恒成立问题的分离参数解法

合集下载

解答恒成立问题的常规思路

解答恒成立问题的常规思路

知识导航恒成立问题在近几年的高考数学试题中占据了一席之地,是同学们需要重视并学习的重点内容.恒成立问题是一类综合性较强的问题,常与不等式、函数、导数、数列等知识相结合,重点考查了同学们分析、解决问题的能力.本文重点介绍三种常见的求解思路.一、分离参数分离参数法是解答含参恒成立问题的基本方法,主要通过变形把不等式中的参数和变量分离,然后运用导数法、函数的单调性等求得不含参数式子的最值,进而构造出满足不等式恒成立的条件,使问题获解.例1.已知函数f()x=ln x-a x,若f()x<x2在()1,+∞上恒成立,求a的取值范围.解:∵ln x-a x<x2,x>0,∴a>x ln x-x3,令g()x=x ln x-x3,则g'()x=1+ln x-3x2,令h()x=g'()x=1+ln x-3x2,∴h'()x=1x-6x=1-6x2x,∵h()x在[)1,+∞单调递减,h()x<h()1=-2,即g'()x<0,∴g()x在[)1,+∞单调递减,g()x<g()1=-1,∴a≥g()1=-1,f()x<x2在()1,+∞上恒成立时,a≥-1.解答本题的基本思路是,首先将不等式变形,使参数分离,然后对不含有参数的式子进行求导,通过分析其导函数的正负来讨论函数的单调性,进而求得不含有参数式子的最值,得到a的取值范围.二、数形结合数形结合法是解答恒成立问题的重要方法.在解题时,需首先将不等式变形,构造出一个或者两个简单的基本函数,然后绘制出函数的图象,通过分析函数的图象找出临界的位置关系,从而建立使不等式恒成立的关系式,使问题得解.在解答恒成立问题时灵活运用数形结合法,能快速找到解题的思路,显著提升解题的效率.例2.若存在正数x使2x(x-a)<1成立,则a的取值范围是.解:不等式2x(x-a)<1可变形为x-a<(12)x.在同一平面直角坐标系内作出直线y=x-a与y=(12)x的图象.由题意可得,在(0,+∞)上,直线有一部分在曲线的下方.由图象可知-a<1,所以a>-1.运用数形结合法能使解题过程变得更加直观、简洁,是求解恒成立问题经常采取的方法之一.在运用数形结合法解题时还应注意正确绘制函数的图象.三、利用函数的单调性虽然恒成立问题较为复杂,但我们可以结合不等式的结构特点构造合适的函数,将问题转化为函数问题,再讨论函数的单调性,建立使不等式恒成立的关系式,从而解题.我们可以利用函数单调性的定义,也可以利用导数来讨论函数的单调性.例3.已知函数f(x)=1-22x+1为奇函数.若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.解:设任意x1,x2∈R,且x1<x2,∴f(x1)-f(x2)=1-22x1+1-1+22x2+1=2(2x1-2x2)(2x1+1)(2x2+1).∵x1<x2,∴2x1-2x2<0,(2x1+1)(2x2+1)>0,∴f(x1)<f(x2),∴f(x)为R上的单调递增函数.∵f(x)=1-22x+1为奇函数,且在R上为增函数,由f[t2-(m-2)t]+f(t2-m+1)>0恒成立可得f[t2-(m-2)t]>-f(t2-m+1)=f(m-t2-1),化简得2t2-(m-2)t-m+1>0,∴Δ=(m-2)2+8(m-1)<0,解得-2-22<m<-2+22,∴m的取值范围为(-2-22,-2+22).本题主要是利用函数单调性的定义来确定函数的单调性,然后利用函数的单调性建立关于t的不等式,再利用方程的判别式建立关于m的不等式,求得m的取值范围.解答恒成立问题的方法还有很多,如函数最值法、判别式法、导数法等,而以上三种方法是解答恒成立问题的常用方法.无论运用上述哪种方法解题,同学们都要注意首先将不等式合理进行变形,构造适当的函数模型,灵活运用导数、不等式、函数等知识,以及转化思想、数形结合思想解题.(作者单位:江苏省江阴市第一中学)37。

