人教版六年级数学下册圆柱与圆锥知识点
数学人教版六年级下册《圆柱的认识》课件
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
六年级下册数学讲义-圆锥的认识和体积;圆柱和圆锥体积的应用-人教版(含答案)
圆锥的认识和体积;圆柱和圆锥体积的应用学生姓名年级学科授课教师日期时段核心内容认识圆锥及其体积;掌握圆柱及圆柱体积应用课型一对一教学目标1、初步认识圆锥,掌握圆锥的特征;2、理解圆柱、圆锥体积的推导过程;3、掌握圆锥体积的计算公式,运用其解决简单的实际问题。
4、运用圆柱与圆锥的关系解决问题。
重、难点重点:教学目标1、3 难点:教学目标2、4课首沟通1、还记得圆柱吗?圆柱的表面积和体积的计算公式吗?2、你能说说我们解决圆柱的体积的计算方式是什么?知识导图课首小测1.一段圆柱形钢材长5米,横截成三个小圆柱表面积增加了40平方厘米。
如果每立方厘米钢重 7.8克,这段钢材重多少千克?2.一个圆形罐头盒的底面半径是5cm,高是18cm。
它的体积是多少?导学一:圆锥的认识和体积知识点讲解 1:圆锥的认识圆锥是由一个底面和一个侧面两部分组成的。
(1)底面:圆锥中圆形的面就是它的底面,它有一个底面。
底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。
(2)侧面:圆锥周围的面就是它的侧面。
圆锥的侧面是一个曲面(3)高:从圆锥的顶点到底面圆心的距离就是圆锥的高,高用字母h表示。
圆锥只有一条高。
例 1. 圆锥的底面是一个( );侧面是一个( ),侧面展开是一个( )。
例 2. 圆锥的高是指从圆锥( )到底面( )的( )。
【学有所获】测量圆锥的高:“先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
”我爱展示1.圆锥有()条高2.画出下列每个圆锥的高知识点讲解 2:圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积。
圆锥的体积的计算公式:圆锥的体积=底面积×高×V圆锥=S h推导公式:圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×例 1. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:cm)【学有所获】同底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍。
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
六年级数学下册圆锥与圆柱知识点总结(终审稿)
六年级数学下册圆锥与圆柱知识点总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]《圆柱和圆锥》知识点总结1.圆柱:以长方形的一边所在直线为旋转轴,其余三边旋转形成的面所底面2.圆柱的侧面:圆柱有一个曲面,叫做侧面;(展开图是长方形,正方形或平行平行四边形)。
3.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高 V柱=Sh=πr2·h圆柱的高=体积÷底面积 h=V柱÷S=V柱÷(πr2)圆柱的底面积=体积÷高 S=V柱÷h4.圆柱的侧面积:圆柱的侧面积=底面的周长×高, S侧=Ch(注:c为πd)5.圆柱的表面积=两个底面积+一个侧面积 S表=2πr2+Ch6.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2横切切面b.,切面为正方形),该长面积,即S增=4rh6.圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
7.考试常见题型:a.已知圆柱的底面半径和高,求圆柱的侧面积,表面积,体积,底面周长;C=2πr S侧=2πrh S表=2πr2+2πrh V=πr2·hb.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;S侧=Ch S表=2π(C÷π÷2)2+ Ch V=π(C÷π÷2)2h S底=π(C÷π÷2)2c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;h=V÷(C÷π÷2)2先求h=V÷(C÷π÷2)2 再求 S侧=Ch先求h=V÷C÷π÷2)2再求 S表=2π(C÷π÷2)2+ ChS底=π(C÷π÷2)2d.已知圆柱的底面直径和高,求圆柱的侧面积,表面积,体积;S侧=πdh S表=2π(d÷2)2+πdh V=π(d÷2)2he.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
人教版六年级数学知识点整理
人教版六年级数学知识点整理天才就是勤奋曾经有人这样说过。
如果这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是小编给大家整理的一些六年级数学的知识点,希望对大家有所帮助。
人教版小学六年级数学下册知识点圆柱和圆锥1.认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。
