热电厂循环水余热利用方案

合集下载

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着现代工业生产向规模化,集中化方向发展,大型火力发电厂的规模日益扩大,日益严重的环境污染和能源压力正在推动火电厂节能减排的发展。

在火电厂的生产过程中,产生了大量的余热,若不进行有效的利用,不仅浪费能源,还将对环境造成不良的影响。

为了更好地发挥火电厂的节能减排作用,必须对其循环水余热进行改造利用,以实现能源利用的最大化。

一、火电厂循环水余热的原理及特点火电厂循环水系统在其生产过程中,通过锅炉将大量的热能转化为电力,电力发出后,锅炉排放的水蒸气会形成冷凝水,这些冷凝水将通过循环水系统循环使用,然后再次进入锅炉进行加热,为下一轮电力生成提供热源,并产生大量的余热。

这些余热的特点是温度较高、热量可观,但质量较差,含有大量杂质和气体,需要进行深度处理后才能利用,否则将会对环境造成较大的影响。

火电厂循环水余热的利用主要有以下几种途径:1、发电机组预热系统:将余热用于发电机组的预热系统,提高燃料的燃烧效率,减少燃料的消耗,降低二氧化碳和其他有害气体的排放量。

这种利用方式需要将余热进行深度处理,减少杂质和气体的含量。

2、制冷和空调:将余热用于制冷和空调,通过余热驱动冷凝器,从而提高制冷效率,减少制冷剂的消耗,降低能源消耗和碳排放量。

3、市政供热:将余热用于市政供热,通过余热驱动热水循环,提高供热效率,减少燃料的消耗,降低二氧化碳和其他有害气体的排放量。

以上几种利用途径都将循环水余热当做一种重要的能源资源,通过深度处理和优化利用,实现了能源利用的最大化。

火电厂循环水余热改造的技术路线主要包括以下三个方面:1、深度处理技术深度处理是指将循环水余热进行深度处理,减少杂质和气体的含量,使其满足各种利用目的的要求。

常用的深度处理技术包括膜分离技术、离子交换技术、蒸馏技术等,这些技术可以有效地减少循环水中的杂质和气体含量,为余热的利用提供了可靠的保障。

2、热交换技术热交换技术是指通过热交换器将余热传递给需要热源的设备。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造火电厂是常见的一种发电方式,其通过燃烧燃料产生蒸汽驱动涡轮发电机组工作,同时也会产生大量余热。

这些余热如果不能得到有效利用,不仅会导致能源浪费,也会造成环境污染。

为了有效利用这些余热,火电厂循环水余热利用改造成为一种可行的解决方案。

火电厂循环水余热包含锅炉烟气余热和汽轮机排气余热。

锅炉烟气余热是指锅炉烟气中的高温烟气在排放之前被收集利用的过程,汽轮机排气余热是指发电机组通过减速器或其他传动装置将抽汽机或汽轮机转速降低为发电机组同步转速后所产生的余热。

循环水余热利用改造的核心是通过余热回收系统将烟气或排气所含余热回收到循环水中,然后将余热利用在火电厂的各个环节中。

具体来说,火电厂循环水余热利用改造可通过以下方式进行:1.余热回收系统的建立余热回收系统包括烟气或排气余热回收设备、循环水管道、换热器和控制系统等组成。

其中,烟气或排气余热回收设备主要有余热锅炉和余热发电机组。

余热锅炉利用锅炉烟气余热加热循环水,提高热效率;余热发电机组则利用汽轮机排气余热发电。

2.循环水加热系统的改造循环水加热系统包括锅炉、给水系统、循环水系统和冷却水系统等。

在改造过程中,需要针对不同的系统进行相应的改造设计。

例如,对于锅炉来说,可通过增设余热回收设备将烟气余热回收到循环水中,提高锅炉的热效率。

对于循环水系统来说,可通过增设通风挡板将循环水的流量分配到不同的地方,从而实现循环水的最优控制。

3.余热利用于供热和制冷利用余热进行供热和制冷是循环水余热利用改造的常见方法。

在供热方面,可通过余热加热循环水后将其输送到供热系统中供热;在制冷方面,可通过余热制冷机将余热转化为制冷量进行制冷。

这样不仅能够充分利用余热,还能提高火电厂的经济效益。

总的来说,火电厂循环水余热利用改造是一项有益于环保和节能的工作。

通过余热回收和利用,不仅能够提高火电厂的热效率和经济效益,还能够降低其对环境的影响,实现“节能减排、循环利用”的目标。

热电厂循环水余热利用方案

热电厂循环水余热利用方案

******技术发展有限公司******热电厂循环水利用方案(溴化锂吸收式热泵)联系人:手机:联系电话:传真:信箱:2013年8月18日目录1 项目简介 (3)1.1 吸收式热泵方案 (3)1.2 吸收式热泵供暖工艺流程设计 (3)1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4)1.4 节能运行计算 (4)1.5 初投资与回报期计算 (5)2 热泵机组简介 (6)2.1 吸收式热泵供暖机组 (6)2.2 溴化锂吸收式热泵采暖技术特点 (7)2.3 标志性案例介绍 (7)1 项目简介********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。