2023届高考数学二轮复习导数经典技巧与方法第02讲分离参数法含解析

2023届高考数学二轮复习导数经典技巧与方法第02讲分离参数法含解析

第2讲分离参数法知识与方法分离参数法解决恒成立求参问题,可以有两个角度:全分离和半分离.1.全分离参数法将含参表达式中的参数从表达式中完全分离出来,使所研究的函数由动态变为定态,进而可得到新函数的图像、性质(最值),将求参数的范围问题转化为求函数的最值或值域问题.在分离参数时,需点睛意:(1)参数系数的正负是否确定;(2)分参后目标函数的最值是否易解,若不易解,极可能需要洛必达法则辅助.2.半分离参数法其一般步骤为:将不等式变形为aa+a≥a(a)或aa+a≤a(a)的形式(其中a为参数,a为常数),然后画出图像,由图像的上下方关系得到不等式,从而求得参数的取值范围.不等号前后两个函数的图像特征为:直线a=aa+a与曲线a=a(a),而直线a=aa+a过定点(0,a).需要说明的是:半分离参数法一般只适用于客观题,解答题则不宜使用.典型例题全分离参数【例1】已知函数a(a)=e a+aa2−a.(1)当a=1时,讨论a(a)的单调性;(2)当a≥0时,a(a)≥12a3+1,求a的取值范围.【解析】(1)当a=1时,a(a)=e a+a2−a,a′(a)=e a+2a−1.当a<0时,a′(a)<0,a(a)单调递减;当a>0时,a′(a)>0,a(a)单调递增.所以,当a=1时,a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)解法1:分离参数法当a=0时,a∈a.当a>0时,a(a)≥12a3+1⇔a≥12a3+a+1−e aa2.记a(a)=12a3+a+1−e aa2(a>0),则a ′(a )=12a 3−a −2+(2−a )e a a 3=(2−a )(e a −12a 2−a −1)a 3.记a (a )=e a −12a 2−a −1(a >0),a ′(a )=e a −a −1,a ′′(a )=e a −1. 因为a >0,所以a ′′(a )=e a −1>0,所以a ′(a )在(0,+∞)上单调递增, 从而a ′(a )>a ′(0)=0,所以a (a )在(0,+∞)单调递增,所以a (a )>a (0)=0. 令a ′(a )=0,解得a =2.当a ∈(0,2)时,a ′(a )>0,a (a )单调递增; 当a ∈(2,+∞)时,a ′(a )<0,a (a )单调递减. 所以a (a )在a =2处取得最大值a (2)=7−e 24,从而a ≥7−e 24. 综上,实数a 的取值范围是[7−e 24,+∞). 解法2:指数找朋友a (a )≥12a 3+1等价于12a 3−aa 2+a +1e a≤1.设a (a )=12a 3−aa 2+a +1e a(a ≥0),则a′(a )=−12a [a 2−(2a +3)a +(4a +2)e a=−12a [a −(2a +1)](a −2)e a.(1)当2a +1≤0,即a ≤−12时,则当a ∈(0,2)时,a ′(a )>0,所以a (a )在(0,2)单调递增,而a (0)=1, 故当a ∈(0,2)时,a (a )>1,不合题意; (2)当0<2a +1<2,即−12<a <12时, 则当a ∈(0,2a +1)∪(2,+∞)时,a ′(a )<0.所以a (a )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)上单调递增. 由于a (0)=1,所以a (a )≤1.当且仅当a (2)=7−4a e 2≤1,即a ≥7−e 24. 所以当7−e 24≤a <12时,a (a )≤1.(3)若2a +1≥2,即a ≥12时,则a (a )≤12a 3+a +1e a.由于0∈[7−e 24,12),故由(2)可得12a 3+a +1e a≤1.故当a ≥12时,a (a )≤1.综上所述,实数a 的取值范围是[7−e 24,+∞).【点睛】解决本题的关键在于求导数a′(a)=12a3−a−2+(2−a)e aa3后的处理.仔细观察导数式中e a前面的系数为2−a,由此可大胆猜测2−a应该为12a3−a−2的一个因式,从而可设1 2a3−a−2=(2−a)(−12a2+aa+a),将右侧展开,得12a3−a−2=12a3−(a+1)a2+(2a−a)a+2a,比较两侧的系数,可得a=a=−1,从而12a3−a−2=(2−a)(−12a2−a−1).【例2】设函数a(a)=e a−1−a−aa2.(1)若a=0,求a(a)的单调区间;(2)若当a≥0时a(a)≥0,求a的取值范围.【解析】(1)因为a=0时,所以a(a)=e a−1−a,a′(a)=e a−1.当a∈(−∞,0)时,a′(a)<0;当a∈(0,+∞)时,a′(a)>0.故a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增;(2)解法1:由(1)可得,当a=0时,a(a)≥a(0)=0,即e a≥a+1,当且仅当a=0时等号成立.依题意,当a≥0时a(a)≥0恒成立,当a=0时,a(a)≥0,此时a∈a;当a>0时,a(a)≥0等价于a≤e a−1−aa2,令a(a)=e a−1−aa2(a>0),则a′(a)=(a−2)e a+a+2a3,今a(a)=(a−2)e a+a+2(a>0),则a′(a)=(a−1)e a+1,因为a′′(a)=a e a>0,所以a′(a)在(0,+∞)上为增函数,所以a′(a)>a′(0)= 0,于是a(a)在(0,+∞)上为增函数,从而a(a)>a(0)=0,因此a′(a)>0,a(a)在(0,+∞)上为增函数,由洛必达法则知,lima→0+e a−1−aa2=lima→0+e a−12a=lima→0+e a2=12,所以a≤12.当a>12时,e−a>1−a得a′(a)<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a),故当a∈(0,ln2a)时,a′(a)<0,而a(0)=0,于是当a∈(0,ln2a)时,a(a)<0. 综上得a的取值范围是(−∞,12].解法2:a′(a)=e a−1−2aa,由(1)知e a≥1+a,当且仅当a=0时等号成立,故a′(a)≥a−2aa=(1−2a)a.当1−2a≥0,即a≤12时,a′(a)≥0(a≥0),所以a(a)在[0,+∞)上单调递增,故a(a)≥a(0)=0,即a≤12符合题意;当a>12时,由e a>1+a(a≠0)可得e−a>1−a(a≠0),所以e−a−1>−a(a≠0),所以a′(a)=e a−1−2aa<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a), 则当a∈(0,ln2a)时,a′(a)<0,a(a)在(0,ln2a)上单调递减,于是当a∈(0,ln2a)时,a(a)<a(0)=0,故a>12不合题意.综上所述,a的取值范围是(−∞,12].【例3】已知函数a(a)=a(e a+1−a)(a∈a).(1)若a=2,判断a(a)在(0,+∞)上的单调性;(2)若a(a)−ln a−1≥0恒成立,求实数a的取值范围.【解析】(1)若a=2,a(a)=a e a−a,a′(a)=e a+a e a−1=(a+1)e a−1. 当a>0时,a+1>1,e a>1,故(a+1)e a>1,a′(a)=(a+1)e a−1>0,故a(a)在(0,+∞)上单调递增.(2)解法1:分离参数+隐零点求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立,整理得a−1≤e a−ln aa −1a.设a(a)=e a−ln aa −1a,a′(a)=a2e a+ln aa2,设a(a)=a2e a+ln a,则a′(a)=(a2+2a)e a+1a>0, 所以a(a)在(0,+∞)上单调递增,又a(1)=e>0,a(12)=√e4−ln2<0.所以函数a(a)有唯一的零点a0,且12<a0<1.当a∈(0,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增. 即a(a0)为a(a)在定义域内的最小值.所以a−1≤e a0−ln a0a0−1a0.因为a(a0)=0,得a0e a0=−ln a0a0,12<a0<1(∗)令a(a)=a e a(12<a<1),方程(∗)等价于a(a)=a(−ln a)(12<a<1).而a′(a)=(a+1)e a在(0,+∞)上恒大于零,所以a(a)在(0,+∞)单调递增. 故a(a)=a(−ln a)等价于a=−ln a(12<a<1).设函数a(a)=a+ln a(12<a<1),易知a(a)单调递增.又a(12)=12−ln2<0,a(1)=1>0,所以a0为a(a)的唯一零点.即ln a0=−a0,e a0=1a0.故a(a)的最小值为a(a0)=e a0−ln a0a0−1a0=1a0−−a0a0−1a0=1.所以a−1≤1,即a≤2.