工程热力学(第五版)课后习题答案(全章节)
工程热力学(第五版)课后习题问题详解
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编中国建筑工业岀版社第二章 气体的热力性质2-2.已知N2的M= 28,求(1) N 2的气体常数;(2)标准状态下N 2的比容和密度;(3) P^OVMPa , t = 500 °c时的摩尔容积Mv 。
解:(1)N 2的气体常数R 0 8314R —M 28= 296.9J/(kg* K )(2)标准状态下 N 2的比容和密度296.9 2733101325= 0.8 m /kg(3) P ^O/MPa , t =500 c 时的摩尔容积 MvR °T3Mv = p = 64.27 m /kmol2-3 .把CO2压送到容积3m3的储气罐里,起始表压力Pg1一 30 kPa,终了表压力Pg ^ 0.3 Mpa 温度由t1 =45C 增加到t2 = 70 C 。
试求被压入的 CO2的质量。
当地大气压 B = 101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量压送后储气罐中CO2的质量根据题意 容积体积不变;R = 188.9RT v 二V = 1.25kg / m 3m1p1v1 RT1 m2 二p2v2 RT2P1 二 P g1 B (1)P2 二 P g2 B(2)T1 "1 273 (3)T2 =t2 273(4)压入的CO2的质量m = m1 - m2 =V (p2 _ p1)R T2 T1(5)将(1)、(2)、(3) 、⑷代入(5)式得m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送 300 m3的空气,如外界的温度增高到27C ,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?解:同上题v p2 pl 300 99.3101.325m=m1-m2 () () 1000 R T2 T1 28 7 3 0 0 2 73= 41.97kg2-6空气压缩机每分钟自外界吸入温度为 15C 、压力为0.1MPa 的空气3 m3充入容积8.5 m3的储气罐内。
工程热力学课后作业答案第五版全共25页word资料
2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙ (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO 2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO 2的质量 压送后储气罐中CO 2的质量 根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。
设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa ?设充气过程中气罐内温度不变。
工程热力学课后习题作业及答案解析(第五版)
工程热力学课后习题作业及答案解析(第五版)2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m /32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO 2的质量。
当地大气压B =101.325kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11(1)B p p g +=22(2)27311+=t T (3)27322+=t T (4)压入的CO 2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300m 3,问鼓风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg 2-6空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3m 3,充入容积8.5m 3的储气罐内。
工程热力学(第五版)课后习题答案(全章节)
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3 v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量 压送后储气罐中CO2的质量 根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学 第五版 童钧耕 课后习题答案
第一章 基本概念1-1 华氏温标规定在标准大气压(101325 Pa )下纯水的冰点是32F ,汽点是212F (F 是华氏温标温度单位的符号)。
试推导华氏温度与摄氏温度的换算关系。
提示和答案:C F {}0{}32212321000t t ︒︒--=--, F C 9{}{}325t t ︒︒=+。
1-2 英制系统中的兰氏温标(兰氏温标与华氏温标的关系相当于热力学温标与摄氏温标的关系),其温度以符号R 表示。
兰氏温度与华氏温度的关系为{T }°R = {t }°F + 459.67。
已知开尔文温标及朗肯温标在纯水冰点的读数分别是273.15K 和491.67R ;汽点的读数分别是373.15K 和671.67R 。
(1)导出兰氏温度和开尔文温度的关系式;(2)开尔文温标上绝对零度在兰氏温标上是多少度?(3)画出摄氏温标、开尔文温标、华氏温标和兰氏温标之间的对应关系。
提示和答案:RK {}491.67671.67491.67373.15273.15{}273.15T T ︒--=--。
