湘教版九年级数学上册《反比例函数》教案

合集下载

湘教版初中九年级上册数学教案 第1章 反比例函数 第2课时反比例函数y=k/x(k<0)的图象与性质

湘教版初中九年级上册数学教案 第1章 反比例函数 第2课时反比例函数y=k/x(k<0)的图象与性质

第2课时 反比例函数(k<0)的图象与性质1.了解并学会应用反比例函数k y x=(k<0)图象的基本性质; 2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.3.经历观察、分析、交流的过程,逐步提高运用知识的能力.4.提高学生的观察、分析能力和对图形的感知水平. 【教学重点】理解反比例函数k y x=(k<0)的性质. 【教学难点】反比例函数k y x=(k<0)图象和性质的运用.一、情境导入,初步认识我们学会了反比例函数k y x=(k>0)的图象与性质,那么反比例函数ky x=(k<0)的图象与性质又有什么不同呢? 【教学说明】复习上节课的内容,同时引入新课. 二、思考探究,获取新知探究1:反比例函数6y x=-的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数6y x =-的图象的方式与步骤进行自主探索其图象;k y x=(2)可以通过探索函数6y x =与6y x =-之间的关系,画出6y x=-的图象. 【归纳结论】一般地,当k<0时,反比例函数k y x=的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大.探究2:反比例函数的性质反比例函数6y x=-与6y x=的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数k y x= (k ≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数k y x=与k y x=- (k ≠0)的图象关于x 轴或y 轴对称. 【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质. 三、运用新知,深化理解1.如果反比例函数3k y x-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是________.【答案】 1,22.已知直线y =kx +b 的图象经过第一、二、四象限,则函数kb y x=的图象在第_______象限.【答案】 二、四3.若点A(7,y1),B(5,y2)在双曲线3yx=-上,则y1、y2中较小的是_______.【答案】 y24.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D5.函数1yx=-的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A6.已知函数()232my m x-=-为反比例函数.(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3≤x≤12-时,求此函数的最大值和最小值.解: (1)由反比例函数的定义可知:231,20.mm⎧-=-⎨-≠⎩解得,m=-2.(2)因为k=-4<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.(3)因为在每个象限内,y随x的增大而增大,所以当x =12-时,y 最大值=4812-=-; 当x =-3时,y 最小值=4433-=-.所以当-3≤x ≤12-时,此函数的最大值为8,最小值为43.7.作出反比例函数4y x=-的图象,结合图象回答:(1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知:(1)y =-2;(2)-4<y ≤-1;(3)-4≤x <-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的. 四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2、7题.。

新版湘教版九年级数学上册第1章反比例函数1.1反比例函数教案

新版湘教版九年级数学上册第1章反比例函数1.1反比例函数教案

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数表达式.【教学难点】能根据实际问题中的条件确定反比例函数的表达式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间的变化,平均速度发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数表达式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t >0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是a cm ,这边上的高是h cm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y (吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的表达式经过整理后是否符合y =(k 是常数,k ≠0).所以此题必须先写出函数表达式,后解答.解:(1)a =12h,是反比例函数;(2)F =pS ,是正比例函数; (3)F =W s ,是反比例函数; (4)y =m x,是反比例函数. 3.当m 为何值时,函数y =4x2m -2是反比例函数,并求出其函数表达式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m =32.所以反比例函数的表达式为y =4x .4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V =5m 3时,ρ=1.98kg/m 3(1)求p 与V 的函数关系式,并指出自变量的取值范围.(2)求V =9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y 1与x 成正比例,则y 1=k 1x ,y 2与x 2成反比例,则y 2=k 2x2,又由y =y 1+y 2,可知,y =k 1x +k 2x2,只要求出k 1和k 2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例, 所以y 2=k 2x2,而y =y 1+y 2,所以y =k 1x +k 2x2, 当x =2与x =3时,y 的值都等于19.所以⎩⎪⎨⎪⎧19=2k 1+k2419=3k 1+k29.解得⎩⎪⎨⎪⎧k 1=5k 2=36所以y =5x +36x2.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的表达式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题1.1”中第1、3、5题. 教学反思学生对于反比例函数的概念理解的都很好,但在求函数表达式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.。

湘教版数学九年级上册1.2《反比例函数图象与性质》教学设计1

湘教版数学九年级上册1.2《反比例函数图象与性质》教学设计1

湘教版数学九年级上册1.2《反比例函数图象与性质》教学设计1一. 教材分析湘教版数学九年级上册1.2《反比例函数图象与性质》是本册教材中的重要内容,主要介绍了反比例函数的图象与性质。

本节课的内容对于学生来说,既有新鲜感,又有一定的挑战性。

通过本节课的学习,学生能够了解反比例函数的图象特征,掌握反比例函数的性质,并为后续学习其他函数图象与性质打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的概念、一次函数与二次函数的图象与性质。