综上,实数a的取值范围是(−∞,2].解法2:分离参数+放缩法求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立, 即a−1≤a e a−ln a−1a.利用不等式e a≥a+1(当且仅当a=0时,等号成立),可得a e a−ln a−1a =e a+ln a−ln a−1a≥(a+ln a+1)−ln a−1a=1,当且仅当a+ln a=0时,等号成立.所以a e a−ln a−1a的最小值为1.于是a−1≤1,得a≤2,实数a的取值范围是(−∞,2].【例4】已知函数a(a)=a3e aa−1.(1)讨论a(a)的单调性;(2)若a=2,不等式a(a)≥aa+3ln a对a∈(0,+∞)恒成立,求a的取值范围. 【解析】(1)a′(a)=3a2e aa+aa3e aa=a2e aa(aa+3).①当a=0时,a′(a)≥0恒成立,所以a(a)在R单调递增;②当时,今,得;令,所以a (a )的单调递减区间为(−3a ,+∞),单调递增区间为(−∞,−3a ]. ③当a >0时,今a ′(a )≥0,得a ≥−3a ;令a ′(a )<0,得a <−3a . 所以a (a )的单调递减区间为(−∞,−3a ),单调递增区间为[−3a ,+∞). (2)因为a =2,所以a ≤a 3e 2a −3ln a −1a恒成立. 设a (a )=a −1−ln a (a >0),a ′(a )=a −1a, 令a ′(a )<0,得0<a <1;令a ′(a )>0,得a >1. 所以a (a )min =a (1)=0,所以a −1−ln a ≥0.取a =a 3e 2a ,则a 3e 2a −1−ln (a 3e 2a )≥0,即a 3e 2a −3ln a −1≥2a ,所以a 3e 2a −3ln a −1a≥2aa=2.设a (a )=a 3e 2a ,因为a (0)=0<1,a (1)=e 2>1,所以方程a 3e 2a =1必有解, 所以当且仅当a 3e 2a =1时,函数a =a 3e 2a −3ln a −1a取得最小值2,所以a ≤2,即a 的取值范围为(−∞,2].【点睛】本题在进行分参后,首先证明了一个常用的不等式:当a >0时,有ln a ≤a −1,接下来利用该不等式直接得到a 3e a −3ln a −1≥2a , 从而得出a =a 3e a −3ln a −1a的最小值2.最后证明能够取到最小值.从而得出实数a 的取值范围. 本题也可用同构法解决:a ≤a 3e 2a −3ln a −1a, a 3e 2a −3ln a −1a=e 3ln a +2a −3ln a −1a≥2a +3ln a +1−3ln a −1a=2,故a ≤2,即a 的取值范围为(−∞,2]. 换元后分离参数【例5】已知函数a (a )=a (e a a−2a −2)+a . (1)若a =−1,求a (a )的单调区间和极值点;(2)若a >0时,a (a )>−1(a >0)恒成立,求实数a 的取值范围.【解析】(1)a =−1时a (a )=a e −a −1,a ′(a )=e −a −a e −a =0,所以当a <1,a ′(a )>0,a >1,a ′(a )<0.所以a (a )的单调递减区间为(1,+∞),单调递增区间为(−∞,1),极大值点为a =1,无极小值点.(2)解法1:a (a )>−1⇔a (e aa −2a −2)+a >−1, 即a (e aa −2a −2)+a +1>0, 令aa =a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即a (a e a −2a +1)>2a −1(∗)易证e a ≥a +1(过程略),则a e a −2a +1≥a (a +1)−2a +1>(a −1)2≥0, 即a e a −2a +1>0. 于是,由(∗)可得a >2a −1a e a −2a +1. 令a (a )=2a −1a e a −2a +1(a>0),则a ′(a )=−(2a +1)(a −1)(a e a −2a +1)2e a(a >0).当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0.所以a (a )在(0,1)上单调递增,在(1,+∞)上单调递减,[a (a )]max =a (1)=1e −1, 所以a >1e −1,实数a 的取值范围是(1e −1,+∞). 解法2:a (a )>−1⇔a (e aa −2a−2)+a >−1, 即a (e aa −2a−2)+a +1>0,令aa=a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即aa +1>2a −1a e a对于a >0恒成立,设a (a )=2a −1a ea ,a ′(a )=−(2a +1)(a −1)a 2e a当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0 可得a (a )在(0,1)上递增,在(1,+∞)上递减, 所以a (a )max =a (1)=1e ,则aa +1>1e ,解得a >1e −1. 故实数a 的取值范围是(1e −1,+∞).【点睛】本题第(2)问显然不能直接分离参数,如果利用a ′(a )处理也是十分复杂,于是着眼于简化指数进行换元:令a a =a ,则aa e a −(2a +2)a +a +1>0对于a >0恒成立.换元之后就可以轻松分离参数了,特别是解法2的处理手法值得回味.半分离参数【例6】已知函数a(a)=e a−aa−1(a∈R,其中e为自然对数的底数).(1)若a(a)在定义域内有唯一零点,求a的取值范围;(2)若a(a)≤a2e a在[0,+∞)上恒成立,求a的取值范围.【解析】(1)a′(a)=e a−a,①当a≤0时,a′(a)>0,所以a(a)在R上单调递增;−1+a<0,a(1)=e−a−1>0,又a(−1)=1e由零点存在定理可知,函数a(a)在R上有唯一零点.故a≤0符合题意;②当a>0时,令a′(a)=0得a=ln a,当a∈(−∞,ln a)时,a′(a)<0,a(a)单调递减;a∈(ln a,+∞),a′(a)>0,a(a)单调递增.所以a(a)min=a(ln a)=e ln a−a ln a−1=a−a ln a−1,设a(a)=a−a ln a−1(a>0),则a′(a)=1−(ln a+1)=−ln a,当0<a<1时,a′(a)>0,a(a)单调递增;当a>1时,a′(a)<0,a(a)单调递减,所以a(a)max=a(1)=0,故a=1.综上:实数a的取值范围为{a∣a≤0或a=1}.(2)解法1:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立,即函数a(a)=(1−a2)e a的图像恒在直线a=aa+1的下方.而a′(a)=(1−a2−2a)e a,a′′(a)=(−a2−4a−1)e a<0(a≥0),所以函数a(a)是上凸函数,且在a=0处的切线斜率a=a′(0)=1;直线a=aa+1过定点(0,1),鈄率为a,故a≥1,即a的取值范围为[1,+∞).解法2:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立, 记a(a)=(1−a2)e a=(1+a)(1−a)e a,①当a≥1时,设函数a(a)=(1−a)e a,则a′(a)=−a e a≤0,因此a(a)在[0,+∞)单调递减,又a(0)=1,故a(a)≤1,所以a(a)=(1+a)a(a)≤1+a≤aa+1,故a(a)≤a2e a对a∈[0,+∞)恒成立;②当0<a<1时,设函数a(a)=e a−a−1,则a′(a)=e a−1≥0,所以a(a)在[0,+∞)单调递减,且a(0)=0,故e a≥a+1.当0<a<1时,a(a)>(1−a)(1+a)2,(1−a)(1+a)2−aa−1=a(1−a−a−a2),取a0=−1+√5−4a2,则a0∈(0,1),(1−a0)(1+a0)2−aa0−1=0,所以a(a0)>aa0+1;故0<a<1不合题意.③当a≤0时,取a0=√5−12,则a0∈(0,1),a(a0)>(1−a0)(1+a0)2=1≥aa0+1.故a≤0不合题意.综上,a的取值范围为[1,+∞).【点睛】解法1将不等式进行变形为aa+a≤a(a)(其中a为参数,a为常数),不等号前后两个函数的图像特征为:“一直一曲”,而直线a=aa+a过定点(0,a).半分离参数的方法,通过变形将不等式两边化为一直线与一曲线的形式,再结合图像利用函数凹凸性解决问题,过程简洁快捷.需要指出的是,这种解法只适用于选择题与填空题,不适用于解答题.解法2是不分离参数,直接构造差函数对参数进行讨论,过程更加严谨,理由更加充分,是解答题的一般做法.其中讨论的临界点,可以结合解法1的过程而得到.【例7】已知函数a(a)=a ln a+aa−1,a∈a.