R K {} 1.8{}T T ︒=; R {}0R T ︒=︒;略 1-3 设一新的温标,用符号N 表示温度单位,它的绝对温标用Q 表示温度单位。
规定纯水的冰点和汽点分别是100N 和1000N ,试求:(1)该新温标和摄氏温标的关系;(2)若该温标的绝对温度零度与热力学温标零度相同,则该温标读数为0N 时,其绝对温标读数是多少Q ?提示和答案:(1)N C {}100{}010001001000t t ︒︒--=--;N C {}9{}100t t ︒︒=+(2)Q N C {}{}9{}100T t t ︒︒︒=+=++常数常数,{T } K = 0 K 时, {Q}0Q T ︒=︒ 解得式中常数,代回原式。
;Q N {}{}2358.35T t ︒︒=+, Q {}2358.385N T ︒=︒1-4 直径为1m 的球形刚性容器,抽气后真空度为752.5mmHg ,(1)求容器内绝对压力为多少Pa ;(2)若当地大气压力为0.101MPa ,求容器表面受力多少N? 提示和答案:b v 691.75Pa p p p =-=;600.31510N F A p =∆=⨯。
工程热力学第五版思考题答案
工程热力学第五版思考题答案【篇一:工程热力学课后作业答案第五版(全)】kpa。
(2)标准状n2的气体常数;态下n2的比容和密度;(3)p?0.1mpa,t?500解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中co2的质量m1?p1v1rt1℃时的摩尔容积mv。
解:(1)n2的气体常数r?r0m?831428=296.9j/(kg?k)压送后储气罐中co2的质量m2?p2v2rt2(2)标准状态下n2的比容和密度v?rtp?296.9?273101325根据题意容积体积不变;r=188.9=0.8m3/kgp1?pg1?b p2?pg2?b(1)(2)(3)(4)??1v=1.25kg/m3(3)p?0.1mpa,t?500℃时的摩尔容积mvmv =r0tpt1?t1?273 t2?t2?273=64.27m3/kmol压入的co2的质量m?m1?m2?vp2p1(?) rt2t1(5)2-3.把co2压送到容积3m3将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的1的储气罐里,起始表压力pg1?30kpa,终了表压力pg2?0.3mpa,温度由t1=45℃增加到t2=70℃。
试求被压入的co2的质量。
当地大气空气,如外界的温度增高到27℃,大气压降低到99.3kpa,而鼓风机每小时的送风量仍为300 m,问鼓风机送风量的质量改变多少?解:同上题m?m1?m2?3气质量m2?p2v2rt2?7?105?8.5287?288kg压缩机每分钟充入空气量m?pvrt?1?105?3287?288kg所需时间vp2p130099.3101.325m219.83min ?1000(?)?(??rt2t1287300273m=41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1mpa的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学第五版习题答案
工程热力学第五版习题答案第四章4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。
解:热力系是1kg 空气过程特征:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9 因为T c q n ?=内能变化为R c v 25==717.5)/(K kg J ? v p c R c 5727===1004.5)/(K kg J ?=n c ==--v vc n kn c 51=3587.5)/(K kg J ? n v v c qc T c u /=?=?=8×103J膨胀功:u q w ?-==32 ×103J 轴功:==nw w s 28.8 ×103J焓变:u k T c h p ?=?=?=1.4×8=11.2 ×103J熵变:12ln 12ln p p c v v c s v p +=?=0.82×103)/(K kg J ? 4-2有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=;(3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1)膨胀功:])12(1[111kk p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=?-==88.3×103J12ln12lnp p R T T c s p -=?=116.8)/(K kg J ? (3)21ln1p p RT w ==195.4×103)/(K kg J ? 21lnp p R s =?=0.462×103)/(K kg J ? (4)])12(1[111nn p p n RT w ---==67.1×103Jnn p p T T 1)12(12-==189.2K12ln 12lnp p R T T c s p -=?=-346.4)/(K kg J ?4-3 具有1kmol 空气的闭口系统,其初始容积为1m 3,终态容积为10 m 3,当初态和终态温度均100℃时,试计算该闭口系统对外所作的功及熵的变化。
工程热力学第五版思考题答案
工程热力学第五版思考题答案【篇一:工程热力学课后作业答案第五版(全)】kpa。