但反比例函数与之前学习的函数有很大的不同,其图象与性质具有一定的复杂性。

因此,在教学过程中,需要关注学生的学习情况,及时解答学生的疑问,引导学生理解和掌握反比例函数的图象与性质。

三. 教学目标1.理解反比例函数的图象特征,能够描述反比例函数的图象。

2.掌握反比例函数的性质,能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.反比例函数图象的特征。

2.反比例函数性质的理解与运用。

五. 教学方法1.情境教学法:通过生活中的实际例子,引发学生对反比例函数的思考,激发学生的学习兴趣。

2.数形结合法:通过绘制反比例函数的图象,引导学生直观地理解反比例函数的性质。

3.小组合作学习:引导学生分组讨论,共同探索反比例函数的图象与性质,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作反比例函数图象与性质的相关课件,以便于引导学生直观地了解反比例函数的图象与性质。

2.教学素材:准备一些与反比例函数相关的实际问题,用于巩固学生对反比例函数性质的理解。

七. 教学过程1.导入(5分钟)通过一个生活中的实际问题,引入反比例函数的概念,引发学生的思考。

例如:一辆汽车以60千米/小时的速度行驶,行驶1小时后,离出发点的距离是多少?引导学生认识到,这个问题实际上就是求解反比例函数的问题。

2.呈现(10分钟)利用课件,展示反比例函数的图象,引导学生观察、分析反比例函数的图象特征。

湘教版数学九年级上册1.1《反比例函数》教学设计

湘教版数学九年级上册1.1《反比例函数》教学设计

湘教版数学九年级上册1.1《反比例函数》教学设计一. 教材分析湘教版数学九年级上册1.1《反比例函数》是本册教材的第一节新课,主要介绍了反比例函数的定义、性质及图象。

本节内容是初中学段数学知识的重要组成部分,对于学生来说,掌握反比例函数的知识,对于提高他们的数学素养,培养他们的逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、图象和性质有一定的了解。

但反比例函数作为一种新的函数形式,其定义、性质及图象与正比例函数和二次函数有很大的不同,需要学生进行一定的消化和理解。

同时,学生对于实际问题中反比例函数的运用还不够熟练,需要在教学中加强训练。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的性质。

2.能够绘制反比例函数的图象,并能对反比例函数图象进行分析。

3.能够运用反比例函数解决实际问题,提高解决问题的能力。

四. 教学重难点1.反比例函数的定义及其性质。

2.反比例函数图象的特点及分析方法。

3.反比例函数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。

2.利用多媒体教学手段,展示反比例函数的图象和实际应用问题,增强学生的直观感受。

3.采用案例分析法,对实际问题进行深入剖析,提高学生的应用能力。

六. 教学准备1.多媒体教学课件。

2.反比例函数的相关案例资料。

3.反比例函数的练习题。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾正比例函数和二次函数的相关知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体课件呈现反比例函数的定义和性质,让学生初步感知反比例函数的概念。

3.操练(15分钟)教师引导学生通过自主探究、合作交流的方式,探讨反比例函数的性质,并通过多媒体课件展示反比例函数的图象,让学生加深对反比例函数的理解。

4.巩固(10分钟)教师通过出示一些实际问题,让学生运用反比例函数的知识进行分析,巩固所学内容。

【湘教版九年级数学上册教案】1.1 反比例函数

【湘教版九年级数学上册教案】1.1 反比例函数

1.1 反比例函数教学目标1.使学生理解并掌握反比例函数的概念。

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

教学重难点【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式。

【教学难点】理解反比例函数的概念。

课前准备无教学过程一、创设情景探究问题情境1:随着速度的变化,全程所用时间发生怎样的变化?当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。

这一情境为后面学习反比例函数概念作铺垫。

情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:(3)速度v是时间t的函数吗?为什么?情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y =k x(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.反比例函数的自变量x 的取值范围是不等于0的一切实数二、例题教学例1:下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)y =x 15 ;(2)y =2x -1 ;(3)y =- 3x ;(4)y =1x -3;(5)y = 2+1x ;(6)y =x 3+2;(7)y =-12x . 例2:在函数y =2x -1,y =2x+1 ,y =x -1,y =12x 中,y 是x 的反比例函数的有 个. [说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y =kx -1的形式. 还有y =2x -1通分为y =2-x x,y 、x 都是变量,分子不是常量,故不是反比例函数,但变为y +1=2x可说成(y +1)与x 成反比例. 例3:若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 . [说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k 的值.(1)底边为5cm 的三角形的面积y (cm 2)随底边上的高x (cm )的变化而变化;(2)某村有耕地面积200ha ,人均占有耕地面积y (ha )随人口数量x (人)的变化而变化;(3)一个物体重120N ,物体对地面的压强p (N/m 2)随该物体与地面的接触面积S (m 2)的变化而变化.2、下列哪些关系式中的y 是x 的反比例函数?如果是,比例系数是多少?(1)y =23 x ; (2)y =23x; (3)xy +2=0; (4)xy =0; (5)x =23y. 3、已知函数y =(m +1)x 22 m 是反比例函数,则m 的值为 .四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:。