提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。

1.1 吸收式热泵方案采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。

1.2 吸收式热泵供暖工艺流程设计使用吸收式热泵加热,供暖系统流程原理图如下:由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。

此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回1.4 节能运行计算能源价格:电价:0.7元/kWh。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造1. 引言1.1 背景介绍循环水余热利用改造不仅能够为火电厂节约能耗成本,提高经济效益,也能够对环境进行保护和改善,促进可持续发展。

对于火电厂循环水余热利用改造的探讨和实践具有重要意义,对提高火电厂的能源利用效率、减少环境污染、促进可持续发展具有积极作用。

本文将通过对火电厂循环水余热利用改造的现状、技术方案、可行性分析、效益评估和可持续发展性进行探讨,旨在为推动我国火电厂循环水余热利用改造提供参考和借鉴。

2. 正文2.1 火电厂循环水余热利用的现状目前,火电厂循环水余热利用的现状可以说是处于一个相对落后的阶段。

在传统的火电厂中,循环水在发电过程中会被加热至高温,再通过冷却装置降温后排放到环境中,造成了巨大的能源浪费。

据统计,火电厂中排放的余热能占总发电能量的40%以上,这是一个巨大的浪费。

目前,一些先进的火电厂开始尝试利用余热进行能量回收和再利用。

通过安装余热回收装置,可以将循环水中的余热重新利用,从而提高发电效率。

一些火电厂也开始尝试利用余热进行供热或供冷,减少能源消耗,提高资源利用率。

尽管一些火电厂已经开始尝试利用循环水余热,但整体上来说,这一技术在火电厂中的推广并不广泛。

存在诸多挑战和障碍,如设备投资、技术门槛和运营成本等问题都需要克服。

需要更多的研究和实践,以推动火电厂循环水余热利用技术的进一步发展和应用。

【字数:244】2.2 利用余热的技术方案1. 蒸汽再生器:利用余热产生蒸汽,用于供暖或压力增加。

蒸汽再生器是一种高效的利用余热的技术方案,可以大大减少能源消耗,并降低生产成本。

2. 热泵技术:通过热泵设备将循环水余热转换为热能,再利用这部分热能进行供暖或热水生产。

热泵技术具有能效高、环保等优点,是一种比较先进的利用余热的技术方案。

3. 温度梯度发电:利用循环水的温度梯度,通过热电联产发电。

这种技术方案可以实现能源的双重利用,提高能源利用效率。

4. 热管技术:将余热转移到其他系统或设备中,用于提高系统效率或降低能源消耗。

热电厂循环水余热利用方案

热电厂循环水余热利用方案

******技术发展有限公司******热电厂循环水利用方案(溴化锂吸收式热泵)联系人:手机:联系电话:传真:信箱:2013年8月18日目录1 项目简介 (3)1.1 吸收式热泵方案 (3)1.2 吸收式热泵供暖工艺流程设计 (3)1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4)1.4 节能运行计算 (4)1.5 初投资与回报期计算 (5)2 热泵机组简介 (6)2.1 吸收式热泵供暖机组 (6)2.2 溴化锂吸收式热泵采暖技术特点 (7)2.3 标志性案例介绍 (7)1 项目简介********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。

提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。

1.1 吸收式热泵方案采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。

1.2 吸收式热泵供暖工艺流程设计使用吸收式热泵加热,供暖系统流程原理图如下:由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。

此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回1.4 节能运行计算能源价格:电价:0.7元/kWh。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着国家节能减排政策的推进,火电厂循环水余热利用改造已经成为一种必然趋势。

循环水余热是指在燃煤火力发电过程中,由于热机效率低而产生的未被充分利用的热能,约占总热能的20%~25%。

如何将这些余热利用起来,不仅可以为企业节约能源开支,还能大大降低二氧化碳等温室气体的排放,达到可持续发展的目的。

1.改造循环水系统,提高热效率。

循环水系统是火电厂的重要组成部分,也是循环水余热利用的核心。

改造循环水系统,采用热交换器等技术设备,将循环水中的余热传递到其他水体或输送到热用户处,实现热能转换。

2.改进锅炉技术,减少热损失。

锅炉是燃煤火力发电的核心设备,将燃料燃烧产生的热能转化为蒸汽能源。

通过改进锅炉技术,提高锅炉效率,减少热损失,可以进一步提高循环水余热的利用效率。

3.开发稳定的余热利用项目。

火电厂循环水余热的利用涉及多个领域,如城市供暖、工业制造、农业生产等。

因此,需要针对实际情况,针对性地开发稳定、可行的余热利用项目,打造具有协同效应和经济效益的利用模式。

4.积极引入第三方合作伙伴。

火电厂的循环水余热利用需要配套设备和技术支持,同时也需要对接市场需求,寻找合适的供需对接。

引入第三方合作伙伴,针对不同业务领域,形成合作联盟,可以高效地对接市场需求,推动余热利用的规模化和普及化。

总之,火电厂循环水余热利用改造是一个长期而复杂的过程,需要政府、企业、技术机构等多方参与,共同推进。

通过利用循环水余热,既可以降低企业能源成本,又可以实现节能减排,为经济发展和环境保护做出贡献。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造火电厂是一种以燃煤、天然气或油井气为燃料,使用燃料燃烧产生高温高压蒸汽,然后利用蒸汽驱动汽轮机发电的装置。