(1)求函数a(a)的单调区间;(2)当a=2时,对任意a>1,a(a)>a(a−1)恒成立,求正整数a的最大值.【解析】(1)a(a)的单调递增区间为(e−a−1,+∞),单调递减区间为(0,e−a−1).(2)解法1:全分离a(a)>a(a−1)变形为a<a(a)a−1=a ln a+2a−1a−1,令a(a)=a ln a+2a−1a−1,a′(a)=−ln a+a−2(a−1)2,令a(a)=−ln a+a−2,则a′(a)=−1a +1=a−1a>0,所以a(a)在(1,+∞)单调递增,又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以存在唯一a0∈(3,4),使得a(a0)=0,即ln a0=a0−2.故当a∈(1,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增.所以a(a)min=a(a0)=a0ln a0+2a0−1a0−1=a02−1a0−1=a0+1,即a<a0+1,又a0∈(3,4),所以a0+1∈(4,5),因为a∈a∗,所以a max=4.解法2:半分离a(a)>a(a−1)恒成立,即a(a)=a ln a+2a−1图像恒在直线a=a(a−1)的上方.因为a′(a)=3+ln a>0,a′′(a)=1a>0,所以a(a)在(1,+∞)单调递增,且下凸; 直线a=a(a−1)过定点(1,0).设过(1,0)的直线与a(a)相切于点(a0,a(a0)),即(a0,a0ln a0+2a0−1).切线斜率为a′(a0),所以a<a′(a0).由a(a0)−0a0−1=a′(a0),得a0ln a0+2a0−1a0−1=3+ln a0,化简整理得ln a0=a0−2,所以a′(a0)=3+ln a0=3+(a0−2)=a0+1.故a<a0+1. 下面估计a0的范围.令a(a)=a−ln a−2,则a′(a)=1−1a =a−1a>0,所以a(a)在(1,+∞)单调递增;又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以a(a)的唯一零点a0∈(3,4).于是a0+1∈(4,5),因为a∈a∗,所以a max=4.【点睛】需要点睛意的是,利用半分离参数求解含参问题,需要结合二阶导数研究函数的凹凸性,在解答题中有“以图代证”的嫌疑,因而这个解法一般只适用于选择题或填空题. 【例8】设函数a(a)=e a(2a−1)−aa+a,其中a<1.若存在在唯一的整数a0使得a(a0)<0.则a的取值范围是()A.[−32e ,1) B.[−32e,34) C.[32e,34) D.[32e,1)【解析】解法1:全分离参数a (a )<0⇔(a −1)a >e a (2a −1)当a >1时,有a >e a (2a −1)a −1>1,这与题设矛盾,舍去; 当a <1时,有a <e a (2a −1)a −1,记a (a )=e a (2a −1)a −1, 则a ′(a )=e a (2a +1)(a −1)−e a (2a −1)(a −1)2=a e a (2a −3)(a −1)2(a <1), 当a <0时,a ′(a )>0;当0<a <1时,a ′(a )<0,故a (a )在(−∞,0)上单调递增,在(0,1)上单调递减,作出其大致图象如图所示.由题意知,存在唯一的整数a 0使得a (a 0)<0,即a <a (a 0),由图易知a 的取值范围是32e =a (−1)≤a <1,选a .解法2:半分离参数设a (a )=e a (2a −1),a (a )=aa −a ,由题意知,存在唯一的整数a 0,使得a (a 0)<a (a 0),a ′(a )=e a (2a +1),当a <−12时,a ′(a )<0,当a >−12时,a ′(a )>0,则a (a )在(−∞,−12)上单调递减,在(−12,+∞)上单调递增.作出a (a )与a (a )的大致图象如图所示.因为a (0)=−1<−a =a (0),故只需a (−1)≥a (−1)即可,解得a ≥32e ,则a 的取值范围是32e ≤a <1,故选a .强化训练1.设函数a (a )=a 2+aa +a ,a (a )=e a (aa +a ).若曲线a =a (a )和曲线a =a (a )都过点a (0,2),且在点a 处有相同的切线a =4a +2.(1)求a ,a ,a ,a 的值;(2)若a ≥−2时,a (a )≤aa (a ),求a 的取值范围.【解析】(1)a =4,a =2,a =2,a =2(过程略).(2)由(1)知,a (a )=a 2+4a +2,a (a )=2e a (a +1),①当a =−1时,a (a )=−1,a (a )=0,此时a (a )≤aa (a )恒成立,则a ∈a ; ②当a ∈[−2,−1)时,a (a )=2e a (a +1)<0,a (a )≤aa (a )可化为:a ≤a 2+4a +22e a (a +1),令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2≥0恒成立,故a (a )在区间[−2,−1)上单调递增,当a =−2时,a (a )取最小值e 2,故a ≤e 2; ③当a ∈(−1,+∞)时,a (a )=2e a (a +1)>0,a (a )≤aa (a )可化为:a ≥a 2+4a +22e a (a +1), 令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2,当a ∈(−1,0)时,a ′(a )>0,当a ∈(0,+∞)时,a ′(a )<0,故当a =0时,a (a )取极大值1,故a ≥1.综上所述:a ∈[1,e 2],即a 的取值范围是[1,e 2].2.设函数a (a )=e a −aa −2.(1)求a (a )的单调区间;(2)若a =1,a 为整数,且当a >0时,(a −a )a ′(a )+a +1>0,求a 的最大值.【解析】(1)当a ≤0时,a (a )在(−∞,+∞)上单调递增,无减区间;当a >0时,a (a )的单调递减区间是(−∞,ln a ),单调递增区间是(ln a ,+∞).(2)(a −a )a ′(a )+a +1>0等价于a <a +1e a −1+a (a >0)(1),令a (a )=a +1e a −1+a ,则a ′(a )=e a (e a −a −2)(e a −1)2, 而函数a (a )=e a −a −2在(0,+∞)上单调递增,a (1)<0,a (2)>0,所以a (a )在(0,+∞)存在唯一的零点.故a ′(a )在(0,+∞)存在唯一的零点.设此零点为a ,则a ∈(1,2).当a∈(0,a)时,a′(a)<0;当a∈(a,+∞)时,a′(a)>0.所以a(a)在(0,+∞)的最小值为a(a).又由a′(a)=0,可得e a=a+2,所以a(a)=a+1∈(2,3).由于(1)式等价于a<a(a),故整数a的最大值为2.3已知函数a(a)=ln2(1+a)−a21+a.(1)求函数a(a)的单调区间;(2)若不等式(1+1a)a+a≤e对任意的a∈N∗都成立(其中e是自然对数的底数).求a的最大值.【解析】(1)函数a(a)的定义域为(−1,+∞),a′(a)=2ln(1+a)1+a−a2+2a(1+a)2=2(1+a)ln(1+a)−a2−2a(1+a)2.设a(a)=2(1+a)ln(1+a)−a2−2a,则a′(a)=2ln(1+a)−2a.令a(a)=2ln(1+a)−2a,则a′(a)=21+a −2=−2a1+a.当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数,当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.所以a(a)在a=0处取得极大值,而a(0)=0,所以a′(a)<0(a≠0), 函数a(a)在(−1,+∞)上为减函数.于是当−1<a<0时,a(a)>a(0)=0,当a>0时,a(a)<a(0)=0.所以,当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数.当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.故函数a(a)的单调递增区间为(−1,0),单调递减区间为(0,+∞).(2)不等式(1+1a )a+a≤e等价于不等式(a+a)ln(1+1a)≤1.由1+1a >1知,a≤1ln(1+1a)−a.设a(a)=1ln(1+a)−1a,a∈(0,1],则a′(a)=−1(1+a)ln2(1+a)+1a2=(1+a)ln2(1+a)−a2a2(1+a)ln2(1+a).由(1)知,ln2(1+a)−a21+a≤0,即(1+a)ln2(1+a)−a2≤0.所以a′(a)<0,a∈(0,1],于是a(a)在(0,1]上为减函数.−1.故函数a(a)在(0,1]上的最小值为a(1)=1ln2−1.所以a的最大值为1ln2。