2023九年级数学上册第1章反比例函数1.3反比例函数的应用教案(新版)湘教版

2023九年级数学上册第1章反比例函数1.3反比例函数的应用教案(新版)湘教版
-反比例函数的值域:当k为正时,y的取值范围为(-∞, 0)∪(0, +∞);当k为负时,y的取值范围为(0, +∞)。
-反比例函数的导数:反比例函数的导数为-k/x^2。
6.反比例函数与一次函数、二次函数的关系:
-反比例函数与一次函数的交点:通过解方程组求得交点坐标。
-反比例函数与二次函数的交点:通过解二次方程求得交流,加深对其性质的理解;
3.对于反比例函数在实际问题中的应用,可以提供一些典型的例题,引导学生进行模仿和练习,同时鼓励学生自己提出实际问题,进行解决。
教学资源
1.软硬件资源:黑板、粉笔、投影仪、计算机、教学软件、反比例函数模型等;
2.课程平台:学校教学管理系统、数学课程网站等;
6.反比例函数的图像变换
变换1:横向拉伸或压缩(改变x的系数)
变换2:纵向拉伸或压缩(改变y的系数)
变换3:横向平移(改变x的截距)
变换4:纵向平移(改变y的截距)
7.反比例函数的实际应用
应用1:比例尺问题
应用2:物理问题
应用3:经济问题
教学评价与反馈
1.课堂表现:观察学生在课堂上的参与度、提问和回答问题的积极性、对反比例函数概念的理解程度。
-值域:k的正负决定y的取值范围
-导数:-k/x^2
⑤反比例函数与一次函数、二次函数的关系
-交点求解:解方程组或二次方程
⑥反比例函数的图像变换
-横向拉伸或压缩:改变x的系数
-纵向拉伸或压缩:改变y的系数
-横向平移:改变x的截距
-纵向平移:改变y的截距
⑦反比例函数的实际应用
-比例尺问题:地图上距离与实际距离的比例
-实际问题案例:提供一些与反比例函数相关的实际问题案例,让学生在课后进行思考和解决。

湘教版数学九年级上册《1.3 反比例函数的应用》教学设计

湘教版数学九年级上册《1.3 反比例函数的应用》教学设计

湘教版数学九年级上册《1.3 反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册《1.3 反比例函数的应用》这一节,主要让学生掌握反比例函数的定义,理解反比例函数的性质,并能运用反比例函数解决实际问题。

本节课的内容是学生在学习了正比例函数和一次函数的基础上进行的,为学生提供了进一步研究函数的机会。

教材通过具体的实例,引导学生感受反比例函数的应用,培养学生的数学应用意识。

二. 学情分析九年级的学生已经掌握了正比例函数和一次函数的基本知识,对于函数的概念和图象已经有了一定的理解。

但是,反比例函数作为一种新的函数类型,对学生来说还是较为抽象的。

因此,在教学过程中,需要教师通过具体的实例和生活中的问题,帮助学生理解和掌握反比例函数的概念和性质。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析和归纳,培养学生自主学习的能力和合作交流的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生的数学应用意识,提高学生解决实际问题的能力。

四. 教学重难点1.反比例函数的定义和性质。

2.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过具体的实例和生活中的问题,引导学生理解和掌握反比例函数的概念和性质。

2.启发式教学法:教师提出问题,引导学生思考和探索,培养学生的自主学习能力。

3.合作交流法:学生分组讨论,共同解决问题,培养学生的合作交流能力。

六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质和实际应用的实例。

2.练习题:准备一些有关反比例函数的练习题,用于巩固所学知识。

3.教学用具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如商场打折、广告宣传等,引导学生思考这些现象背后的数学规律。

