苏教版八年级数学上册知识点总结(苏科版)

合集下载

最新苏教版苏科版八年级上册数学第二章复习题

最新苏教版苏科版八年级上册数学第二章复习题

2.3----2.6复习马远宗1.16的算术平方根是 ( )A.4 B.4± C.8 D.8±2. 与数轴上的点一一对应的数是( )A. 实数B. 无理数C. 有理数D. 整数3.不用计算器,估算30的值应在 ( )A .5.0~5.5之间B .5.5~6.0之间C .6.0~6.5之间D .6.5~7.0之间4.如图,在数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的数是 ( )A .2-1B .1-2C .2-2D .2-2 5.下列说法中正确的是 ( )A 、带根号的数都是无理数B 、不带根号的数一定是有理数C 、无理数是无限小数D 、无限小数都是无理数6、若一个数的算术平方根是a ,则比这个数大3的数是A、a+3 B、 a -3 C、 a +3 D、a 2+37、下列说法中正确的是……………………………………………………( )A 、一个正数的立方根有两个,它们互为相反数;B 、负数没有立方根;C 、任何一个数的立方根都是非负数; D 、正数有一个正的立方根,负数有一个负的立方根;8、下列化简错误的是………………………………………………………( )A 、3273=B 、3273-=-C 、3273-=-D 、3273=-9.下列各组数中互为相反数的一组是 ( )A .一2B .一2与 C .一2与12- D .|一2 |与2 10.据统计,2021年十·一期间,江阴市某风景区接待中外游客的人数为8674人次,将这个数字保留三个有效数字,用科学记数法可表示为A 、8.67×102B 、8.67×103C 、8.67×104D 、8.67×10511.下列说法中,正确的是 ( )A .近似数3.20和近似数3.2的精确度一样B .近似数3.20和近似数3.2的有效数字一样 C .近似数2千万和近似数2000万的精确度一样 D .近似数32.0和近似数3.2的精确度一样12.近似数1.8×105精确到 位,有 个有效数字.地球七大洲的总面积约是1494800002km ,对这个数据保留3个有效数字,记作 2km .13.在实数5,3.14,3216-,23-,0.2020020002…,722,..65.1,π--中,正无理数是 .14.81的平方根为 ;-216的立方根为 ;9的算术平方根为 ;289开平方得 .15.平方根等于它本身的数是 ___ ;若23-=y ,则y = .16.如果一个数的平方根和立方根相同,则这个数是________。

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)

知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。

2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。

二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。

理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。

2、全等三角形的周长相等、面积相等。

3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。

三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

4、边边边公理(SSS) 有三边对应相等的两个三角形全等。

5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。

2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。

3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。

第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。

四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结八年级数学是初中数学中的一项重要内容,对于学生的数学思维能力的培养和数学基础的奠定有着至关重要的作用。

而苏教版八年级数学则是较为常见并被广泛使用的一套教材。

本文将对苏教版八年级数学的知识点进行综述和总结。

一、代数代数是八年级数学的核心内容之一,主要包括:一元一次方程与等式,二元一次方程组,根式与分式,整式,一次函数及其应用等知识点。

1. 一元一次方程与等式一元一次方程指一个未知数为一次的方程,可以表示为ax+b=0 (a≠0),如2x+3=7。

对于一元一次方程,我们需要掌握基本的方程变形、用加减乘除消元、移项变号、去分母等方法来解方程。

同时,还需要理解为什么一元一次方程只有一个解或没有解。

在实际应用中,我们可以将问题转化为一元一次方程,进而解决问题。

比如有一道题目:“一堆苹果,分给a,b,c三人,分完后c 多得a,b两人分的各一半,若原来有21个苹果,则c得到多少个苹果?” 我们根据题意可以写出方程。

设a,b,c三人分别得到x,y,z个苹果,则有:x+y+z = 21;z = (x+y)/2;整理得:x + y - 2z = 0;插入第一个公式可得:x+y = 2z;代入第一个公式得:3z = 21,解得z=7。

