念(10分钟)
解释比例的定义、比例的表示方法和如何应用比例解决实际问题。
3. 练习比例运用(20分钟)
让学生自主完成一些比例运用的练习题,检测他们对比例概念的掌握程度。
4. 教学拓展(15分钟)
提供一些实际问题,让学生运用比例的知识解决问题,并引导他们思考比例的应用场景。
5. 练习巩固(15分钟)
布置一些拓展性练习,帮助学生巩固比例的运用能力。
六、课堂作业
1.完成课堂练习题;
2.针对一些实际场景,尝试应用比例解决问题。
七、教学反思
本节课通过引导学生探究比例的概念与应用,增强了学生的运用能力和逻辑思维能力。
在以后的课堂教学中,可以注重更多实际问题的应用,提高学生解决问题的能力。
以上是人教版数学六年级下册《用比例解决问题》教案的相关内容,希望能够对您的教学工作有所帮助。
2023年人教版数学六年级下册用比例解决问题优秀教案(优选3篇)
人教版数学六年级下册用比例解决问题优秀教案(优选3篇)〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!教学目标:培养学生的观察能力、判断能力。
学法引导:引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:比例的意义和基本性质。
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:一、回顾旧知,复习铺垫同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。
大家有没有信心1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:680:4 4:6 10:1/2提问:你是怎样分类的教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。
(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。
这就是这节课我们要学习的内容。
(板书课题:比例的意义)二、引导探究,学习新知1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。
找一找四幅图中有什么共同的东西。
再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么(两个比的比值相等)教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用比例解决问题》
莲花小学蒋森友
【教学内容】:
人教版小学数学六年级下册(p59例5)
【教学目标】:
1、掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
【教学重点】:
1、判断题中相对应的两个量和它们的比例关系。
2、利用正、反比例的关系列出含有未知数的等式,运用比例知识正确解决问题。
【教学难点】:
1、掌握用比例知识解答解答应用题的步骤和方法。
2、理解“用比例解决问题”的结构特点,从而构建知识结构。
【教学准备】:多媒体课件
【教学过程】:
一、回顾旧知
判断下列每题中的两个量是不是成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
2、总路程一定,速度和时间。
【设计说明】:由旧知识引入,让学生巩固正、反比例的知识点,熟悉正、反比例的关系式,为新授支起“点路灯”。
二、揭示课题、探索新知。
(一)教学例5。
1、课件出示例5情境图,
问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?(1)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。
)
【设计说明】:这例题是学生以往学过的归一问题。
这样做,让学生经历旧知的梳理过程,更能使学生明确旧、新解题思路的异同,从而达到整合学习的效果。
(2)引入新课:像这样的问题也可以用比例的知识来解决. (3)学生思考和讨论下面的问题:
1、题目中有哪两个量?
2、这两个量是什么关系,为什么?
3、题目中的定量是哪个量。
(4)集体交流、反馈
水费:用水吨数 = 每吨水的价钱(一定)
(5)根据这样的比例关系,列出比例:
根据上面的数据,概括:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
板书: 解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10
8χ=12.8×
10
χ= 128÷
8
χ=
16
答:李奶奶家上个月的水费是16元。
(6)将答案代入到比例式中或跟算式方法比较结果来进行检验。
【设计说明】:这一环节的设计是本节课的关键所在。
课件出示之后,让学生独立思考,解决问题,由表象的学习引入的新授课的殿堂之中来,让学生十分清楚用比例知识解决问题的全步骤;再让学生经历小组讨论环节,让优生从能做升华到会讲,达到知识的整合。
2、即时练习,巩固提高。
同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!
出示“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”让学生进行变式练习。
(三)概括总结。
师:下面我们一起来概括一下用比例解决问题的步骤:
1、设要求的问题为X;
2、判断题目中哪个量是一定的?另外两种量成什么关系?
3、列比例式;
4、解比例,验算,作答。
【设计说明】:组内交流之后,选派小组上台展示交流,可以锻炼学生的胆量和有序组织语言的能力,真正做到让学生知其所以然。
可以让学生形成完整的知识脉络体系。
三、巩固提高。
1、按要求做题。
小明买了4支圆珠笔用了6元。
小刚想买3支同样的圆珠笔,要用多少钱?
(1)题中的()一定,也就是说两人的
()和()的比值是相等的,所以()和()成()比例。
(2)设要用x元。
列比例是
()。
2、500千克的海水中含盐25千克,120吨的海水含盐几吨?
3、华南服装厂3天加工西装180套,照这样计算,要生产540 套西装,需要多少天?
四、全课总结。
今天你们有什么收获?。