从而引出反比例函数的概念。

2.呈现(10分钟)教师通过讲解和展示课件,详细讲解反比例函数的定义和性质。

湘教版九年级上数学第一章反比例函数1.2反比例函数的图象与性质(1)教案

湘教版九年级上数学第一章反比例函数1.2反比例函数的图象与性质(1)教案

03
反比例函数的性质
增减性
01
02
当 $k > 0$ 时,在每一个象限内,从左往右,$y$ 随 $x$ 的增大而 减小;
当 $k < 0$ 时,在每一个象限内,从左往右,$y$ 随 $x$ 的增大而 增大。
对称性
反比例函数的图象关于原点对称;
若设正比例函数 $y = x$ 与反比例函数 $y = frac{k}{x}$ 交于 A、B 两点(A、B 两点关于原点对称),则 A、B 两点所在象限的平分线交点在函数 $y = frac{k}{x}$ 的图象上。
02
函数的定义域和值域
01
反比例函数的一般形式
定义域是 $x 反比例函数的自变量取值范围
自变量 $x$ 的取值范围是所有 非零实数,即 $x neq 0$。
02
01
这是因为当 $x = 0$ 时,函数值 $y$ 会变得无定义(分母不能为
零)。
反比例函数的图象特征
06
课后作业与拓展延伸
课后作业布置及要求
作业内容
完成教材P23-24的练习1、2、3题。
作业要求
学生需独立完成作业,对于不会做的题目,可以标记出来,课堂上老师会进行统一讲解。
拓展延伸题目推荐
拓展题目1
已知反比例函数$y = frac{k}{x}$($k neq 0$)的图象经过点($2$,$-3$),则这个函 数的图象位于第____象限.
回答问题
对于学生提出的问题,教师可以进行引导和解答,同时也可以鼓励其他学生回 答,形成学生之间的互动。
教师点评与总结
点评学生表现
对学生的讨论、发言和提问进行点评,肯定学生的优点和进 步,指出需要改进的地方,鼓励学生继续努力。

湘教版九年级上册数学教案(全册)【精编】

湘教版九年级上册数学教案(全册)【精编】

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积S的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h,是反比例函数;(2)F=pS,是正比例函数;(3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x -是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x. 4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x ,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6x 与y=-6x 之间的关系,画出y=-6x的图象. 【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】 -23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】 1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数. (1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知: (1)y =3; (2)x =-6; (3)0<x <69.作出反比例函数y=-4x的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】 y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2). (1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上? 分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx(k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k ,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5,25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上; 【教学说明】通过练习,巩固本节课数学内容. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y= 2kx,其中,k1,k2是常数,且均不为0.由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1×(-3),4=23k-解得,k1=43- k2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数y=kx 的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|. 解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C 2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A. 12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10. 4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k2-1,k2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y=x-1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1.(4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2.或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点. (1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y 与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是 (不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )。

湘教版九年级上册教案第一章 反比例函数

湘教版九年级上册教案第一章 反比例函数

湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目教学难点理解反比例函数的性质,并能灵活应用教学过程设计一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【归纳结论】反比例函数y=kx (k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx (k≠0)的图象关于x轴或y轴对称.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2xk+1的图象是双曲线,那么k=.3.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.4.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.5.反比例函数y=1x的图象大致是图中的( ).6.下列反比例函数图象一定在第一、三象限的是( )7.已知函数23()2my m x--为反比例函数.(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3≤x≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:9.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.板书设计 1.1反比例函数1.画反比例函数的步骤:1)列表2)描点3)连线2.当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.组长意见:湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.2.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx (k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<03.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定5.已知点P(2,2)在反比例函数y=kx (k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx (k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).(1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16 x;(2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-62.反比例函数y=6x与y=2x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A. 12 B.2 C.3 D.13.已知直线y=x+b经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C,求k、b的值.4.已知反比例函数y=1kx的图象与一次函数y=k2x-1的图象交于A(2,1).(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值.(2)把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式中,可知A′是否在这两个函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:板书设计反比例函数反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.组长意见:湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目(6)你能应用作出的图象对问题(2)和(3)作出直观解释吗?问题二:蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间 的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内? 师生活动:教师主要以引导学生解答为主,由学生自主探讨所提出的问题,并让学生在实际解题过程中,不断总结、归纳、积累应用反比例函数的知识解决实际问题的经验. 引导时可向学生提出如下问题串:(1)由此函数的图象,你知道电流I 与电阻R 之间满足什么函数关系吗? (2)你能设出电流I 与电阻R 之间的函数关系式吗? (3)由图象你知道此函数图象经过了哪一点吗?(4)你能确定出电流I 与电阻R 之间的函数关系式吗? (5)你知道此函数中电流I 随电阻R 的增大而怎样变化吗? 学生可通过解答以上问题解决所提出的实际问题. 3、问题三:如图,正比例函数y =k1x 的图象与反比例函数的图象相交于A ,B 两点,其中点A 的坐标为(,2).(1)分别写出这两个函数的表达式:(2)你能求出点B 的坐标吗?你是怎样求的?与同伴进行交流. 师生活动:教师主要以引导学生解答为主,由学生自主探讨所提出的问题,在解答过程中,教师帮助学生总结归纳解决此类问题的方法和技巧,并规范解答过程的叙述方式. 教师可提出以下问题引导学生解答该题:(1)要确定正比例函数y =k1x 的表达式就是要确定哪个未知系数的值?如何确定?(2)要确定反比例函数的表达式就是要确定哪个未知系数的值?如何确定?(3)要确定点B 的坐标可根据哪个知识点来解答?你想到几种方法?x k y 2=33x k y 2=湘潭市雨湖区南谷中学集体备课纸2022 年下学期九年级数学科目引导学生复习第一章反比例函数的内容,进一步加强学生对基础知识的掌握程度. 二.探究展示 (一)合作探究1. 下列函数:①31-=xy ; ②x y -=5; ③xy 52-=; ④)0(2≠=a a xay 为常数且;其中 是反比例函数 小组讨论,然后归纳得出:如果两个变量y 与x 的关系可表示成y =kx (k 为常数,k ≠0)的函数称y 是x 的反比例函数,反比例函数的变式有xy=k ,y =kx -1,所以①,③,④是反比例函数.2.已知反比例函数的图象经过点A (-6,-3). (1)求这个函数的解析式; (2)点B (4,29),C(2,-5)是否在这个函数的图象上? (3)这个函数的图象位于哪些象限?函数值y 随自变量x 的增大如何变化? 小组讨论,教师引导得出:(1)题用待定系数法求函数解析式;(2)把点的坐标对应的一组函数值代入函数解析式中即可知道该点是否在函数图象上;(3)根据K 值得正负即可知道函数图象的性质. (二)展示提升1. 已知物体的质量m (kg )、密度ρ(kg/m 3)与体积V (m 3)满足关系式:m=ρV (1)当质量m 一定时,物体的体积V 与它的密度ρ之间有怎样的函数关系?(2)质量均为1kg 的铁块与泡沫块,哪个体积大?为什么?(铁的密度大于泡沫的密度) 小组讨论交流后点名展示,教师引导然后总结得出:首先根据m=ρV 得出ρmv =,再根据反比例函数的性质即可知道泡沫的体积大. 2.已知反比例函数xky =的图象与正比例函数y=2x 的图象交于点(2,4),求这个反比例函数的表达式,并在同一平面直角坐标系内,画出这两个函数的图象. 学生分小组活动,在小组内交流收获,然后由小组代表在全班交流展示. 三.知识梳理本节课有什么收获?1.回顾本章内容,理清本章知识结构,加深对本章学习内容的理解.2.通过思考与交流,让学生在梳理的过程中提高自己的归纳、概括的能力.四.当堂检测 1. 反比例函数xY 2-=的图象是 ,分布在第 象限,在每个象限内, y 都随x 的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x1<x2 , 则y 1 y 2.2. 若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b1与b2的大小关系是()A.b1<b2 B.b1 = b2 C.b1>b2 D.大小不确定m3.若函数是反比例函数,则的值为 .4. 某汽车的功率P为一定值,汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?板书设计反比例函数1、概念2、反比例函数的图像与性质3、反比例函数的应用组长意见:教学反思:。