所以c得到的苹果数是7个。

2. 二元一次方程组二元一次方程组由两个未知数的一次方程组成,一般写成:ax+by=c;dx+ey=f;我们需要掌握用消元法和代入法解二元一次方程组的基本方法和步骤。

同时还需要理解解出的解集的含义,如有唯一解、无解、无穷解等情况。

在实际应用中,二元一次方程组也有广泛的应用,如数学建模、物理力学等。

例如有一道题目:“使用8个10W和4个20W的灯泡,排成两排,第一排4个,第二排8个,第一排亮的灯泡功率大于等于第二排。

求每只灯有几瓦?” 我们根据题意可以写出方程组。

设第一排4个灯泡中有x个10W的和y个20W的,第二排8个灯泡中有m个10W的和n个20W的,则有:x+y = 4;m+n = 8;10x+20y >= 10m+20n;代入第三个方程可以得到: y>=n;n>=x;m>=y;插入第一个公式可得:n+m = 8-x;插入第二个公式可得:x+2y <= 4;整理可得:5y-2n >=2,解得y=2,n=1。

苏教版八年级数学上册《勾股定理》课件(共16张PPT)

苏教版八年级数学上册《勾股定理》课件(共16张PPT)
谢谢观赏
You made my day!
我们,还在路上……
3.1 勾股定理
例2 [教材练习第2题变式题] 如图3-1-2,64、400分
别为所在正方形的面积,则图中字母A所代表的正方形面
积是33_6_______.
图3-1-2
3.1 勾股定理
[解析] 由图可以知道,分别以这三个正方形一边为三角形的 边,围成的三角形恰好是直角三角形,因此它们的三边满足 勾股定理,也就是说以直角边为边的两个正方形的面积和等
c2=a2+b2,a2=c2-b2,b2=c2-a2.
[注意] 只有在直角三角形中才能运用勾股定理,钝角和锐角 三角形中均不适用.
3.1 勾股定理
重难互动探究
探究问题一 利用勾股定理求单个正方形的面积或直角三 角形的边长
例1 [教材练习第1题变式题] 在Rt△ABC中,∠C=90°, ∠A,∠B,∠C所对的边分别为a,b,c.
于以斜边为边的正方形的面积,则图中字母A所代表的正方形
面积为400-64=336. [归纳总结] 勾股定理不仅揭示了直角三角形三边之间的数量 关系,而且揭示了以直角三角形的两直角边为边的两个正方 形的面积和与以斜边为边的正方形面积之间的关系.
3.1 勾股定理
探究问题二 综合利用勾股定理求多个直角三角形的相关边长 例3 [勾股定理运用拓展题] 一个零件的形状如图3-1-3
(1)若c=15,b=12,求a; (2)若a=11,b=60,求c; (3)若a∶b=3∶4,c=10,求a,b.
3.1 勾股定理
解:(1)因为 a2+b2=c2, 所以 a2=c2-b2=152-122=81, 所以 a=9. (2)因为 a2+b2=c2, 所以 c2=112+602=3721, 所以 c=61. (3)因为 a∶b=3∶4, 所以设 a=3x,b=4x.

苏教版八年级上册数学提纲

苏教版八年级上册数学提纲

苏教版八年级上册数学提纲数学基础学问薄弱的学生,当下最主要的目标就是从头梳理学问框架,查缺补漏,构建更为系统、完好的学问体系。

以下是我给大家整理的苏教版〔八年级〕上册数学提纲,希望对大家有所关怀,欢迎阅读!苏教版八年级上册数学提纲三角形学问概念1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的样子是固定的,三角形的这独特质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。

(完整版)苏教版初中数学知识点总结(适合打印)

(完整版)苏教版初中数学知识点总结(适合打印)
三、四边形分类表:
1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。⑶外角和:360°
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
3.三角形的主要线段
讨论:①定义②××线的交点—三角形的×心③性质
①高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形的判定与性质5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
1.配料问题:溶质=溶液×浓度2.溶液=溶质+溶剂3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
二、实数的运算
运算法则(加、减、乘、除、乘方、开方)
运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)
运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。整式和分式统称为有理式。
6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