8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
9.圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10.从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11.把圆锥的侧面展开得到一个扇形。
12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。
13.常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
六年级数学下册圆柱与圆锥知识点总结(全面)
圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
人教版六年级下数学圆柱和圆锥的体积
第六周 圆柱和圆锥的体积一、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征 :圆锥有一条高。
4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S 增=2rh5、圆锥的相关计算公式:底面积 :S 底=πr ²底面周长:C 底=πd=2πr体积 :V 锥=13πr ²h 考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算二、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高 ,体积相差23Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间) ③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以13例1 一个圆柱底面半径是5分米,侧面积是188.4平方分米,体积是多少立方分米?突破点 先根据侧面积和底面半径求出圆柱体的高。
人教版六年级数学下册第三单元第11课《整理和复习》课件
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理
人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥
人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。
新人教版六年级数学下册单元知识点归纳整理
新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。
负数用负号“-”标记;如-2;-5.33;-45;-0.6等。
2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有(无数个);其中有(正整数;正分数和正小数)。
3. (0)既不是正数;也不是负数;它是正、负数的界限。
所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。
第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。
h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。
)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。
2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。
(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。
例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。
A圆柱的底面周长B底面直径和高C圆柱的高。
2、下面的材料中,()能做成圆柱。
12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。
人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
六年级数学下册《圆柱和圆锥的认识》课件
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练 人教版(含解析)
六年级下册数学同步重难点讲练圆柱、圆锥总复习教学目标1,通过整理和复习,学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。
2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。
教学重难点重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。
难点:综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问。
知识点1:圆柱的特征(1)底面的特征:圆柱的底面是完全相的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
7.圆柱的体积:2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。