湘教版数学九年级上册1.3《 反比例函数的应用》教学设计

湘教版数学九年级上册1.3《 反比例函数的应用》教学设计

湘教版数学九年级上册1.3《反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》是本册教材中的一个重要内容,主要介绍了反比例函数的定义、性质及应用。

本节内容是在学生已经掌握了正比例函数的基础上进行学习的,对于学生来说,反比例函数的概念和性质相对较为抽象,因此,在教学过程中,需要通过具体实例让学生理解和掌握反比例函数的概念和性质,并能够运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。

但是,对于反比例函数的理解和应用还需要通过具体实例来进行引导和培养。

此外,学生的学习习惯和思维方式各有不同,因此在教学过程中,需要关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。

三. 教学目标1.理解反比例函数的定义和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义和性质。

2.运用反比例函数解决实际问题。

五. 教学方法1.实例教学法:通过具体实例让学生理解和掌握反比例函数的概念和性质。

2.问题驱动法:引导学生主动探究反比例函数的应用,培养学生的解决问题的能力。

3.分组合作法:分组讨论和解决问题,培养学生的团队合作能力和沟通能力。

六. 教学准备1.教学课件:制作反比例函数的定义、性质和应用的课件。

2.实例材料:准备一些实际问题,让学生运用反比例函数进行解决。

3.练习题:准备一些练习题,巩固学生对反比例函数的理解和应用。

七. 教学过程1.导入(5分钟)利用课件介绍反比例函数的背景知识,引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)利用课件展示反比例函数的定义和性质,通过具体实例让学生理解和掌握反比例函数的概念和性质。

3.操练(15分钟)让学生分组讨论,运用反比例函数解决实际问题。

教师巡回指导,解答学生的问题,并给予鼓励和表扬。

湘教版九年级数学上册反比例函数教案

湘教版九年级数学上册反比例函数教案

第1章反比例函数1。

1 反比例函数地面上重1500N的物体与地面的接触面积为x m2,那么该物体对地面的压强y(N/m2)能够表示为y=错误!;…,函数表达式y=1500x还能够表示许多不同情境中变量之间的关系,请您再举1例:____________________。

2、通过例3,让学生体会反比例函数模型是反映现实生活的一种常见的模型。

活动四:课堂总结反思【当堂训练】1、下列函数哪些是反比例函数,指出其中k的值、(1)y=x3;(2)5xy=1;(3)y=1x;(4)y=4x+2;(5)y=错误!、2、马兰一中到台儿庄古城的距离为15千米,那么小明从马兰一中到台儿庄古城所用时间t(时)与平均速度v(千米/时)之间的函数表达式是( )A、t=15v B、t=v+15C、t=15v D、t=v153、若y=错误!是反比例函数,则m的取值范围是________、4、若y=m(m+2)x是反比例函数,则m的取值范围是________、5。