在火电厂的发电过程中,产生了大量的余热,如果这部分余热能够充分利用,将有助于提高火电厂的能源利用率,减少能源消耗,降低排放,符合可持续发展的理念。

循环水余热是指在火电厂中,利用水冷却设备冷却产生的余热。

在传统的火电厂中,这部分余热几乎都是直接排放到大气中,造成了严重的能源浪费和环境污染。

对于火电厂循环水余热的利用改造成为了一个重要的课题。

本文将从火电厂循环水余热的利用现状、存在的问题和改造方法等方面进行浅析,以期为相关研究和改造工作提供一定的参考。

一、火电厂循环水余热的利用现状火电厂的循环水系统是将凝汽器中的循环水通过冷却塔冷却后再循环到锅炉和凝汽器中,形成循环水系统。

在这个循环过程中,产生了大量的余热,如果这部分余热得不到有效利用,不仅会造成能源浪费,还会对环境造成一定的影响。

对火电厂循环水余热进行充分利用,已成为提高能源利用效率和减少环境污染的必然选择。

目前,国内外一些火电厂对循环水余热的利用问题已经开始进行研究和改造。

较为常见的利用方式包括余热发电、余热供暖和余热制冷等。

通过这些方式,可以有效地将循环水余热转化为电能、热能和冷能,达到提高能源利用效率和减少排放的目的。

尽管循环水余热的利用对于提高火电厂的能源利用效率具有重要意义,但在实际的应用过程中,往往会面临一些问题。

主要包括以下几个方面:1. 技术难题:火电厂的循环水余热利用涉及到余热收集、传输、转化和利用等多个环节,存在一定的技术难题。

余热的收集和传输需要一定的设备和管线,如何有效地将余热转化为电能、热能或冷能也需要相应的技术支持。

2. 经济成本:火电厂循环水余热利用改造需要一定的投入,包括设备采购、安装调试和运行维护等方面的成本。

对于一些资金较为紧张的火电厂来说,这无疑是一个问题。

3. 安全与稳定性:火电厂作为大型能源装置,其余热利用涉及到设备安全和运行稳定性等方面的问题。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造1. 引言1.1 引言火电厂是指以燃煤、燃气、生物质等燃料为能源的发电厂,其在发电过程中产生大量的余热。

循环水余热利用是指通过将火电厂产生的热水或蒸汽余热进行回收和再利用,以提高能源利用效率,降低能源消耗。

在目前能源资源日益紧张的情况下,充分利用火电厂的循环水余热已经成为一种重要的能源节约措施。

为了更好地实现火电厂循环水余热利用改造,本文将从背景介绍、循环水余热利用方案、改造实施步骤、效果评估和经济性分析等方面进行探讨。

通过对火电厂的循环水余热进行有效利用,不仅可以减少能源消耗,降低生产成本,还可以减少对环境的污染,提高火电厂的竞争力。

希望通过本文的浅析,能够为火电厂循环水余热利用改造提供一些有益的启示和借鉴。

2. 正文2.1 背景介绍火电厂是一种常见的电力发电设施,其主要工作原理是通过燃烧燃料产生热能,再通过热能驱动发电机发电。

在这个过程中,会产生大量的余热,如果这些余热不能有效利用将会造成巨大的资源浪费和环境污染。

火电厂循环水余热利用改造显得尤为重要。

目前大部分火电厂的循环水余热利用程度较低,主要采用的是简单的冷却方式,将余热直接排放至大气中。

这种做法不仅浪费了宝贵的能源资源,还可能对周围的环境造成污染和破坏。

实施循环水余热利用改造,将有助于提高能源利用效率,减少对环境的影响。

改造循环水余热利用需要对火电厂的设备和工艺进行深入调整和改造,以实现余热的充分利用。

通过设计合理的余热回收系统,将余热用于蒸汽发生器加热或其他能耗环节,可以大大提高发电效率,减少燃料消耗。

改造后的火电厂也将减少对大气的排放,降低对环境的影响,是一种积极的环保举措。

2.2 循环水余热利用方案循环水余热利用方案是实现火电厂能源节约和环境保护的重要举措。

在火电厂的运行过程中,循环水通过冷却设备冷却后排放,这其中蕴含着巨大的能量。

利用循环水的余热可以将这部分能量充分利用,提高火电厂的能效和经济效益。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着能源消耗的增加,火电厂在发电过程中产生的大量余热一直被人们所关注。