苏科版八年级上册数学书答案

苏科版八年级上册数学书答案

苏科版八年级上册数学书答案篇一:苏科版八年级上册数学期中复习题及答案2015~2016学年第一学期初二数学期中复习要点范围:2013版苏科版初中数学教材八年级(上)第一章《全等三角形》、第二章《轴对称图形》及第四章《实数》;考试时间:120分钟;考试分值:130分。

第一章《全等三角形》知识点:全等图形,全等三角形的概念及性质,全等三角形的条件。

第二章《轴对称图形》知识点:轴对称与轴对称图形,轴对称性质,线段、角、等腰三角形的轴对称性。

练习:1.下列图形中:①平行四边形;②有一个角是30的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个B.2个C.3个D.4个02..等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底长为()A.3cm或5cm,B.3cm或7cm C.3cm D.5cm3.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( )A.1个B.2个C.3个D.4个4.下面能判断两个三角形全等的条件是( )A.两边和它们的夹角对应相等B.三个角对应相等C.有两边及其中一边所对的角对应相等D.两个三角形周长相等5.如图,在△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°;B.35°;C.25°;D.20°6.如图,已知∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.17. .如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确.......定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.A.2 B.3 C.4 D.5(第5题)(第6题)(第7题)8.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED 的条件的个数( )A.4个B.3个C.2 个D.1个19.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,C′D交AB于E,若∠BDC′=22.5°,则在不添加任何辅助线的情况下,图中45°的角(图中虚线也可视为角的边)有( ) A.7个B.6个C.5个D.4个10.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是( )A.∠2=3∠1-180° B.?2?60???1()3C.∠1=2∠2D.∠1=90°-∠2(8题图)11. 若等腰三角形的一个角是80°,则其底角为_ .12. 如图,在△ABC中,DE是AC的垂直平分线,AE=4 cm,△ABD 的周长为13cm,则△ABC的周长为cm.13.如图,AD是△ABC的中线,∠ADC=60°,BC=4,把△ABC 沿直线AD折叠后,点C落在C’的位置上,那么BC’的长为;14.如图,AB=AE,∠1=∠2,要使△ABC≌△AED,还需添加的条件是;15.如图,AB//CD,AD//BC,图中全等三角形共有(第12题)(第13题)(第14题)(第15题)16. 如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.17. 如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,连结AD.(1)若△ADC的周长为16,AB=12,求△ABC的周长;(2)若AD将∠CAB分成两个角,∠DAB=36°,求∠DAC的度数.2篇二:苏科版数学八年级上期末试卷(含答案)苏科版数学八年级上期末试卷班级姓名学号成绩一、选择题(每题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A、1个B、2个C、3个D、4个2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )A、(3,-2)B、(2,3)C、(-2,-3)D、(2,-3)3.若数据2,x,4,8的平均数是4,则这组数据的众数和中位数是()A、3和2B、2和3C、2和2D、2和44.在??3,4,2,3.14,(2)0,0.58588588858888?,中无理数的个数是() 2A、2个B、3个C、4个D、5个5.下列说法:(1)对角线相等的四边形是矩形;(2)对角线互相垂直的四边形是菱形;(3)有一个角为直角且对角线互相平分的四边形是矩形;(4)菱形的对角线的平方和等于边长的平方的4倍。