教材P3练习T1,T2、6。

教材P4习题1。

1中的T1,T2,T3,T4、学以致用,当堂检测及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的、【知识网络】提纲挈领,重点突出。

【教学反思】①[授课流程反思]反思,更进一步提。

湘教版九年级上册数学教案(全册)教学教材

湘教版九年级上册数学教案(全册)教学教材

湘教版九年级上册数学教案(全册)第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x. 4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题1.1”中第1、3、5题. 教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y =2x k +1的图象是双曲线,那么k = .【答案】 -2 3.如果反比例函数y=3k x-的图象位于第二、四象限内,那么满足条件的正整数k 的值是 .【答案】 1,24.已知直线y =kx +b 的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】 二、四 5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数. (1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化?(3)当-3≤x≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】 y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).(1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x;(2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5, 25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y轴的对称点(5, 25)不在这个图象上;点A关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43- k 2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x .函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1= ;过点Q分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.解:根据题意可知:S△AOB=12|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.【答案】 C2.反比例函数y=6x与y=2x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A. 12B.2C.3D.1分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y 轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=1,∴S△AOB=S四边形OEAC-S△AOE-S△BOC=6-3-1=2.【答案】 B3.已知直线y=x+b经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C,求k、b的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是 (不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D。

湘教版(2012)初中数学九年级上册 1.1 反比例函数 教案

湘教版(2012)初中数学九年级上册 1.1 反比例函数 教案

教案执教者执教班级课型新授课单元课题反比例函数主备者本节课题1.1反比例函数上课时间教学目标1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.教学重点反比例函数的概念教学难点反比例函数的概念时量教学流程及内容教学策略设计意图个性补充学生活动教师活动3′12′一、复习导入1、下列关系中,不是函数关系的是()2、下列函数中哪些是一次函数,哪些又是正比例函数?二、合作交流1、问题1:小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了.假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系.2、问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.3、归纳定义:一般地,形如(k为常数,k≠0)的函数叫做反比例函数.4、观察与注意:(1)反比例函数(k是常数,k≠0)的自变量x的取值范围有什么限制?练习:函数中自变量x的取值范围是 .(2)有时反比例函数也可写成:xy=k(k≠0)或y=kx-1(k ≠0) 。

5、定义辨析:下列函数中,哪些是反比例函数(x是自变量)?并说出反比例函数的比例系数.引导复习反比例函数概念的理解动脑筋对比与类比理解注意事项知识铺垫引入新课从生活实例中得出反比例函数模型正确理解反比例函数定义,对常见错误进15′2′8′5′三、例题精讲精练例1、(1)当m为何值时,函数是反比例函数?(2)当m为何值时,函数是正比例函数?练习:(1)已知函数是正比例函数,则m = ___;(2)已知函数是反比例函数,则m = ___例2、若y是x的反比例函数,且当x=5时,y=4,求y与x的函数关系式。

湘教版九年级数学上册第1章反比例函数1.2反比例函数图象与性质教学设计

湘教版九年级数学上册第1章反比例函数1.2反比例函数图象与性质教学设计

湘教版九年级数学上册第1章反比例函数1.2反比例函数图象与性质教学设计一. 教材分析湘教版九年级数学上册第1章反比例函数1.2节主要介绍了反比例函数的图象与性质。

本节内容是在学习了比例函数和一次函数的基础上进行的,是学生进一步认识函数图像和性质的重要环节。

本节内容通过实例引入反比例函数的概念,然后引导学生通过观察、分析、归纳反比例函数的图象与性质,培养学生数形结合的思想方法,提高学生分析问题和解决问题的能力。

二. 学情分析九年级的学生已经学习了比例函数和一次函数,对函数的概念和图像有了一定的认识。

但是,反比例函数作为一种新的函数类型,其图像和性质与比例函数和一次函数有很大的不同,学生可能存在一定的困难。

因此,在教学过程中,需要关注学生的认知基础,通过引导、启发、探究等方式,帮助学生理解和掌握反比例函数的图象与性质。

三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的图象与性质,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析、归纳反比例函数的图象与性质,培养学生数形结合的思想方法,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性,培养学生合作学习的精神。

四. 教学重难点1.反比例函数的概念及其图象的特点。

2.反比例函数的性质及其应用。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,帮助学生理解和掌握反比例函数的图象与性质。

2.实例分析法:通过具体的实例,让学生观察和分析反比例函数的图象与性质,增强学生对知识的理解和应用能力。

3.小组合作学习法:引导学生分组讨论,培养学生的合作精神和团队意识。

六. 教学准备1.准备相关的实例和图片,用于引导学生观察和分析反比例函数的图象与性质。

2.准备反比例函数的图象和性质的PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念,激发学生的学习兴趣。