循环水是火电厂中重要的能源,厂内采用循环水循环往返于锅炉和汽轮机之间,以提高发电效率。

但是,循环水使用过后会将大量热能散失到环境中,这种现象不仅浪费了循环水的热能,还会造成环境的污染。

因此,火电厂循环水余热的利用改造在工业生产中具有重要意义。

一、循环水余热产生的原因火电厂发电的过程中,循环水主要是用于冷却锅炉和发电机组的筒体、定子等设备,同时也用于汽轮机的冷却。

然而,这些设备会产生大量的余热,如果不能及时有效地回收和利用,就会造成能量的浪费和环境污染。

二、循环水余热利用的方式为了有效地利用循环水余热,火电厂需要采取一些措施,从而实现能源的节约和利用,以下是几种已实行的方式:1、采用余热锅炉进行回收火电厂可以通过采用余热锅炉的方式,回收循环水余热,将其转化为以下用于发电工艺的用热:(1)中压汽的加热水;(2)反应器的加热介质;(3)加热空气;(5)生产加热组件的加热水。

2、采用吸收式制冷技术利用吸收式制冷技术,将回收的循环水余热转化为制冷能量,提供制冷系统的制冷负荷。

这种方式可以实现能耗的节约和循环利用,同时对环境也具有一定的保护和治理作用。

3、采用温差发电技术利用温差发电技术,将循环水的余热转化为电能,这种技术可以最大程度地提高能源利用效率,同时还能有效地减少环境污染的危害。

在温差发电技术中,利用了热电材料对温差的反应,实现了直接将余热转化为电能的过程。

4、采用换热器进行热能转化在火电厂中,可以采用不同类型的换热器,如波纹管、板式、螺旋片式等类型的换热器,利用它们将回收的循环水余热转化为热能,并用于发电的不同过程中。

利用换热器进行热能转化,有效地提高了能源利用率,同时也保护了环境,减少了能量的浪费。

火电厂循环水余热利用改造已经广泛应用于许多领域,特别是在钢铁、化工、建材和纺织等工业领域。

能够实现能源的节约和减排,同时还能够有效地提高工业生产的效率和质量。

火电厂循环水余热利用方式的分析

火电厂循环水余热利用方式的分析

火电厂循环水余热利用方式的分析摘要:火力发电厂循环水采用开式循环经过凝汽器换热后排放,所携带的热量也被白白浪费。

因此,可以通过技术改造,利用循环水回水作为化学原水可以有效利用这部分热量,这样既可以提高凝汽器补水温度,同时可在冬季停运化学反渗透加热器,节省工质,提高机组运行的效率和经济性。

关键词:火电厂;循环水回水;原水;余热利用1 前言火力发电在给人们的生活带来便利的同时,产生的水循环污染也是造成发电厂环境污染的主要原因。

锅炉热损失现象不仅增加了电厂发电的资源浪费和运行成本,并且给国家的环境治理和生态环境建设带来极大的影响。

所以,优化发电的发电技术和使用工艺,科学合理规划发电厂水循环利用系统,降低生态环境污染,提升发电厂自然资源利用率和发电总体效率,是目前我国火力发电体系改革的主要方向。

2 闭式循环冷却水系统存在的问题闭式循环冷却水系统中,由于水温、流速、蒸发的影响,各种无机离子和有机物质的浓缩,水中的低溶解度的盐类(主要是碳酸盐、磷酸盐)会以垢的形式沉积在换热器的表面和冷却塔的填料上,且由于冷却水系统的蒸发、飞溅、泄漏和排污损失的影响,不但使系统补水量增大,还会因冷却水直接与空气接触,溶解氧含量高、循环冷却水水温很适合菌藻类滋生、繁殖及快速生长,造成系统结垢、氧腐蚀、有害离子腐蚀和微生物腐蚀。

2.1水垢析出降低传热效率一般天然水中都溶解有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。

盐的浓度随着蒸发浓缩而增加,当其浓度达到饱和状态时,或者经过换热器传热表面水温升高时,会发生下列反应:Ca(HCO3)2→CaCO3↓+CO2↑+H2O冷却水经过冷却塔向下喷淋时,溶解在水中的游离CO2气体逸出,这就促使上述反应向正反应方向进行,这样CaCO3随着循环水的流动沉淀附着在换热器的传热表面,积累形成致密的碳酸盐水垢,使传热表面的传热性能下降。

2.2设备腐蚀影响安全生产和缩短使用寿命在循环冷却水系统中,循环水管道为碳钢材质,凝汽器为不锈钢管,四小换热器换热面材质为铜材或为不锈钢材质。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造火电厂是利用燃煤、燃气、燃油等化石燃料发电的重要设施,其发电过程中会产生大量的余热。

这些余热如果不加以利用,将会造成能源的浪费,同时也会对环境造成一定的影响。

对火电厂循环水余热进行利用改造,不仅可以提高能源利用效率,还能减少环境污染,具有重要的意义。

一、火电厂循环水余热的特点1. 大量的余热产生:火电厂在发电过程中,会产生大量的余热,其中循环水系统是一个较为主要的余热来源。

循环水在带走锅炉余热的自身也会受到加热,成为一种潜在的余热资源。

2. 循环水温度适中:循环水在带走锅炉余热后,温度并不会很高,通常在40-60摄氏度之间,这样的温度正好适合进行一些低、中温余热的利用。

3. 余热改造空间大:火电厂循环水余热利用改造技术相对成熟,有多种利用方式,改造空间较大,可以根据不同的情况进行灵活设计,在不影响火电厂正常运行的情况下,充分实现余热的利用。