高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。

由于不等式问题题型众多,题目也比较灵活。

所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。

适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。

方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。

方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。

总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。

平时练习过程中,应注意观察,总结!。

微专题:恒成立问题

微专题:恒成立问题

4 ln x
min

4 ,所以
1 ln a

4
,最终解得
a


0,1


e
1 4
,


.


一、单变量、单参数的恒成立问题
(二)分离动直线
【例 2】:已知 x R ,不等式 2xex mx ex m 恒成立,
则实数 m 的取值范围为
.
【解析】:由题可知, x R ,不等式 2xex ex mx m 恒成立,
根据换底公式,即不等式 ln x ln2 x 4 对任意 x (1,100) 恒成立,因为 ln x 0 , ln a
则不等式
1 ln a

ln
x

4 ln x
对任意
x

(1,100)
恒成立,即
1 ln a


ln
x

4 ln x
min

利用基本不等式求得

ln
x
f
(
x)

0


x

时,
f
(x)


,且
f


1 2


1
2e 2

所以函数 f (x) 图像如图所示,
设过定点 1, 0 的动直线与函数 y f (x) 相切于点 x0 , 2x0 1 ex0 ,
则切线方程可表示为 y 2x0 1 ex0 2x0 1 ex0 x x0 ,
上递减,
g(x)min g(1) 2a 2 ,因为 2a 2 0 ,不合题意;

恒成立问题

恒成立问题

恒成立、存在性问题对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。

如何突破这一难关呢?关键是细心审题及恰当地转化。

现就如何求解恒成立、存在性问题中的参数问题加以分析。

方法1:分离参数法例1.设函数f(x)=lnx-ax, g(x)=ex-ax,其中a为实数。

若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。

解:因为f`(x)=-a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥对x∈(1,+∞)恒成立,所以a≥1。