苏科版初中八年级上册数学:3.1 勾股定理

苏科版初中八年级上册数学:3.1 勾股定理

学以致用
一架消防队的梯子长25m,在一次
火灾中, 梯子的底部离建筑物15m,此
时,梯子最高能到多少米?
D
如果每层楼高4m,要想救上
A
一层的人,梯子的底部要向楼的
方向推进多少米?
B
E
C
知识象一艘船 让它载着我们
驶向理想的……
敬 请 指 导
再 见
Q
探究活动二
在方格纸上, 画一个顶点都在格 点上的直角三角形; 并分别以这个直角 三角形的各边为一 边向三角形外作正 方形,仿照上面的方 法计算以直角边、 斜边为一边的正方 形的面积.
边为c,那么
a2 + b2 = c2
a
c
b
即直角三角形两直角边的平方和等于斜边的平方.
苏教版八年级数学 勾股定理
苏州市相城区东桥中学 宋明康
邮票赏 析
这是1955年希腊曾经发 行的纪念邮票,邮票上的图 案是根据一个著名的数学定 理设计的。
探究活动一
将每个小正方形的面积看作1,△ABC是以格点为 顶点的直角三角形,分别以三边向外作正方形。
你能计算以 AB为边的正方 形的面积吗?
R P
勾股定理揭示了直角三角形三边之间的关系.
弦 勾
在西方又称毕 达哥拉斯定理

例题精选 例1 求下列图中表示边的未知数x、y、z的值.
81 144

144 169 ②
z
625 576

例题精选
例2 求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x
谁 算

20

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)知识点总结第七章:数据的整理、收集、描述知识概念抽样与样本1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。

第八章:认识概率确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

苏教版八年级数学勾股定理教案

苏教版八年级数学勾股定理教案

2.1勾股定理(1)(苏科版数学八年级上册)徐州高级中学李贺一、教材分析本节课是九年制义务教育课程标准实验教科书(苏科版)八年级上册第二章第一节“勾股定理”的第一课时.在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。

也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。

在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。

让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

在探求勾股定理的过程中,蕴涵了丰富的数学思想。

把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,是数形结合的典范;把探求边的关系转化为探求面积的关系,将边不在格线上的图形转化为可计算的格点图形,是转化思想的体现;先探求特殊的直角三角形的三边关系,再猜测一般直角三角形的三边关系,再解决一些特殊直角三角形的问题,这是特殊——一般——特殊的思想。

在本节课,要创设问题串,提供学生活动的方案,让学生在活动中思考,在思考中创新,认识和理解勾股定理,并能利用勾股定理解决一些简单的有关直角三角形的计算问题.二、教学目标1、让学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。

并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

2、让学生经历拼图实验、计算面积的过程,在过程中养成独立思考、合作交流的学习习惯;让各类型的学生在这些过程中发挥自己特长,通过解决问题增强自信心,激发学习数学的兴趣;通过老师的介绍,感受勾股定理的文化价值.3、能说出勾股定理,并能用勾股定理解决简单问题. 三、教学重点 勾股定理的探索过程. 四、教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积. 五、教学方法与教学手段采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.六、教学过程(一)创设情境 提出问题1.同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你知道第三边的长吗?你知道第三边长的范围吗?2.如果又已知这两边的夹角,那么第三边的长是多少? 3.已知直角三角形的两边的长,如何求第三边的长呢?这节课就让我们一起来探讨这个问题.板书:直角三角形三边数量关系.(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生从原有的认知水平出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标.让学生体会到当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究.)(二)实践探索 猜想归纳68x(图1)1、用什么方法来探求板书:直角三角形三边数量关系呢?回忆我们曾经利用图形面积探索过数学公式,大家还记得在哪用过吗? (学生讨论)课件展示:平方差公式、完全平方公式、单项式乘多项式、多项式乘多项式.222()2a b a ab b +=++()a b c d ab ac ad ++=++ ()()a b c d ac ad bc bd ++=+++今天,让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关系. (从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心.)2、(课件展示图2)观察图形,我们分别以直角三角形ABC 的三边为边向形外作三个正方形.若将图形①、②、③、④、⑤剪下,用它们可以拼一个与正方形ABDE 大小一样的正方形吗?(同位利用教师提供的学案,合作拼图。

苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥是a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0 ||00a aa aa a>⎧⎪===⎨⎪-<⎩()()20a a a =≥ 知识点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】 类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2016春•庐江县期末)已知()22230x y x y ++++=,求2x y -的平方根.【答案】解:, 解得,∴ 2x y -=1﹣2×(﹣2)=5,∴5的平方根是±.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结本文档旨在对苏教版八年级上册数学课程的知识点进行归纳和总结,帮助学生更好地掌握和复相关内容。

一、代数与函数- 代数运算:四则运算,整式的加减乘除等。

- 一元一次方程:解一次方程的基本方法,应用题的解法。

- 一元一次不等式:求解不等式,应用题的解法。

- 函数概念:自变量和因变量,函数的图象。

- 一元一次函数:函数的定义,函数图象的性质,函数与方程的联系。

- 一元一次函数图象的绘制与应用:确定函数的部分特征,应用题的解法。

二、图形的认识与运用- 点和线:点的名称与判定,线的名称与判定。

- 图形的基本性质:图形的名称与判定,图形基本性质的应用。

- 直线与角:直线的性质,角的性质,角的名称与判定。

- 三角形:三角形的性质,三角形判定,三角形的分类。

- 四边形:四边形的性质,四边形的分类,四边形的判定。

- 一般平行四边形:平行四边形的性质,平行四边形的判定。

- 圆及其部分:圆的性质,圆的判定,圆内角的性质。

三、空间与形体- 空间中的位置与方向:空间中点的坐标,方向的判定与计算。

- 空间中直线、平面与图形:直线与平面的判定,平行与垂直的判定。

- 空间中三视图与展开图:图形的三视图,平面图形的展开图。

四、数据统计- 统计与统计分布:数据的统计指标,数据的统计分布。

- 直方图与折线图:直方图的绘制与解读,折线图的绘制与解读。

五、平面向量- 平面向量的表示与运算:平面向量的表示方法,向量的运算。

以上是苏教版八年级上册数学课程的主要知识点归纳和总结。

希望本文档对学生理解和掌握相关知识有所帮助。

苏教版八年级数学全册知识点总结

苏教版八年级数学全册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

苏教版1-6年级数学总复习基础知识点汇总(含目录)

苏教版1-6年级数学总复习基础知识点汇总(含目录)

苏教版1-6年级数学目录1年级上册一数一数二比一比三分一分四认位置五认数(一)六认识物体七分与合 8=4+4;8=3+5;8=2+6;8=1+7;8=8+0八加法和减法九统计十认数(二)十一认识钟表十二加法十三期末复习1年级下册一减法二认识图形三认数四加法和减法(一)五认识人民币六加法和减法(二)七统计八期末复习2年级上册一认识乘法二乘法口诀(一)* 快乐的对日活动三认识图形* 有趣的七巧板四认识除法五口诀求商(一)六厘米和米* 量一量七位置和方向八乘法口诀和口诀求商(二)* 算24点九时、分、秒十观察物体十一统计与可能性*田园风光十二期末复习2年级下册一有余数的除法二认数三分米和毫米四加法五认识方向* 测定方向六减法七认识角八乘法九统计* 你能跳多远十期末复习3年级上册1 除法○农村新貌2 认数3 千克和克○称一称4 加和减5 24小时记时法○周末一天的安排6 长方形和正方形○周长是多少7 乘法8 观察物体9 统计和可能性○摸牌和下棋10 认识分数11 整理与复习3年级下册1 除法2 年、月、日○生日快乐3 平移和旋转○美丽的花边4 乘法5 观察物体6 千米和吨○了解千米7 轴对称图形○奇妙的剪纸8 认识分数9 长方形和正方形的面积○我们的试验田10 统计○运动和身体的变化11 认识小数12 整理与复习4年级上册1 除法2 角○怎样滚得远3 混合运算4 平行和相交5 找规律6 观察物体7 运算率(加法和乘法的交换律和结合律)8 解决问题的策略9 统计与可能性○了解我们自己10 认数11 用计算器计算○一亿有多大12 整理与复习4年级下册1 乘法2 升和毫升○美妙的“杯琴”3 三角形4 混合运算5 平行四边形和梯形6 找规律7 运算率○我们去春游8 对称、平移和旋转○图案的欣赏和设计9 倍数和因数10 用计算器探索规律11 解决问题的策略12 统计○了解我们的生存空间13 用字母表示数14 整理和复习5年级上册1 认识负数○面积是多少2 多边形面积的计算○校园的绿化面积3 认识小数4 小数加法和减法5 找规律6 解决问题的策略7 小数乘法和除法(一)8 公顷和平方千米9 小数乘法和除法(二)10 统计○了解周围的家庭11 整理与复习5年级下册1 方程2 确定位置3 公倍数和公因数○数字与信息4 认识分数5 找规律6 分数的基本性质○球的反弹高度7 统计8 分数加法和减法○奇妙的图形密铺9 解决问题的策略10 圆○画出美丽的图案11 整理与复习6年级上册1.方程2.长方体和正方体*.表面积的变化3.分数乘法4.分数除法5.认识比*.大树有多高6.分数四则混合运算7.解决问题的策略8.可能性9.认识百分数*算出它们的普及率10.整理与复习6年级下册1 百分数的应用2 圆柱和圆锥○测量物体的体积3 比例○面积的变化4 确定位置○实际测量5 正比例和反比例6 解决问题的策略7 统计8 总复习数与代数空间与图形统计与可能性综合应用基础知识-《数与代数》(一)数的认识整数【正数、0、负数】1、一个物体也没有,用0表示。