二、火电厂循环水余热的利用方式1. 发电机组供热:将循环水余热进行二次利用,为周边居民供热,提高能源利用效率。

2. 冷却塔供热:利用循环水余热对冷却塔进行加热,提高水温,减少冬季供热的能耗。

3. 空调供冷:通过热泵技术,利用循环水余热进行空调供冷,提高空调系统的能效比。

4. 地热供暖:将循环水余热用于地热能利用系统,为建筑供暖,减少使用传统燃料的需求。

5. 工业用热:将循环水余热用于工业生产中,例如酒精、食品加工等行业,提高生产效率。

四、火电厂循环水余热利用改造的前景与挑战火电厂循环水余热利用改造具有广阔的应用前景,尤其是在我国能源结构调整的背景下,加大对新能源、清洁能源的发展力度,利用火电厂余热进行能源的再利用能够为国家节约大量能源,减少对传统能源的依赖,有利于推进节能环保工作。

火电厂循环水余热利用改造也存在一些挑战,比如技术开发的难度、设备投入的成本、运行维护的复杂性等问题,需要有关部门和企业加大技术研发和创新力度,推动火电厂循环水余热利用改造工作的顺利进行。

电厂循环水余热利用方案的研究

电厂循环水余热利用方案的研究

电厂循环水余热利用方案的研究一、内容综述随着社会经济的快速发展,电厂循环水余热利用已经成为了一种重要的节能减排手段。

循环水余热是指在电厂运行过程中产生的热水、蒸汽和废水等废热资源,这些资源具有很高的潜在价值。

通过科学合理的技术手段,将这些废热资源进行回收利用,不仅可以降低电厂的能耗,减少环境污染,还可以提高电厂的经济效益。

本文将对电厂循环水余热利用方案的研究进行详细的探讨,以期为电厂的可持续发展提供有力的支持。

在当前环保意识日益增强的背景下,电厂循环水余热利用方案的研究显得尤为重要。

通过对国内外相关研究的梳理,我们发现目前电厂循环水余热利用主要采用的方法有:换热器换热、蒸发器蒸发、地源热泵、空气源热泵等。

这些方法各有优缺点,需要根据电厂的具体情况进行选择和优化。

首先换热器换热是一种常见的循环水余热利用方法,其原理是通过换热器将循环水中的高温水与低温水进行热量交换,从而实现余热的回收。

这种方法的优点是设备简单、成本较低,但由于受到水质、流量等因素的影响,换热效率有限。

其次蒸发器蒸发是一种通过蒸发循环水中的潜热来实现余热回收的方法。

这种方法的优点是能够充分利用循环水的潜热资源,提高能源利用率,但设备成本较高,且受环境温度影响较大。

再次地源热泵和空气源热泵是两种新型的循环水余热利用方法,它们分别利用地下或空气中的恒定温度来加热循环水。

这两种方法具有节能效果显著、环保性能好等优点,但由于设备成本较高,目前尚处于推广阶段。

电厂循环水余热利用方案的研究是一个涉及多个领域的综合性课题。

在未来的研究中,我们需要继续深入挖掘各种余热利用方法的优势和局限性,不断优化和完善技术方案,以期为电厂的可持续发展提供更加有效的支持。

同时我们还应加强与政府、企业和科研机构的合作,共同推动电厂循环水余热利用技术的创新和发展。

A. 循环水余热利用的重要性和意义在当今社会,随着经济的快速发展,电力需求也在不断增加。

电厂作为发电的重要基地,其运行过程中产生的大量废热如果不能得到有效利用,不仅会造成资源浪费,还会对环境造成严重污染。

电厂循环水使用方案

电厂循环水使用方案

电厂循环水使用方案简介循环水是电厂运行中非常重要的资源。

它被用来冷却发电设备,以确保设备的稳定运行。

正确的循环水使用方案可以提高电厂的能效,减少能源消耗,降低环境污染。

本文将介绍一个电厂循环水使用方案,旨在优化循环水的使用和管理,实现可持续发展。

循环水回收和再利用循环水的回收和再利用是降低水资源消耗的重要手段。

电厂可通过多种方式回收和再利用循环水: - 安装循环水处理设备:电厂可以安装循环水处理设备,包括过滤器、沉淀池和消毒设备,以去除水中的杂质和微生物。

处理后的水可被再次用于冷却设备。

- 实施循环水回收系统:电厂可以建立循环水回收系统,将经过处理的循环水收集起来,在经过处理后再次使用。

这样可以减少对自来水的需求。

- 优化冷却系统设计:电厂可以优化冷却系统的设计,减少循环水的需求量。

例如,通过使用高效的冷却设备,减少热损失,提高能源利用效率。