【典例分析1】(2019春•平舆县月考)在下图中,以直线为轴旋转,可以得到圆柱体的是()A.B.C.D.【思路引导】根据各图形的特征,长方形绕一边所在的直线为轴旋转一周得到到一个圆柱;由此规范解答即可.【完整解答】由圆柱的特点可知:在下图中,以直线为轴旋转,可以得到圆柱体的是;故选:C .【变式训练1】(2019•大渡口区)15、用丝带捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去25厘米丝带,扎这个礼品盒至少需要( )的丝带.A .255cmB .260cmC .285cmD .460cm知识点2:圆柱的侧面积、表面积和体积1、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。
2、圆往的表面积:圆柱的表面积=侧面积+2×底面积。
即s 表=s 侧+2s 底。
3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
V=Sh【典例分析2】(2019•怀化模拟)求下面各图形的表面积.(单位:)cm(1)(2)【思路引导】根据圆柱体的表面积=底面面积2⨯+侧面积,依据公式列式规范解答即可.【完整解答】(1)23.1432 3.143210⨯⨯+⨯⨯⨯56.52188.4=+2244.92()cm =答:表面积是2244.92cm .(2)23.14(122)2 3.14125⨯÷⨯+⨯⨯226.08188.4=+2414.48()cm =答:表面积是2414.48cm .【变式训练2】(2019•漳浦县校级自主招生)如图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:)cm .将它们拼成如图2的新几何体,则该新几何体的体积用π表示,应为( )A .364cm πB .360cm πC .356cm πD .340cm π知识点3:圆锥的特征1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆柱与圆锥
一、圆柱的认识
1、圆柱的初步认识
像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。
2、圆柱各部分的名称
圆柱是由两个底面和一个侧面三部分组成的。
底面:圆柱的两个圆面 侧面:圆柱周围的面 高:圆柱两个底面之间的距离
3、圆柱的特征
底面:是完全相同的两个圆 侧面:是曲面 高:一个圆柱有无数条高
4、圆柱的侧面、底面及其之间的关系
圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高
二、圆柱的表面积
1、圆柱侧面积的计算方法
圆柱的侧面积=底面周长⨯高。
S 表示侧面积,C 表示底面周长,h 表示高,S=Ch
2、圆柱侧面积计算公式的应用
①已知圆柱的底面直径和高:S=πdh
②已知圆柱的底面半径和高:S=2πrh
3、圆柱表面积的意义和计算方法
圆柱表面积=圆柱的侧面积+底面积⨯2
4、圆柱表面积计算公式的应用
①已知圆柱的底面半径和高:S=2πrh+2π2r
②已知圆柱的底面直径和高:S=πdh+2π2)2(d
推导出S=πdh+2
1π2d ③已知圆柱的底面周长和高:S=Ch+π22)(π
C =Ch+π22C 三、圆柱的体积
1、圆柱体积的意义和计算公式
①一个圆柱所占空间的大小,叫做这个圆柱的体积。
②圆柱的体积=底面积⨯高,V=Sh
2、圆柱的体积计算公式的应用
①已知圆柱的底面半径和高:V=π2
r h ②已知圆柱的底面直径和高:V=π2
)2
(d h
③已知圆柱的底面周长和高:V=π22)(πC h 四、圆锥
1、圆锥的初步认识
像沙堆、陀螺等物体的形状都是圆锥
2、圆锥各部分的名称
圆锥是由一个底面和一个侧面两部分组成的。
底面:圆锥的圆面 侧面:圆锥周围的面
高:从圆锥的顶点到底面圆心的距离
3、圆锥的高的测量方法
①先把圆锥的底面放平 ②用一块平板水平地放在圆锥的顶点上面 ③竖直地量出平板和底面之间的距
离,就是圆锥的高
4、圆锥的特征
底面:是一个圆 侧面:是一个曲面 高:只有一条高
五、圆锥的体积
1、圆锥体积的计算公式
圆锥V=31圆柱V=3
1Sh 2、圆锥的体积计算公式的应用
①已知圆锥的底面半径和高,求圆锥体积:V=3
1π2r h ②已知圆锥的底面直径和高,求圆锥体积:V=31π2)2(d h=12
1π2d h ③已知圆锥的底面周长和高,求圆锥的体积:V=31π22)(π
C h=π122h C
一、重点知识
2、常用各π值结果:π = 3.14;2π = 6.28;3π = 9.42 ;4π = 12.56 ;5π = 15.7;6π = 18.84;
7π = 21.98 ;8π = 25.12;9π = 28.26;10π = 31.4;16π = 50.24 ;25π = 78.5
36π = 113.04;49π=153.86;64π = 200.96;81π=254.34
3、常用平方数结果:121112= ; 144122= ; 169132= ; 196142= ; 225152
= ;
256162= ; 289172= ; 324182= ;361192=
4、单位换算:大单位化小单位用乘法(乘进率),小单位化大单位用除法(除以进率)
长度单位换算 面积单位换算