湘教版九年级数学教案第一章_反比例函数

湘教版九年级数学教案第一章_反比例函数

第一章反比例函数教案课题:1.1 反比例函数(第1课时)教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:反比例函数的概念,学生理解时有一定的难度。

教学过程:知识回顾:什么是函数?一次函数?正比例函数?一、创设情景探究问题情境1:当路程一定时,速度与时间成什么关系?(vt=s)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。

(小学知识)这一情境为后面学习反比例函数概念作铺垫。

情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)速度v是时间t的函数吗?为什么?[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.(3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y (万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,如果两个变量y与x的关系可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数,其中x是自变量,y是因变量,y是x的函数,k 是比例系数. (有的书上写成y=kx-1的形式.)反比例函数的自变量x的取值范围是所有非零实数(不等于0的一切实数)(为什么?),但在实际问题中,还要根据具体情况来进一步确定该反比例函数的自变量的取值范围。

湘教版初中九年级上册数学教案 第1章 反比例函数 第1课时反比例函数y=k/x(k>0)的图象与性质

湘教版初中九年级上册数学教案 第1章 反比例函数 第1课时反比例函数y=k/x(k>0)的图象与性质

1.2 反比例函数的图象与性质第1课时 反比例函数 (k>0)的图象与性质1.会用描点法画反比例函数图象;2.了解并学会应用反比例函数k y x=(k>0)图象的基本性质. 3.观察、比较、合作、交流、探索.4.通过对反比例函数的图象的分析,探索并掌握反比例函数k y x=(k>0)的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数k y x=(k>0)的性质. 【教学难点】理解反比例函数ky x=(k>0)的性质,并能灵活应用.一、情境导入,初步认识你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质. 二、思考探究,获取新知探究1:反比例函数图象的画法k y x=画出反比例函数6的图象.yx分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数ky=(k>0)所在的象限x画出函数3=的图形,并思考下列问题:yx(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数ky=的图象由分别在x第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:下图是反比例函k=的图象,根据图象,回答下列问题:yx(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数k=的图象的两支曲线分别位yx于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.如果函数y=2x k+1的图象是双曲线,那么k=_________.【答案】 -22.反比例函数1=的图象大致是图中的( ).yx解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限.【答案】 C3.下列反比例函数图象一定在第一、三象限的是( )【答案】 C4.已知点A(x1,y1),B(x2,y2)是反比例函数ky= (k>0)的图象上的x两点,若x1<0<x2,则有( ).A. y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A5.作出反比例函数12的图象,并根据图象解答下列问题:yx(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<6四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、3、4题.通过本节课的学习使学生理解了反比例函数k(k>0)的图象和性yx质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.。

2024-2025学年初中数学九年级上册(湘教版)教学课件1.1反比例函数

2024-2025学年初中数学九年级上册(湘教版)教学课件1.1反比例函数


解得 = .
因此 =

.

(2) 把 = 4代入 =

,得


=
= .

知识讲解
例2
是的反比例函数,下表给出了与的一些值.



4


请完成上表并写出这个反比例函数的表达式.
解: ∵ 是的反比例函数,
∴设 =


≠ .
把 = −, = 代入上式得,
.
v
当 v=100 时,f =40.
所以当车速为100km/h 时视野为40度.
随堂训练
5.已知与成反比例,当 = 时, = .
(1)写出与的函数表达式;

(2)求当 = 时的值.

解:(1)设 = ,因为当 = 时 = ,所以

4= ,
解得 = .
②底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;
③用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;
④在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 y.
A. 1个
B. 2个
C. 3个
D. 4个
随堂训练
3. (1) 若 y
m 1
是反比例函数,则 m 的取值范
x
围是 m ≠ 1 .
(2) 若 y m m 2 是反比例函数,则m的取值范
x
围是 m ≠ 0 且 m ≠ -2 .
(3) 若 y
m2
x
m2 m 1
是 m = -1 .
是反比例函数,则m的取值范围
随堂训练
4.人的视觉机能受运动速度的影响很大,行驶中司机在驾