(2)标准状n2的气体常数;态下n2的比容和密度;(3)p?0.1mpa,t?500解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中co2的质量m1?p1v1rt1℃时的摩尔容积mv。
解:(1)n2的气体常数r?r0m?831428=296.9j/(kg?k)压送后储气罐中co2的质量m2?p2v2rt2(2)标准状态下n2的比容和密度v?rtp?296.9?273101325根据题意容积体积不变;r=188.9=0.8m3/kgp1?pg1?b p2?pg2?b(1)(2)(3)(4)??1v=1.25kg/m3(3)p?0.1mpa,t?500℃时的摩尔容积mvmv =r0tpt1?t1?273 t2?t2?273=64.27m3/kmol压入的co2的质量m?m1?m2?vp2p1(?) rt2t1(5)2-3.把co2压送到容积3m3将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的1的储气罐里,起始表压力pg1?30kpa,终了表压力pg2?0.3mpa,温度由t1=45℃增加到t2=70℃。
试求被压入的co2的质量。
当地大气空气,如外界的温度增高到27℃,大气压降低到99.3kpa,而鼓风机每小时的送风量仍为300 m,问鼓风机送风量的质量改变多少?解:同上题m?m1?m2?3气质量m2?p2v2rt2?7?105?8.5287?288kg压缩机每分钟充入空气量m?pvrt?1?105?3287?288kg所需时间vp2p130099.3101.325m219.83min ?1000(?)?(??rt2t1287300273m=41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1mpa的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学(第五版)课后习题答案(全章节)廉乐明-谭羽非等编复习课程
工程热力学(第五版)课后习题答案(全章节)廉乐明-谭羽非等编工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学(第五版)课后习题答案(全)
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学第5版教案及课后答案
1.定容热效应和定压热效应 反应在定温定容或定温定压下不可逆地进行,且没有作出
有用功,则其反应热称为反应的热效应。
QU2U1Wu,V 0
QH2H1W u,p
QV U2 U1 Qp H2 H1
定容热效应QV 定压热效应 Qp
反应焓(H):定温定压反应的热效应,等于反应前后物系焓差。
反应热是过程量,与反应过程有关; 热效应是定温反应过程中不作有用功时的反应热,是状态量
(standard
enthalpy
of
formation)
—标准状态下的生成热 。
稳定单质或元素的标准生成焓规定为零。
标准燃烧焓 H c(0 standard enthalpy of combustion) —标准状态下的燃烧热。
16
3. 理想气体工质任意温度 T 的摩尔焓
HmΔHf0ΔH
H
标准生成焓
… 生命 环保
? 化学反应
热力学基本概念和基本原理是否适用
一. 化学反应系统与物理反应系统
1. 包含化学反应过程的能量转换系统:
闭口系
开口系
3
2. 独立的状态参数 简单可压缩系的物理变化过程,确定系统平衡状态的独立状态 参数数:两个;
? 发生化学反应的物系: 两个以上的独立参数。
除作功和传热,参与反应的物质的成分或浓度也可变化。
能够使物系和外界完全恢复到原来状
.2
态,不留下任何变化的理想过程。
一切含有化学反应的实际过程都
是不可逆的, 少数特殊条件下的化学
反应接近可逆。 例如? 蓄电池的放电和充电——接近可逆; 燃烧反应——强烈不可逆。
正向反应 +
系统 有用功数值相等 外界
工程热力学第五版思考题答案
工程热力学第五版思考题答案【篇一:工程热力学课后作业答案第五版(全)】kpa。
(2)标准状n2的气体常数;态下n2的比容和密度;(3)p?0.1mpa,t?500解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中co2的质量m1?p1v1rt1℃时的摩尔容积mv。
解:(1)n2的气体常数r?r0m?831428=296.9j/(kg?k)压送后储气罐中co2的质量m2?p2v2rt2(2)标准状态下n2的比容和密度v?rtp?296.9?273101325根据题意容积体积不变;r=188.9=0.8m3/kgp1?pg1?b p2?pg2?b(1)(2)(3)(4)??1v=1.25kg/m3(3)p?0.1mpa,t?500℃时的摩尔容积mvmv =r0tpt1?t1?273 t2?t2?273=64.27m3/kmol压入的co2的质量m?m1?m2?vp2p1(?) rt2t1(5)2-3.把co2压送到容积3m3将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的1的储气罐里,起始表压力pg1?30kpa,终了表压力pg2?0.3mpa,温度由t1=45℃增加到t2=70℃。
试求被压入的co2的质量。
当地大气空气,如外界的温度增高到27℃,大气压降低到99.3kpa,而鼓风机每小时的送风量仍为300 m,问鼓风机送风量的质量改变多少?解:同上题m?m1?m2?3气质量m2?p2v2rt2?7?105?8.5287?288kg压缩机每分钟充入空气量m?pvrt?1?105?3287?288kg所需时间vp2p130099.3101.325m219.83min ?1000(?)?(??rt2t1287300273m=41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1mpa的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学课后作业答案第五版