因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。

又g(x)在(1,+∞)上有最小值,则必有e-a<0,即a>e。

综上,可知a的取值范围是(e,+∞)。

点评:求解问题的切入点不同,求解的难度就有差异。

在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。

一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。

方法2:构造函数法例2.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()。

A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。

记g(x)=x2-(2+a)x=(x-)2-。

当<0即a<-2时,g(x)的最小值为-,不可能满足条件。

当≥0即a≥-2时,g(x)的最小值为0,满足题意。

当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤,对x>0恒成立。

令θ(x)=,则θ`(x)=。

设t=x+1,则t>1。

记L(t)=-lnt,则L`(t)=<0,所以L(t)在t∈(1,+∞)上为减函数。

分离参数法解决恒成立问题的步骤

分离参数法解决恒成立问题的步骤

引言在数学建模和问题求解过程中,分离参数法是一种常用的方法,用于解决恒成立问题。

本文将以分离参数法解决恒成立问题的步骤为主题,深入探讨这一方法的应用和原理。

通过对这一主题的深度分析,希望读者能更全面地了解分离参数法在解决恒成立问题中的作用和意义。

一、分离参数法的基本概念分离参数法是一种通过引入新的参数,将原方程中的变量分离的方法。

在解决恒成立问题时,我们通常会遇到一些复杂的方程或不等式,通过分离参数法可以简化问题的求解过程。

这种方法的关键在于选择合适的参数,使得原方程中的变量可以被分离或者化简成更容易处理的形式。

二、分离参数法解决恒成立问题的步骤1. 确定需要分离的参数在使用分离参数法解决恒成立问题时,首先需要确定需要引入的参数。

这一步需要观察原方程的形式,找到能够将变量分离的合适参数。

通常情况下,选择参数需要考虑到简化方程和减少求解难度的原则。

2. 将参数引入原方程确定了需要分离的参数后,接下来就是将参数引入原方程。

这一步需要仔细分析原方程的结构,选择合适的方式引入参数,并进行变形操作,使得原方程中的变量能够被成功分离。

3. 分离变量并求解引入参数后,原方程中的变量应该被分离到各自的部分,使得方程的形式更简单或者更易于处理。

在分离变量的过程中,可能会需要运用一些基本的数学技巧或变换方法。

对分离后的方程进行求解,得到恒成立条件或者特定的解。

三、分离参数法解决恒成立问题的示例分析举例来说明分离参数法解决恒成立问题的具体步骤。

假设有一个非常简单的不等式问题:证明当x>0时,恒有2x+1>0成立。

这个问题可以通过分离参数法得到简单的解。

首先我们选择参数t,使得2x+1可以被分离为2(x-1/t)+1/t,接着我们引入t后,可以得到不等式 2(x-1/t)+1/t>0。

由于x>0,所以x-1/t>0,因此不等式转化为1/t>0。

当1/t>0时,不等式2(x-1/t)+1/t>0成立。

根据1/t>0,我们知道t必须是正数,因此不等式2x+1>0在x>0时恒成立。

求解含参不等式恒成立问题的几个“妙招”

求解含参不等式恒成立问题的几个“妙招”

乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。

(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档

(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档

恒成立问题中含参范围的求解策略数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。

一、分离参数——最值化1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值.例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+−2>1在x ∈[2 ,+∞)上恒成立,即a>−+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=−+ ,当x=2时,=2 ,所以a>22在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值范围.问题还是转化为函数求最值.例2 已知x ∈(−∞ ,1]时,不等式1++(a −)>0恒成立,求a 的取值范围.解 令=t ,∵x ∈(−∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为<,要使上式在t ∈(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)==+=− 又t ∈(0 ,2] ∴∈[) ∴=f(2)=∴< , ∴−<a<例3 设c b a >>且ca mc b 1b a 1-≥-+-恒成立,求实数m 的取值范围。

解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (.4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。

每日一题型7恒成立之分离参数最值法

每日一题型7恒成立之分离参数最值法

每日一题型 7 恒成立之分离参数最值法 在数学问题研究中经常碰到在给定条件下某些结论恒成立问题.这类问题涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点.分离参数最值法主要通过两个基本思想解决“恒成立问题”思路1、x D ∈,[](),f x a b ∈()m f x x D m b >∈⇔>在上恒成立 ()m f x x D m a <∈⇔<在上恒成立 ()m f x x D m b ≥∈⇔≥在上恒成立 ()m f x x D m a ≤∈⇔≤在上恒成立思路2、x D ∈,()(),f x a b ∈()m f x x D m b >∈⇔≥在上恒成立 ()m f x x D m a <∈⇔≤在上恒成立 ()m f x x D m b ≥∈⇔≥在上恒成立 ()m f x x D m a ≤∈⇔≤在上恒成立先看看几道例题:1.函数,若对任意,恒成立,求实数的取值范围。

解:若对任意,恒成立, 即对,恒成立,考虑到不等式的分母,只需在时恒成立而得.即22a x x >--而223x x --≤- 所以3a >- 2.已知当x R 时,不等式a+cos2x<5-4sinx+恒成立,求实数a 的取值范围。

分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。

解:原不等式即: 要使上式恒成立,只需大于的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)=4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+33,∴即上式等价于或解得.注:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型。

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。

对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。

一 分离参数法分离参数法是解决含问题的基本思想之一。

对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。

例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。

分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。

解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。

)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。

于是工的取值范围为43-≥a 。

【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。

如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。

解这类问题时一定要注意区间的端点值。

二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。

恒成立问题常见类型和解法

恒成立问题常见类型和解法

答案:[ 1 , )
5
【措施技巧】不等式恒成立问题旳解题措施 1.不等式旳恒成立问题与函数最值有亲密旳关系,处理不等 式恒成立问题,一般先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数旳最值问题,一般采用导数法 处理.
【理论阐释】 若把不等式进行合理旳变形后,能非常轻易地画出不等
号两边相应函数旳图象,这么就把一种极难处理旳不等式旳 问题转化为利用函数图象处理旳问题,然后从图象中寻找条 件,就能处理问题。
典例导悟
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x

(0,
4
]
都成立,求
a
的取值范围.
【解析】作出函数 y sin 2x 的图 象,由题意知 在 x ∈(0, ]上,
则根据函数的图象(线段)可得

k
f
0 (m)
0
或②
k
f
0 (n)
0
,也可合并成
f f
(m) 0 (n) 0

同理,若在 [m,
n] 内恒有
f
(x)
0 ,则有
f f
(m) 0 .
(n) 0
y
y
x om n
x om n
典例导悟
若不等式 2 x 1> m x2 1 对一切 m2, 2 都成立,求实数 x 的取值范围。
【例3】设函数f(x)=ax2-2x+2,对于满足1<x<4旳一切x值都
有f(x)>0,求实数a旳取值范围.
【解题指南】解答本题能够有两条途径:(1)分a>0,a<0,a=0

不等式恒成立问题中的参数求解技巧

不等式恒成立问题中的参数求解技巧

不等式恒成立问题中的参数求解技巧在不等式中,有一类问题是求参数在什么范围内不等式恒成立。

恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。

其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。

本文通过实例,从不同角度用常规方法归纳,供大家参考。

一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。

例1 对于x∈R,不等式恒成立,求实数m的取值范围。

解:不妨设,其函数图象是开口向上的抛物线,为了使,只需,即,解得。

变形:若对于x∈R,不等式恒成立,求实数m的取值范围。

变形:此题需要对m的取值进行讨论,设。

①当m=0时,3>0,显然成立。

②当m>0时,则△<0。

③当m<0时,显然不等式不恒成立。

由①②③知。

关键点拨:对于有关二次不等式(或<0)的问题,可设函数,由a的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。