循环水节水措施除了回收和再利用循环水外,电厂还可以采取以下节水措施: - 减少漏水:电厂应定期检查和维修循环水系统中的管道和阀门,以防止漏水。

漏水的管道和阀门应及时修复或更换,以减少水的浪费。

- 优化冷却系统操作:电厂应优化冷却系统的操作,确保最佳的循环水使用效率。

例如,通过调整冷却系统的水流量和温度,可以减少循环水的消耗。

- 使用节水设备:电厂应采购和使用节水设备,例如节水冷却塔和节水喷淋系统。

这些设备可以减少循环水的使用量,降低水资源消耗。

循环水质量管理循环水的质量对电厂设备的运行稳定性和寿命有着重要影响。

因此,电厂应进行循环水质量管理,以确保循环水的质量符合要求: - 定期监测循环水的水质:电厂应定期监测循环水的水质,包括水中的悬浮物、硬度、PH值和微生物浓度等。

监测结果应与相关标准进行比较,以评估水质是否合格。

- 定期清洗和维护设备:电厂应定期清洗和维护冷却设备,以去除沉积物和微生物。

这样可以防止堵塞和腐蚀,保证设备的正常运行。

- 使用水处理剂和消毒剂:电厂可以使用适当的水处理剂和消毒剂,以防止冷却设备的污垢和微生物生长。

火力发电厂低温循环水余热利用工程技术规程

火力发电厂低温循环水余热利用工程技术规程

火力发电厂低温循环水余热利用工程技术规程一、概述火力发电厂是目前世界上主要的电力发电方式之一,但是在发电过程中会产生大量的余热。

为了充分利用这些余热资源,提高发电效率,降低能源消耗,低温循环水余热利用工程技术规程应运而生。

本文针对低温循环水余热利用工程技术进行全面分析和规范,以期为相关技术人员提供参考。

二、低温循环水余热利用工程概述1. 余热资源概述火力发电厂在电力发电过程中,会有大量的低温余热产生,主要来自于冷凝水和冷却水。

这些低温余热若能有效利用,可减少燃料消耗,提高发电效率。

2. 余热利用方式低温循环水余热可通过多种方式进行利用,如供暖、制冷、热水供应等,其中最常见的方式是通过余热锅炉将余热转化为蒸汽,用于发电厂的自身供电。

三、低温循环水余热利用工程技术规程1. 技术规范低温循环水余热利用工程技术规程应包括余热资源测算、利用设备选型、系统设计参数等方面的规定,以保证余热利用工程的安全、高效运行。

2. 设备选型针对不同的余热利用需求,应选择适当的余热利用设备,如余热锅炉、换热器等。

在选型过程中应考虑设备的整体性能、能耗、维护便捷性等因素。

3. 设计参数在低温循环水余热利用工程设计中,应合理确定余热利用系统的参数,如蒸汽压力、温度、循环水流量等,以确保余热利用系统的稳定可靠运行。

四、低温循环水余热利用工程技术应用案例1. 案例一:某火力发电厂余热锅炉改造项目某火力发电厂通过余热锅炉将低温循环水余热转化为蒸汽,实现了自身供电,年节约燃料消耗达到10以上。

2. 案例二:某地区火力发电厂余热供暖项目某地区火力发电厂将低温循环水余热利用于供暖,为周边居民提供了稳定、高效的供热服务,得到了当地居民的一致好评。

五、结论低温循环水余热利用工程技术规程对于提高火力发电厂发电效率,降低能源消耗,具有重要的意义。

通过合理规划和利用余热资源,可以实现节能减排,为可持续发展做出贡献。

希望本文对相关技术人员能够有所启发,不断改进和完善低温循环水余热利用工程技术规程,推动能源利用及环保工作取得更大成就。

电厂循环水余热在供热系统中的利用

电厂循环水余热在供热系统中的利用

电厂循环水余热在供热系统中的利用摘要:现如今,我国是市场经济在快速发展,社会在不断进步,人们对于电力的需求在不断提高,火电厂的资源利用率不高,大量的余热通过烟气与循环水散失到环境中,其中循环水带走的热量占据了被浪费热量的绝大部分。

而随着我国城镇化进程的不断推进,供暖所需热量也在逐步增加。

回收电厂循环水的余热用于供热,是我国节能工作的重点之一。

关键词:电厂循环水;余热利用引言在传统电厂的生产过程中,高温高压的过热蒸汽在汽轮机中膨胀做功后变成乏汽,乏汽进入凝汽器中被循环水冷却,同时循环水吸收乏汽冷凝所释放的大量潜热,循环水进入冷却塔中进行自然通风冷却,其携带的大量低品位的余热通过对流传热进入大气中损失掉了。