2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙ (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3 v1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pTR 0=64.27kmol m /32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO 2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2)27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。
工程热力学,课后习题答案
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pTR 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学课后作业答案第五版
工程热力学课后答案 2-2.解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得m=12.02kg2-5解:同上题10)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6解:热力系:储气罐。
使用理想气体状态方程。
第一种解法:首先求终态时需要充入的空气质量2882875.810722225⨯⨯⨯==RT v p m kg压缩机每分钟充入空气量28828731015⨯⨯⨯==RT pv m kg所需时间==mm t 219.83min 第二种解法将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为多少的问题。
根据等温状态方程constpv =0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为5.591.05.87.01221=⨯==P V p V m 3压缩机每分钟可以压缩0.1MPa 的空气 3 m 3,则要压缩59.5 m 3的空气需要的时间==35.59τ19.83min 2-8解:热力系:气缸和活塞构成的区间。
工程热力学(第五版)课后习题答案(全章节)
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =p T R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9g1(1)g 2 (2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa ?设充气过程中气罐内温度不变。
解:热力系:储气罐。
使用理想气体状态方程。
第一种解法:首先求终态时需要充入的空气质量2882875.810722225⨯⨯⨯==RT v p m kg压缩机每分钟充入空气量28828731015⨯⨯⨯==RT pv m kg所需时间==m m t 219.83min第二种解法将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m3的空气在0.1MPa 下占体积为多少的问题。
根据等温状态方程const pv =0.7MPa 、8.5 m3的空气在0.1MPa 下占体积为5.591.05.87.01221=⨯==P V p V m3压缩机每分钟可以压缩0.1MPa 的空气3 m3,则要压缩59.5 m3的空气需要的时间==35.59τ19.83min2-8 在一直径为400mm 的活塞上置有质量为3000kg 的物体,气缸中空气的温度为18℃,质量为2.12kg 。
加热后其容积增大为原来的两倍。
大气压力B =101kPa ,问:(1)气缸中空气的终温是多少?(2)终态的比容是多少?(3)初态和终态的密度各是多少? 解:热力系:气缸和活塞构成的区间。
使用理想气体状态方程。
(1)空气终态温度==1122T V V T 582K(2)空气的初容积p=3000×9.8/(πr2)+101000=335.7kPa==p mRT V 110.527 m3空气的终态比容m V m V v 1222===0.5 m3/kg或者==p RT v 220.5 m3/kg(3)初态密度527.012.211==V m ρ=4 kg /m3 ==212v ρ 2 kg /m32-9解:(1)氮气质量3008.29605.0107.136⨯⨯⨯==RT pv m =7.69kg(2)熔化温度8.29669.705.0105.166⨯⨯⨯==mR pv T =361K2-14 如果忽略空气中的稀有气体,则可以认为其质量成分为%2.232=go ,%8.762=N g 。
试求空气的折合分子量、气体常数、容积成分及在标准状态下的比容和密度。
解:折合分子量28768.032232.011+==∑ii Mg M =28.86气体常数86.2883140==M R R =288)/(K kg J •容积成分2/22Mo M g r o o ==20.9%=2N r1-20.9%=79.1%标准状态下的比容和密度4.2286.284.22==M ρ=1.288 kg /m3 ρ1=v =0.776 m3/kg2-15 已知天然气的容积成分%974=CH r ,%6.062=H C r ,%18.083=H C r ,%18.0104=H C r ,%2.02=CO r ,%83.12=N r 。