例2 已知函数,在时恒有,求实数k的取值范围。

例2 解:令,则对一切恒成立,而是开口向上的抛物线。

①当图象与x轴无交点满足△<0,即,解得-2<k<1< span="">。

</k<1<>②当图象与x轴有交点,且在时,只需由①②知关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。

二、参数大于最大值或小于最小值如果能够将参数分离出来,建立起明确的参数和变量x的关系,则可以利用函数的单调性求解。

恒成立,即大于时大于函数值域的上界。

恒成立之分离参数法

恒成立之分离参数法

不等式的恒成立之分离参数法分离参数法:即把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.例1.对于x ∈R ,不等式恒成立,求实数m 的取值范围。

例2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。

例3.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。

例4.已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。

解:分离参数]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+>⇐∈<+-。

设x 1x )x (g +=,注:此题直接用数形结合法解需要对a 进行分类讨论,运用此法最终归结为求函数)x (g 的最值,由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。

变式:本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述方法完成。

例5. 已知:1ax x )x (f 2+-=求使]1,1[x 0)x (f -∈>对任意恒成立的a 的取值范围。

例6.已知函数),1[,2)(2+∞∈++=x xa x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。

例6.已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.解析 本题可以化归为求函数f (x )在闭区间上的最值问题,只要对于任意2)(],2,2[min ≥-∈x f x .若2)(],2,2[≥-∈x f x 恒成立⇔2)(],2,2[min ≥-∈∀x f x ⇔⎪⎩⎪⎨⎧≥-=-=-≤-237)2()(22min a f x f a 或⎪⎪⎩⎪⎪⎨⎧≥--=-=≤-≤-243)2()(2222min a a a f x f a 或⎪⎩⎪⎨⎧≥+==>-27)2()(22min a f x f a ,即a 的取值范围为]222,5[+--. 点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法,只要利用m x f >)(恒成立m x f >⇔min )(;m x f <)(恒成立m x f <⇔max )(.本题也可以用零点分布策略求解.例7.设函数是定义在(,)-∞+∞上的增函数,如果不等式2(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。

不等式恒成立问题方法完美归纳教师版

不等式恒成立问题方法完美归纳教师版

不等式恒成立与有解问题解法归纳一、分离变换法: (一)分离参数法若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,即分离参数法。

基本步骤为:第一步 首先对待含参的不等式问题在能够判断出参数的系数正负的情况下,可以根据不等式 的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 第二步 先求出含变量一边的式子的最值; 第三步 由此推出参数的取值范围即可得出结论. 分离参数法有以下几种类型: I.常规法分离参数所谓常规法分离参数,就是通过解不等式或解方程把参数解出来,再研究分离出来的函数的值域或最值,从而求出参数取值范围。

例、若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)【解析】f′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518【例】已知函数H (x )=ln x x -λ()x 2-1,若对任意x ∈[1,+∞),不等式H (x )≤0,求实数λ的取值范围.【分析】H (x )≤0=H (1)恒成立转化为H ′(x )=ln x +1-2λx ≤0恒成立,再分离参数求解【解析】设函数H (x )=ln x x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立.又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x ≤2λ恒成立时, 函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln xx 2≤0,所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; 当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1, 当x ∈⎝⎛⎭⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0,故当x ∈⎝⎛⎭⎫1,12λ时,函数H (x )单调递增. 于是当x ∈⎝⎛⎭⎫1,12λ时,H (x )>0成立,不符合题意; 【变式训练】1、已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________.2、设124()lg ,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。

一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。

例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。

解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。

类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。

解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。

高考数学微专题3不等式中的存在与恒成立问题3.2利用分离参数法求解不等式恒成立 课件

高考数学微专题3不等式中的存在与恒成立问题3.2利用分离参数法求解不等式恒成立 课件
内容索引
【解析】 (1) 由图象可知f(x)的图象与x轴切于原点,则f′(0)=0. 因为f′(x)=aex+b,所以f′(0)=a+b=0. 又f(0)=a-2=0,所以a=2,所以b=-2, 所以f(x)的解析式为f(x)=2ex-2x-2. (2) 由f(x)+f(2x)>6x+m对x∈R恒成立,得m<f(x)+f(2x)-6x对x∈R 恒成立. 设函数g(x)=f(x)+f(2x)-6x=2e2x+2ex-12x-4, 则g′(x)=4e2x+2ex-12=2(2ex-3)(ex+2).
【答案】 -35,-12
12345
内容索引
4. (2023淄博三模)已知函数f(x)的定义域D=(-∞,0)∪(0,+∞), 且对任意的x∈D,都有f(-x)=|f(x)|,若f(x)在区间(-∞,0)上单调递 减,且对任意的x∈(0,+∞),不等式f(ex+a)>f(x)恒成立,则实数a的取 值范围是________.
等价于 xex≥ln x+mx+1 对 x>0 恒成立,即 m≤ex-lnxx-1x对 x>0 恒 成立.
令 F(x)=ex-lnxx-1x,所以 m≤F(x)min.
F′(x)=ex+lnx2x=x2ex+x2 ln
x .
令 G(x)=x2ex+ln x,x∈(0,+∞),
则 G′(x)=(2x+x2)ex+1x>0 恒成立,
(m+1)x-1 恒成立,等价于 xex≥ln x+mx+1 对 x>0 恒成立,即 m≤ex-
ln x
x-1x对
x>0
恒成立.令
F(x)=ex-lnx x-1x,所以
m≤F(x)min,再用导数
法求出 F(x)的最小值即可.