虽然这部分热能品位较低,不具备做功能力,但是如果这部分能量能用于对居民供暖,将会节约大量能源,减少SO2、CO2及粉尘排放,同时还会降低循环水的蒸发量。

目前能源日趋紧张,节能减排在生产过程中意义重大,更加经济、环保的循环水余热利用技术的应用已经成为了电厂发展的新趋势。

然而电厂循环水的余热并不能直接用于供暖,因为其温度较低,尚未达到能够直接供热的高品位,应先对其升温再加以利用。

我国应用的电厂循环水低品位热能回收技术主要有汽轮机低真空工况运行方式和热泵吸收循环水低品位热能技术。

低真空工况下运行时,凝汽式机组的发电量受到用户用热量的制约,热负荷增大时,为了保证供热,发电量会适当降低。

热负荷较大、供热温度较高时,为了保证安全运行,汽轮机的结构参数需要进行调整校核,对于大型机组并不适用。

热泵吸收循环水低品位热能技术的原理是利用热泵吸收循环水中的热量将其输送给居民区的热网。

热泵回收循环水低品位热能技术不仅仅局限于中小型汽轮机组,大型汽轮机组同样适用。

1吸收式热泵简介吸收式热泵通过吸收蒸汽、燃气、热水、高温烟气、燃油等高温热源的能源能量,提取冷却循环水、地热水、城市废水等低温热源热能的一种新型技术。

它具有节能、安全、环保等好处,符合国家相关能源利用的方针政策,是国家大力推广的高新技术产业之一。

电厂循环水余热利用方案的研究

电厂循环水余热利用方案的研究
能。 2 0 I 1 。 ( 1 ) :5 5-; 5 6 .
集中式 电动热 泵供热 是将 热泵 机组 集 中布置 于电厂 内部 . 循 环水 自 凝 汽器中进入热 泵放热 降温后返 回至 凝汽器, 形成循 环. 热 泵 回收循 环水的热量用于加 热一次 网回水 . 但 是该 回水 的温度一般 低于 9 0 " C , 所 以还需 汽一水 换热 器进行再 次加 热以供 居民使 用. 这种 余热利 用方棠 不需要 额外铺 设循环水管。 投资较 少, 但 由于 热网回水的温 度达 到了约 7 0 ℃, 使得热 泵的能源利 用效率 相对较低 , 不具备 良好 的经济性。 集 中式 吸收热泵供热 则是将上述 方案的压缩 式 电动 热泵改 为吸收 式热 泵, 同样面 临着能效低 的缺陷, 而且利 用余热对一次 网回水 的加热 效果也更差 , 温度升 幅不大。 从 上述 分析可 以看 出, 采用电力驱 动的压 缩式 热泵在 布置时 相对 灵活 , 投资也 较少, 但是能 源利 用率也 叫吸收式 热泵低 。 考虑 到 电能 与 蒸汽 能 之间的成本 差异 , 吸收式 热泵供 热的 长期 运行成 本低于压 缩 式 热泵 . 因此 , 在具 备电厂循环水热源 的附近区域应尽量选 择采用吸收式 热 泵供 热方式 来实现 余热利 用。 在 电厂周 围居 民较多时, 宜采 用分布 式 供热 以适应 不同用户的用热需 求 , 而在电厂周 围居 民较 少时, 采用集 中 式热 泵供热 可以降低成本 。 提高供热效果 .
科技专论
电厂循环水余热利用方案的研究
马光辉 内蒙古赤峰市红山区红庙子镇西水地京能 ( 赤峰) 能源发展有限公司 0 2 4 0 0 0
【 摘一 l 火电厂的资源利用率不高, 大量的余热通过 烟气与循环水散 密联 系, 难以分开调 节。 采用这种 供热方案要求 热负荷 维持在一 个相对 失到环境 中 , 其中循环水带走的热量占 据了 被 浪费热量的绝大部 分。 而随着 稳定 的状态 . 对于小型机组而 言, 为了 实现 低真空运行而 进行改造具 有

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着社会的发展,能源问题日益凸显,节能减排已成为各行业的共同呼声。