1千米=1000米1米=10分米 1平方千米=100公顷 1平方分米=100平方厘米 1分米=10厘米1米=100厘米 1公顷=10000平方米 1平方厘米=100平方毫米 1厘米=10毫米 1平方米=100平方分米
体(容)积单位换算 重量单位换算 人民币单位换算
1立方米=1000立方分米 1吨=1000千克 1元=10角
1立方分米=1000立方厘米 1千克=1000克 1角=10分
1立方分米=1升 1千克=1公斤 1元=100分
1立方厘米=1毫升
1立方米=1000升
时间单位换算1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天 平年全年365天,闰年全年366天 1日=24小时1时=60 1分=60秒1时=3600秒
二、巩固练习
(一)填空题
一、填空题。
(每空1分,共27分)
1、⒈2升=( )立方厘米 ⒍25平方米=( )平方米( )平方分米
0.75立方米=( )立方厘米 1500毫升=( )升 360平方分米=( )平方米
7.6立方米=( )立方米( )立方分米=( )立方分米
2、圆柱上下两个面是两个( ),两个底面之间的距离叫做( ),圆柱的侧面展开后,可以得到一个( )。
3、一个圆柱体,把它削成一个与圆柱等底等高的圆锥体,圆锥体的体积是削去部分的( )。
4、一个圆柱体,底面积是19平方厘米,高是12厘米,与这个圆柱体等底等高的圆锥体的体积是( )。
5、一个正方体木块的棱长总和是60厘米,它的表面积是( )平方分米;体积是( )立方厘米;如果把它削成一个最大的圆柱,则这个圆柱的体积是( )。
6、一个圆锥的体积是24立方厘米,底面积是8平方厘米,它的高是( )。
7、一个圆柱侧面积是1⒉56平方分米,高是2分米,它的体积是( )。
8、一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,那么圆锥的体积是( )立方分米。
9、一根长30厘米的圆钢,分成一样长得两端(截面为圆),表面积增加了30平方厘米,原来钢材的体积是( )
立方厘米。
10、把一个圆锥体浸没在底面积是30平方厘米的圆柱形盛有水的容器里,水面升高4厘米,这个圆锥体的体积是
( )立方厘米。
11、将一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥容器里正好装满,这个圆锥的
高是( )分米。
12、把一根长2米,底面直径是6分米的圆柱形木料平均锯成4段后,增加了( )面,表面积增加了( )
平方分米,每段木料的体积是( )立方分米,每段的表面积( )平方分米。
二、判断题。
(每题2分,共12分)
1、两个圆柱的侧面积相等,它们的底面周长也相等。
( )
2、沿着圆柱的底面直径将圆柱切成两半,得到的半个圆柱体的表面积是原来圆柱表面积的一半。
( )
3、将圆柱的侧面展开一定可以得到长方形或正方形。
( )
4、把一个正方体木块削成一个最大的圆锥体,要削去这个正方体的三分之二。
( )
5、如果圆锥的体积是圆柱的三分之一,那么它们一定是等底等高。
( )
6、以长方形或正方形的一条边所在的直线为轴,让长方形或正方形旋转一周,一定可以得到一个圆柱。
(
) 三、选择题。
(每题2分,共12分)
1、一根圆木锯成三段,一共增加( )个面。
A 2 B 3 C 4 D 6
2、一个圆锥体积是1⒉56立方厘米,比等底等高的圆柱体积少( )立方厘米。
A ⒍28
B 1⒉56
C 2⒌12
D 3⒎68
3、一个圆柱的体积比与它等底等高的圆锥体积大( )A 31
B 32
C2倍 D1倍
4、用一个高36厘米的圆锥形容器盛满水,倒入和它等底等高的圆柱形容器中,水的高度是( )厘米。
A 36
B 18
C 16
D 12
5、长方体、正方体和圆柱体的底面周长相等,高也相等,则( )体积最大。
A 长方体
B 正方体
C 圆柱体
D 无法确定
6、把一个圆柱体削成与圆柱等底等高的圆锥体,被削去部分的体积与此圆锥体积的比为( )
A 1:2
B 2:1
C 3:1
D 1:1
四、求体积.(单位:分米) (12分)
五、应用题。
(37分)
1、金盛广场要砌一个圆柱形喷水池,从池内量得底面直径是12米,深1.5米。
(1)在池的内壁和底面抹上水泥,抹水泥的面积有多大?(3分)
(2)要在池的内壁和底面再刷上一层涂料,如果每平方米涂料价格是2.5元,购买涂料共需多少元?(3分)
(3)池内方有1.2米深的水,如果每立方米的水中需要加入0.6千克的消毒粉,那么池内共需加入多少千克这样的消毒粉?(4分)
2、一辆压路机的前轮是圆柱形,轮宽1.6米,直径是0.8米。
每分钟转12周,
(1)每分钟前轮压路的面积是多少?(3分)(2)每分钟前轮滚多远?(3分)
3、一个圆锥形沙堆,底面周长是6.28米,高是0.9米,用这堆沙在4米宽的路上铺3厘米厚,能铺多远?(5分)
4、一个圆锥形麦堆,底面半径是3米,高是5米,每立方米小麦约重700千克,这堆小麦大约有多少千克?如果把这堆小麦装在一个圆柱形的粮仓里,正好占粮仓的40%,这个粮仓的容积是多少?(6分)
5、把一个高是50厘米的圆柱形木料,沿底直径把它切成两个相等的半圆柱,每个切面的面积是200平方厘米,那么原来圆柱体的侧面积是多少平方厘米?(5分)
6、一个从里面量长5分米,宽4分米的长方体容器中,装了深10厘米的水,现在里面放入一个圆柱体的铁块,铁块完全浸入水中,水面上升了2厘米,那么这个圆柱形铁块的体积是多少立方分米?(5分)。