分离参数法解决恒成立问题

分离参数法解决恒成立问题

分离参数法解决恒成立问题
恒成立法是一种解决方程组的方法,它的核心思想是将多个方程的每一个变量分离出来,用一个新的变量表示,然后用这个新的变量替换原来的变量,从而得到新的方程组,最终求出解。

恒成立法具有解决复杂方程组的优势,因此,它在数学、物理和工程等领域都得到了广泛的应用。

恒成立法的基本思想是将方程的每一个变量分离出来,用一个新的变量表示,然后将原来的变量用新的变量取代,从而得到新的方程组,最终求出解。

换句话说,就是将多个方程的多个变量拆分成一个一个的,用新的变量来表示,然后将原来的变量用新的变量取代,从而得到新的方程组。

例如,有两个方程,可以使用恒成立法来求解:2x+3y=6
4x-y=7
首先,可以将x和y分离出来,用新的变量来表示,即:
x=ay=b然后,将原来的变量(x和y)用新的变量(a和b)
取代,得到新的方程组:2a+3b=6
4a-b=7
再用普通的求解方法,就可以求出a=
2,b=1的解。

最后,将a和b替换回原来的变量(x和y),即可求出x=
2,y=1的解。

以上就是恒成立法的基本思想。

恒成立法的优势在于,可以解决复杂的方程组,而且不需要使用复杂的数学方法,可以很快求出解。

它在数学、物理和工程等领域都得到了广泛的应用,在解决复杂问题方面非常有效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“恒成立”问题的分离参数解法
参数讨论是高中数学教学的一个重点,难点。

同时也是高考试题的热点。

参数讨论的方法多种多样,本人认为其中分离参数,因其具有思路清晰,有章可循,操作性强,易于掌握的特点,所以在解答某些恒成立条件下参数取值范围问题时,不失为一种较好的方法。

一、曲线恒过定点的问题。

有关含有参数的曲线方程的恒成立问题是学生普遍感到困难的问题。

参数与主变元交错 在一起,目标不明确,将参数分离出来,可使问题明朗化。

例:已知132=-b a 证明:直线5=+by ax 恒过定点
证明:由132=-b a 得 )13(2
1+=b a 代入直线方程后分离参数b 得 0)23()10(=++-y x b x
由方程组 ⎩⎨⎧=+=-023010y x x 解得 ⎩⎨⎧-==15
10y x ∴方程0)23()10(=++-y x b x 表示经过两直线010=-x 与 023=+y x 的交点)15,10(-的直线系方程
故直线5=+by ax 在132=-b a 时,恒过定点)15,10(-
例:已知动圆R a a ay ax y x C ∈=-++-+,0202024:221 定圆4:222=+y x C 证明:不论a 取任何实数值,动圆2C 恒过一个定点
证法一:020202422=-++-+a ay ax y x 可化为 a ax ay y x 20422022-+-=-+① 可以把①式左边看作圆的方程,其圆心为(0,0),半径为20;右边看作直线。

根据点到直线的距离公式,圆心到直线距离)0(2020201642022≠==+-=a a a a a a
d 易知,无论a 为任何不为零
的实数,圆和直线都相切(因为圆心到直线的距离为圆的半径)。

不妨设1=a ,易求出圆和直线的切
点为(4,-2),而当0=a 时,原方程为2022=+y x 也过(4,-2)。

所以,无论a 取任何实数,动
圆1C 恒过定点(4,-2).
证法二:将圆2C 中的a 参数分离出来,得( 0)2042()202
2=+-+-+x y a y x (☆) 方程组⎩⎨⎧=+-=-+020*******x y y x 有一解 ⎩
⎨⎧-==24y x ∴(☆)式表示直线02042=+-x y 与圆202
2=+y x 的交点(4,-2)的圆系方程.
∴动圆1C 无论a 取任何实数值恒过定点(4,-2)
显然:证明二利用分离参数法证明,往往比较简单。

而证法一的特殊方法证明较繁,运算量很大。

二、方程恒有解的问题
分离参数法源于思想,化归思想,在含有参数的方程中,将参数视为主变元的函数,若通过适当 的恒等变形,使方程一端化成只含有参数的解析式 而另一端为与参数无关主变元的函数
函数关系就由“隐”转化为“显”。

我们只要能求出主变元函数的值域,则参数的取值范围便可以确定了。

例:关于x 的方程043)4(9=+⋅++x x a 恒有解,求实数a 的取值范围.
解法一:要使方程043)4(9=+⋅++x x a 恒有解,只要016)4(2≥-+=∆a
即 0≥a 或 8-≤a ①
又 03>x ∴方程的小根必须大于零,即:02
16)4(42>-+---a a 即:a a a 842+>-- 也就是 8-≤a ②
由①②知8-≤a 时,方程恒有解 解法二:分离参数a ,得:,4343)4(≥+=+-x
a x 4)4(≥+-∴a 即 8-≤a ∴当8-≤a 时,方程恒有解2log (3=x 时,取“=”)
此例充分体现了分离参数法的优越性,显然要比“判别式”法简捷,且不易出错。

例:已知方程074)12(22
=-+-+a x a ax 中,N a ∈,问a 取何值时方程至少有一整数根.
解:原方程化为72)2(2+=+x a x . 2-=x 不是原方程的根,02≠+∴x N a x x a ∈≥++=∴ ,1)2(722
解得 13≤≤-x 且 2-≠x x ∴取整数的值只有-3,-1,0,1四个,对应的x 的值为1,5,
47和1. ∴当1=a 或5=a 时,原方程至少有一整数根
三、不等式恒成立问题
恒成立条件下不等式中的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,从题 目中如何提取可借用的知识模块往往捉摸不定,难以寻觅。

但是如果能将参数分离出来,建立起明确的关系,则由下述基本命题便能简捷地求出参数的取值范围.命题☆ 若()(,≤∈x f p x 或<)c c (为常数),则)()(x f a g >在p x ∈时,恒成立的充要条件是>)(a g (或≥).c 例:设对所有实数,不等式04)1(log 12log 2)1(4log 22
2222
>+++++a a a a x a a x 恒成立,求实数a 的
取值范围. 解:由题意知021>+a a ,原不等式变形为222321log )22(x a
a x x ->++- 01)1()22(22
>+-=+-x x x )(22321log 22
2x f x x x a a =+-->+∴ 0)(≤x f 由命题☆ 知 2
23)(21log )(22
2+--=>+=x x x x f a a a g 恒成立的充要条件 且 021log 2>+a a 即 121>+a
a 10<<∴a ∴当10<<∴a 时,原不等式对一切实数恒成立
从以上例子可以看出用分离参数法解恒成立的问题,其方法步骤学生容易理解掌握,程序也不复杂,通过恒等变形将参数分离出来之后,只要求出主变元函数值域的上限或下限(方程问题需要求出值域)问题便迎刃而解了。

当然分离参数法不是解恒成立问题的唯一方法,亦非万能。

对具体问题要具体分析,选用适当的方法。

相关文档
最新文档