05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册

05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册

05 全等三角形的判定二(SSS ,AAS )(基础篇)-知识讲解+答案【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件 可选择的判定方法一边一角对应相SAS AAS ASA等两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、(2016•蓝田县一模)如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A.0对B.1对C.2对D.3对【思路点拨】首先证明△ABE≌△AEC,再证明△AEC≌△ADC,△ABE≌△ADC.【答案与解析】解:在△ABE和△AEC中,,∴△ABE≌△AEC(SSS),在△AEC和△ADC中,,∴△ABO≌△ADO(SSS),∴△ABE≌△ADC,故选D【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【高清课堂:379109 全等三角形的判定(一) 同步练习6】【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”【高清课堂:379110 全等三角形的判定二,例6】2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、(2015春•雅安期末)如图:AB=A ′B ′,∠A=∠A′,若△ABC≌△A′B′C ′,则还需添加的一个条件有( )种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC ≌△ A ′B ′C ′,已知了AB=A ′B ′,∠ A=∠ A ′,可用的判别方法有ASA ,AAS ,及SAS ,所以可添加一对角∠B=∠B ′,或∠C=∠C ′,或一对边AC=A ′C ′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A ′C ′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B ′C ′(ASA );若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS );若添加AC=A ′C ′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C ′(SAS ).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】(2014秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。

苏教版数学八上第一章、第二章知识点总结(完整版)

苏教版数学八上第一章、第二章知识点总结(完整版)

全等三角形一、关系图性质对应角相等对应边相等边边边SSS全等形全等三角形边角边SAS 应用判定角边角ASA角角边AAS斜边、直角边HL角平分线作图性质与判定定理二、根底知识〔一〕、根本概念1、“全等〞的理解全等的图形必须满足:〔1〕形状一样的图形;〔2〕大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质〔1〕全等三角形对应边相等;〔2〕全等三角形对应角相等;3、全等三角形的判定方法〔1〕三边对应相等的两个三角形全等。

〔2〕两角和它们的夹边对应相等的两个三角形全等。

〔3〕两角和其中一角的对边对应相等的两个三角形全等。

〔4〕两边和它们的夹角对应相等的两个三角形全等。

〔5〕斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上〔二〕灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

〔1〕条件中有两角对应相等,可找:①夹边相等〔ASA〕②任一组等角的对边相等(AAS)〔2〕条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)〔3〕条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的根本方法步骤:1. 确定条件〔包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系〕;2. 回忆三角形判定公理,搞清还需要什么;3. 正确地书写证明格式〔顺序和对应关系从推导出要证明的问题〕。