而在能源利用中,火电厂循环水余热的利用改造显得尤为重要。

本文将从火电厂循环水余热利用的现状出发,分析其改造的必要性,探讨改造的可行性和关键技术,旨在为火电厂提供循环水余热利用改造的可行性方案。

一、火电厂循环水余热利用现状火电厂是通过燃煤、燃气或核能等能源燃烧发电的厂家。

在火电厂的发电过程中,往往会产生大量的余热,其中循环水余热占比较大。

循环水是用于冷却发电设备的重要介质,其在冷却过程中会带走部分热量,形成余热。

目前,大部分火电厂的循环水余热并未得到有效利用,直接排放到环境中,既浪费了能源,又对环境造成了污染。

1. 节能减排要求:随着能源稀缺的问题日益凸显,各国都在积极推进节能减排工作。

尤其是我国提出的“十四五”规划中明确提出要实施能源双控和碳达峰的目标,火电厂循环水余热利用改造正是符合国家节能减排的要求。

2. 资源利用价值:循环水余热是一种可再生资源,如果能有效利用,不仅可以满足火电厂自身的能源需求,还可以为周边地区提供清洁能源,增加资源的利用价值。

3. 减少环境污染:火电厂循环水余热直接排放到环境中,会导致水质污染、大气污染等问题。

而如果能够进行有效利用改造,不仅可以减少对环境的影响,还可以提高火电厂的环保形象。

1. 技术成熟:目前,循环水余热利用的关键技术已经比较成熟,包括余热锅炉、余热发电等设备都已经应用于实际工程中,其可行性得到了验证。

2. 经济效益:循环水余热利用改造可以为火电厂节约大量的能源支出,提高能源利用效率。

而且随着我国能源价格的上涨,循环水余热的利用改造将带来可观的经济效益。

3. 社会需求:在当前能源环境保护的大背景下,循环水余热利用改造不仅得到了政府的支持,也获得了社会的广泛认可。

这为火电厂进行循环水余热利用改造提供了社会需求和政策支持。

1. 余热锅炉:利用余热锅炉将循环水余热转化为蒸汽,再通过蒸汽发电机发电,是目前循环水余热利用的主要方式。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着能源需求的不断增长和环保意识的日益提高,火电厂循环水余热利用改造已成为火电厂节能减排的重要途径。

循环水是火电厂电站内为保证燃烧安全、冷却热负荷而用于循环的水,通过对循环水余热的充分利用,可以减少高温废水排放、提高电力利用效率和减少能源消耗。

一、循环水余热利用的方式1. 蒸汽利用在火电厂中,循环水进入锅炉进行加热,转化为蒸汽后用于发电机组发电,可以将蒸汽余热通过抽汽至蒸汽轮机上驱动管轮机组,将蒸汽中的余热充分利用,提高了发电效率,减少了能源浪费。

2. 热水利用循环水加热后可以通过散热器进行散热,进行空气预热或加热室内热水,也可以通过换热设备将热水输送至其他工艺或生产线中,提高热水利用效率,减少能源消耗。

1. 节能减排火电厂的循环水系统,在工业生产中是一个大的热能交换系统。

利用其余热可以降低能源消耗,减少对非可再生能源的依赖,大幅度减少对环境的污染和GHG的排放。

循环水余热能够被充分利用,相应地减少了烟气中的污染物排放,对于保护环境和促进可持续发展具有重要意义。

2. 提高电力利用效率循环水余热的充分利用可以提高电站的热电联产效率,减少了热能损失,提高了热能利用率,实现了能源的最优化利用。

同时,降低了火电厂的运营成本,在提高能源利用效率的同时带来了收益。

3. 优化火电厂生产方式通过循环水余热利用改造,不仅可以提高电站的能源利用率,还可以优化火电厂的生产方式。

这样可以改善工作环境,提高生产的安全性和稳定性,同时提高了企业的竞争力。

三、循环水余热利用改造实施中的主要措施1. 设备完善循环水余热利用改造首先需要的是设备的完善,特别是在换热装置的选择、安装和维护方面,需要考虑设备的性能、稳定性、使用寿命等因素。

同时要根据不同的工况和生产流程,合理配置换热场和流量控制器,以达到最佳的换热效果。

2. 工艺优化在循环水余热利用改造过程中要进行工艺优化,根据循环水系统的运行状态、设备条件和生产工作流程等情况,制定适合该厂的制定操作规程和运行维护手册。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电厂循环水余热利用方案
摘要
利用制冷剂循环水余热利用技术在热电厂中进行电力发电,可以有效
提高电厂热效率,提高发电量,缩小单位电量的电耗。

本文重点探讨了制
冷剂循环水余热利用系统的工作原理、节能经济分析和详细方案等内容。

通过分析,可以看出,制冷剂循环水余热利用技术在热电厂中的应用具有
可行性,可以在热电厂中进行发电,提高电厂热效率,降低单位发电量的
电耗以及提高整体的投资回收期等经济利益。

关键词:制冷剂循环;水余热;利用技术;热电厂
Introduction
Working Principle
This technology implements that, in the pro-cess of
electricity generation in a power plant, the condensed water cooling system will be routed to the generator cooling system, and then the cooling cycle water is collected into a waste heat recovery system for reheating power generation. The system consists of cooling cycle water waste heat recovery device, reheater and auxiliary. When water in the condenser is cooled,
the heat absorbed by the cooling cycle water can be recovered by the waste heat recovery equipment and sent to the heater of the steam turbine cycle and then goes into the reheater. In this way, the amount of steam extracted from the turbine reduces, and the
exhaust pressure before the turbine increases, resulting in an increase in the electrical efficiency of the power plant.
Analysis of Energy-saving and Economical Benefits
The application of cooling cycle water waste heat
utilization technology in power plants can effectively improve the thermal efficiency of the power plants and increase power generation. The unit electrical consumption can be reduced and the economic benefits of the project can be improved. Therefore, it is of great significance for the development of energy saving and efficiency of a power plant to utilize the cooling cycle water waste heat.
The economic analysis results show that, after the application of cooling cycle water waste heat utilization technology, the power plant's thermal efficiency can be increased by 4.6%, the power generation increased by 7.2%, and the unit power consumption decreased by 10.6%. And the annual energy saving is 4.48 x 104 tons of standard coal. In addition, the payback period of the investment is 1.4 years.
Detailed Scheme
2. Reheater selection.In the rehe。

相关文档
最新文档