试求:天然气在标准状态下的密度; 各组成气体在标准状态下的分压力。
解:(1)密度100/)2883.1442.05818.04418.0306.01697(⨯+⨯+⨯+⨯+⨯+⨯==∑i i M r M=16.4830/736.04.2248.164.22m kg M ===ρ(2)各组成气体在标准状态下分压力 因为:pr p i i ===325.101*%974CH p 98.285kPa同理其他成分分压力分别为:(略)第三章 热力学第一定律3-1 安静状态下的人对环境的散热量大约为400KJ/h ,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min 内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。
解:(1)热力系:礼堂中的空气。
闭口系统根据闭口系统能量方程WU Q +∆=因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。
60/204002000⨯⨯=Q =2.67×105kJ(1)热力系:礼堂中的空气和人。
闭口系统根据闭口系统能量方程WU Q +∆=因为没有作功故W=0;对整个礼堂的空气和人来说没有外来热量, 所以内能的增加为0。
空气温度的升高是人体的散热量由空气吸收,导致的空气内能增加。
3-5,有一闭口系统,从状态1经a 变化到状态2,如图,又从状态2经b 回到状态1;再从状态1经过c 变化到状态2。
在这个过程中,热量和功的某些值已知,如表,试确定未知量。
过程热量Q(kJ)膨胀功W(kJ)1-a-2 10 x12-b-1 -7 -41-c-2 x2 2解:闭口系统。
使用闭口系统能量方程(1)对1-a-2和2-b-1组成一个闭口循环,有⎰⎰=WQδδ即10+(-7)=x1+(-4)x1=7 kJ(2)对1-c-2和2-b-1也组成一个闭口循环x2+(-7)=2+(-4)x2=5 kJ(3)对过程2-b-1,根据WUQ+∆==---=-=∆)4(7WQU-3 kJ3-6 一闭口系统经历了一个由四个过程组成的循环,试填充表中所缺数据。
过程Q(kJ)W(kJ)ΔE(kJ)1~2 1100 0 11002~3 0 100 -1003~4 -950 0 -9504~5 0 50 -50解:同上题3-7 解:热力系:1.5kg质量气体闭口系统,状态方程:bavp+=)]85115.1()85225.1[(5.1---=∆vpvpU=90kJ 由状态方程得1000=a*0.2+b解上两式得: a=-800 b=1160 则功量为2.12.0221]1160)800(21[5.15.1v v pdv W --==⎰=900kJ过程中传热量WU Q +∆==990 kJ3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。
将隔板抽出后,空气迅速膨胀充满整个容器。
试求容器内最终压力和温度。
设膨胀是在绝热下进行的。
解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程WU Q +∆=绝热0=Q自由膨胀W =0 因此ΔU=0对空气可以看作理想气体,其内能是温度的单值函数,得KT T T T mc v 300120)12(==⇒=-根据理想气体状态方程161211222p V V p V RT p ====100kPa3-9 一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,为500 kPa ,25℃。
充气开始时,罐内空气参数为100 kPa ,25℃。
求充气终了时罐内空气的温度。
设充气过程是在绝热条件下进行的。
解:开口系统 特征:绝热充气过程 工质:空气(理想气体)根据开口系统能量方程,忽略动能和未能,同时没有轴功,没有热量传递。
dE h m h m +-=00220没有流出工质m2=0 dE=dU=(mu)cv2-(mu)cv1终态工质为流入的工质和原有工质和m0= mcv2-mcv1 mcv2 ucv2- mcv1ucv1=m0h0(1)h0=cpT0ucv1=cvT1mcv1=11RT V p mcv2 =22RT V p代入上式(1)整理得21)10(1212p p T kT T T kT T -+==398.3K3-10供暖用风机连同加热器,把温度为01=t ℃的冷空气加热到温度为2502=t ℃,然后送入建筑物的风道内,送风量为0.56kg/s ,风机轴上的输入功率为1kW ,设整个装置与外界绝热。
试计算:(1)风机出口处空气温度;(2)空气在加热器中的吸热量;(3)若加热器中有阻力,空气通过它时产生不可逆的摩擦扰动并带来压力降,以上计算结果是否正确? 解:开口稳态稳流系统(1)风机入口为0℃则出口为=⨯⨯==∆⇒=∆310006.156.01000Cp mQ T Q T Cp m1.78℃ 78.112=∆+=t t t ℃空气在加热器中的吸热量)78.1250(006.156.0-⨯⨯=∆=T Cp mQ =138.84kW (3)若加热有阻力,结果1仍正确;但在加热器中的吸热量减少。
加热器中)111(22212v P u v P u h h Q +-+=-=,p2减小故吸热减小。
3-11一只0.06m3的罐,与温度为27℃、压力为7MPa 的压缩空气干管相连接,当阀门打开,空气流进罐内,压力达到5MPa 时,把阀门关闭。