常见考法〔1〕利用全等三角形的性质:①证明线段〔或角〕相等;②证明两条线段的和差等于另一条线段;③证明面积相等;〔2〕利用判定公理来证明两个三角形全等;〔3〕题目开放性问题,补全条件,使两个三角形全等。

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。

要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。

要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。

要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。

要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。

XXX∠FAE。

又∠EAG+∠XXX∠BAG=180°。

AEF≌△AGF(AAS)。

XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。

又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。

AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。

BAD=∠CAD。

又∠ABD=∠ACD。

ABD≌△ACD(AAS)。

BD=CD。

又∠BDA=∠CDA。

BDA≌△CDA(SAS)。

B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。

证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章全等三角形1.1 全等图形1.2 全等三角形1.3 探索三角形全等的条件边角边SAS角边角ASA角角边AAS边边边SSS数学活动关于三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形2.2 轴对称的性质2.3 设计轴对称图案2.4 线段、角的轴对称性2.5 等腰三角形的轴对称性数学活动折纸与证明第3章勾股定理3.1 勾股定理3.2 勾股定理的逆定理3.3 勾股定理的简单应用数学活动探寻勾股数第4章实数4.1 平方根4.2 立方根4.3 实数4.4 近似数数学活动有关实数的课题探究第5章平面直角坐标5.1 物体位置的确定5.2 平面直角坐标系坐标系的象限数学活动确定藏宝地第6章一次函数6.1 函数6.2 一次函数6.3 一次函数的图像6.4 用一次函数解决问题6.5 一次函数与二元一次方程6.6 一次函数、一元一次方程和一元一次不等式数学活动温度计上的一次函数课题学习关于勾股定理的研究电子课本教科书图片知识点总结(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。

二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。

理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。

2、全等三角形的周长相等、面积相等。

3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。

三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

4、边边边公理(SSS) 有三边对应相等的两个三角形全等。

5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。

2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。

3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。

第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。

四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。

2、判定定理:到角两个边距离相等的点在这个角的角平分线上。

3、拓展:三角形三个角的角平分线的交点到三条边的距离相等。

五、等腰三角形1、性质定理:(1)等腰三角形的两个底角相等(等边对等角)。

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。

2、判断定理:一个三角形的两个相等的角所对的边也相等。

(等角对等边)。

六、等边三角形1、性质定理:(1)等边三角形的三条边都相等。

(2)等边三角形的三个内角都相等,都等于60°。

2、拓展:等边三角形每条边都能运用三线合一这性质。

3、判断定理:(1)三条边都相等的三角形是等边三角形。

(2)三个角都相等的三角形是等边三角形。

(3)有两个角是60°的三角形是等边三角形。

(4)有一个角是60°的等腰三角形是等边三角形。

七、直角三角形推论1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。

2、直角三角形中,斜边上的中线等于斜边的一半。

3、拓展:直角三角形常用面积法求斜边上的高。

第三章勾股定理一、基本定义1、勾:直角三角形较短的直角边2、股:直角三角形较长的直角边3、弦:斜边二、勾股定理1、定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

三、勾股定理的逆定理1、定理:如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。

三、勾股数1、定义:满足a2+b2=c2的三个正整数,称为勾股数。

2、常见勾股数:3,4,5;6,8,10; 9,12,15;5,12,13。

四、简单运用1、勾股定理——常用于求边长、周长、面积:理解:(1)已知直角三角形的两边求第三边,并能求出周长、面积。

(2)用于证明线段平方关系的问题。

(3)利用勾股定理,作出长为的线段。

2、勾股定理的逆定理——常用于判断三角形的形状:理解:(1)确定最大边(不妨设为c)。

(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形。

(3)若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边)。

(4)若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)。

(5)难点:运用勾股定理立方程解决问题。

第四章实数一、平方根1、定义:一般地,如果x2=a(a≥0),那么这个数x就叫做a的平方根(或二次方根)。

2、表示方法:正数a的平方根记做,读作“正、负根号a”。

3、性质:(1)一个正数有两个平方根,它们互为相反数。

(2)零的平方根是零。

(3)负数没有平方根。

二、开平方1、定义:求一个数a的平方根的运算,叫做开平方。

三、算术平方根1、定义:一般地,如果x2=a(a≥0),那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

