湘教版九年级数学上册《反比例函数》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》教案
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
教学过程
本节课设计了五个教学环节:第一环节:创设问题情境,引入新课;第二环节:新课讲解;第三环节:课堂练习;第四环节:课时小结;第五环节:课后作业.
第一环节:创设问题情境,引入新课 活动目的
给学生设置疑问,激发学生学习兴趣. 活动过程
我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y =kx +b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200km ,某人开车要从A 地到B 地,汽车的速度v (km /h )和时间t (h )之间的关系式为vt =1200,则t =
v
1200
中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
第二环节:新课讲解 活动目的
在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型.
活动过程
引入我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
在某变化过程中有两个变量x ,y .若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.
能举出实例吗?(要求学生完成)
例如,购买单价是0.4元的铅笔,总金额y (元)与铅笔数n (个)的关系是y =0.4n ,这是一个正比例函数.
又如,等腰三角形的顶角的度数y 与底角的度数x 的关系为y =180-2x ,y 是x 的一次函数.等
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
问题1:电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220V 时. (1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:
(3)变量I 是R 的函数吗?为什么? 请学生大家交流后回答.
答案为(1)能用含有R 的代数式表示I .由IR =220,得I =
R
220
. (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大.
(3)变量I 是R 的函数. 由IR =220得I =
R
220
.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数. 舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?
请学生互相交流后回答. 答案为:根据I =
R
220
,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
问题2:
京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h )与行驶的平均速度v (km /h )之间有怎样的关系?变量t 是v 的函数吗?为什么?
经过刚才的例题讲解,学生可以独立完成此题.如有困难再进行交流. 答案:由路程等于速度乘以时间可知1262=vt ,则有t =v
1262
.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数.
从上面的两个例题得出关系式 I =
R 220
和t =v
1262.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根据两个例题归纳出这一类函数的表达式呢?
一般地,如果两个变量x 、y 之间的关系可以表示成y =x
k (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.
从y =x
k
中可知x 作为分母,所以x 不能为零. 活动效果及注意事项
在教学中,引导学生体会,定义中非零常数K 及变量x ,y 已经不在局限于只取正值而允许取任意非零数值.这里不宜使用“定义域”和“值域”等名词.
3.做一做 活动目的
前两个问题旨在强化函数和反比例函数的实际意义,在此基础上,第三个问题进一步明确:确定一个反比例函数关系的关键是求得K 的值.
活动内容
1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?
3.y 是x 的反比例函数,下表给出了x 与y 的一些值:
(2)根据函数表达式完成上表.