湘教版九年级数学上册《反比例函数》教案

湘教版九年级数学上册《反比例函数》教案

《反比例函数》教案教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学过程本节课设计了五个教学环节:第一环节:创设问题情境,引入新课;第二环节:新课讲解;第三环节:课堂练习;第四环节:课时小结;第五环节:课后作业.第一环节:创设问题情境,引入新课 活动目的给学生设置疑问,激发学生学习兴趣. 活动过程我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y =kx +b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200km ,某人开车要从A 地到B 地,汽车的速度v (km /h )和时间t (h )之间的关系式为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.第二环节:新课讲解 活动目的在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型.活动过程引入我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义在某变化过程中有两个变量x ,y .若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.能举出实例吗?(要求学生完成)例如,购买单价是0.4元的铅笔,总金额y (元)与铅笔数n (个)的关系是y =0.4n ,这是一个正比例函数.又如,等腰三角形的顶角的度数y 与底角的度数x 的关系为y =180-2x ,y 是x 的一次函数.等2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.问题1:电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220V 时. (1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:(3)变量I 是R 的函数吗?为什么? 请学生大家交流后回答.答案为(1)能用含有R 的代数式表示I .由IR =220,得I =R220. (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大.(3)变量I 是R 的函数. 由IR =220得I =R220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数. 舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请学生互相交流后回答. 答案为:根据I =R220,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.问题2:京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h )与行驶的平均速度v (km /h )之间有怎样的关系?变量t 是v 的函数吗?为什么?经过刚才的例题讲解,学生可以独立完成此题.如有困难再进行交流. 答案:由路程等于速度乘以时间可知1262=vt ,则有t =v1262.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数.从上面的两个例题得出关系式 I =R 220和t =v1262.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根据两个例题归纳出这一类函数的表达式呢?一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =xk中可知x 作为分母,所以x 不能为零. 活动效果及注意事项在教学中,引导学生体会,定义中非零常数K 及变量x ,y 已经不在局限于只取正值而允许取任意非零数值.这里不宜使用“定义域”和“值域”等名词.3.做一做 活动目的前两个问题旨在强化函数和反比例函数的实际意义,在此基础上,第三个问题进一步明确:确定一个反比例函数关系的关键是求得K 的值.活动内容1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(2)根据函数表达式完成上表.活动效果及注意事项学生加强了对概念的理解,并初步体会函数表达式与函数表格的相互转化. 第三环节:课堂练习 活动目的巩固反比例函数概念的理解 活动过程 学生自主完成练习 第四环节:课时小结 活动目的培养学生总结归纳的能力 活动内容本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =xk(k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.活动效果及注意事项在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,通过举例,说理,讨论等活动,使学生体验如何用数学眼光来审视某些实际问题第五环节:课后作业 教材习题教学反思在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标.这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数》教案
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
教学过程
本节课设计了五个教学环节:第一环节:创设问题情境,引入新课;第二环节:新课讲解;第三环节:课堂练习;第四环节:课时小结;第五环节:课后作业.
第一环节:创设问题情境,引入新课 活动目的
给学生设置疑问,激发学生学习兴趣. 活动过程
我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y =kx +b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200km ,某人开车要从A 地到B 地,汽车的速度v (km /h )和时间t (h )之间的关系式为vt =1200,则t =
v
1200
中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
第二环节:新课讲解 活动目的
在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型.
活动过程
引入我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
在某变化过程中有两个变量x ,y .若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.
能举出实例吗?(要求学生完成)
例如,购买单价是0.4元的铅笔,总金额y (元)与铅笔数n (个)的关系是y =0.4n ,这是一个正比例函数.
又如,等腰三角形的顶角的度数y 与底角的度数x 的关系为y =180-2x ,y 是x 的一次函数.等
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
问题1:电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220V 时. (1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:
(3)变量I 是R 的函数吗?为什么? 请学生大家交流后回答.
答案为(1)能用含有R 的代数式表示I .由IR =220,得I =
R
220
. (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大.
(3)变量I 是R 的函数. 由IR =220得I =
R
220
.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数. 舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?
请学生互相交流后回答. 答案为:根据I =
R
220
,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
问题2:
京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h )与行驶的平均速度v (km /h )之间有怎样的关系?变量t 是v 的函数吗?为什么?
经过刚才的例题讲解,学生可以独立完成此题.如有困难再进行交流. 答案:由路程等于速度乘以时间可知1262=vt ,则有t =v
1262
.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数.
从上面的两个例题得出关系式 I =
R 220
和t =v
1262.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根据两个例题归纳出这一类函数的表达式呢?
一般地,如果两个变量x 、y 之间的关系可以表示成y =x
k (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.
从y =x
k
中可知x 作为分母,所以x 不能为零. 活动效果及注意事项
在教学中,引导学生体会,定义中非零常数K 及变量x ,y 已经不在局限于只取正值而允许取任意非零数值.这里不宜使用“定义域”和“值域”等名词.
3.做一做 活动目的
前两个问题旨在强化函数和反比例函数的实际意义,在此基础上,第三个问题进一步明确:确定一个反比例函数关系的关键是求得K 的值.
活动内容
1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?
3.y 是x 的反比例函数,下表给出了x 与y 的一些值:
(2)根据函数表达式完成上表.
活动效果及注意事项
学生加强了对概念的理解,并初步体会函数表达式与函数表格的相互转化. 第三环节:课堂练习 活动目的
巩固反比例函数概念的理解 活动过程 学生自主完成练习 第四环节:课时小结 活动目的
培养学生总结归纳的能力 活动内容
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =x
k
(k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.
活动效果及注意事项
在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,通过举例,说理,讨论等活动,使学生体验如何用数学眼光来审视某些实际问题
第五环节:课后作业 教材习题
教学反思
在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标.这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.。

相关文档
最新文档