2、表示方法:记作,读作“根号a”。

3、性质:①一个正数只有一个算术平方根。

②零的算术平方根是零。

③负数没有算术平方根。

4、注意的双重非负性:四、立方根1、定义:一般地,如果x3=a那么这个数x就叫做a 的立方根(或三次方根)。

2、表示方法:记作,读作“三次根号a”。

3、性质:(1)一个正数有一个正的立方根。

(2)一个负数有一个负的立方根。

(3)零的立方根是零。

4、注意:,这说明三次根号内的负号可以移到根号外面。

5、五、开立方1、定义:求一个数a的立方根的运算,叫做开立方。

六、实数定义与分类1、无理数:无限不循环小数叫做无理数。

理解:常见类型有三类(1)开方开不尽的数:如等。

(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等。

(3)有特定结构的数:如0.1010010001……等;(注意省略号)。

2、实数:有理数和无理数统称为实数。

3、实数的分类:(1)按定义来分(2)按符号性质来分七、实数比较大小法理解1、正数大于零,负数小于零,正数大于一切负数。

2、数轴比较:数轴上的两个点所表示的数,右边的总比左边的大。

3、绝对值比较法:两个负数,绝对值大的反而小。

4、平方法:a、b是两负实数,若a2>b2,则a<b。

八、实数的运算1、六种运算:加、减、乘、除、乘方、开方。

2、实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

3、实数的运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。

九、近似数1、定义:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数。

2、四舍五入法:取近似值的方法——四舍五入法。

十、科学记数法1、定义:把一个数记为科学计数法。

十一、实数和数轴1、每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。

2、实数与数轴上的点是一一对应的关系。

第五章平面直角坐标系一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念1、平面直角坐标系:(1)定义:在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

(2)坐标轴:其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。

(3)原点:它们的公共原点O称为直角坐标系的原点。

(4)坐标平面:建立了直角坐标系的平面,叫做坐标平面。

2、象限:(1)定义:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

(2)注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念:(1)对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y 轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

(2)点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

(3)平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

(4)平面内点的与有序实数对(坐标)是一一对应的关系。

4、不同位置的点的坐标的特征:(1)各象限内点的坐标的特征:①点P(x,y)在第一象限:x>0,y>0;点P(x,y)在第二象限:x<0,y>0。

②点P(x,y)在第三象限:x<0,y<0;点P(x,y)在第四象限:x>0,y<0。

(2)坐标轴上的点的特征:①点P(x,y)在x轴上:y=0,x为任意实数。

②点P(x,y)在y轴上:x=0,y为任意实数。

③点P(x,y)既在x轴上,又在y轴上:即是原点坐标为(0,0)。

(3)两条坐标轴夹角平分线上点的坐标的特征:①点P(x,y)在第一、三象限夹角平分线(直线y=x)上:x与y相等。

②点P(x,y)在第二、四象限夹角平分线(直线y=-x)上:x与y互为相反数。

(4)和坐标轴平行的直线上点的坐标的特征:①位于平行于x轴的直线上的各点的纵坐标相同。

②位于平行于y轴的直线上的各点的横坐标相同。

(5)关于x轴、y轴或原点对称的点的坐标的特征:①点P与点p’关于x轴对称:横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)。

②点P与点p’关于y轴对称:纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)。

③点P与点p’关于原点对称:横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)。

(6)点P(x,y)到坐标轴及原点的距离:①点P(x,y)到x轴的距离等于|y|。

②点P(x,y)到y轴的距离等于|x|。

③点P(x,y)到原点的距离等于。

第六章一次函数一、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

相关文档
最新文档