中考数学复习平行四边形专项易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.问题发现:
(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.
问题探究:
(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.
问题解决:
(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点
(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.
【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .
【解析】
试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.
(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
试题解析:(1)作图如下:
(2)∵(6,7)P ,(4,3)O ',
∴设:6PO y kx =+',
67{43k b k b +=+=,2{5
k b ==-, ∴25y x =-,
交x 轴于5,02N ⎛⎫ ⎪⎝⎭
, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2
211563522MN ⎛⎫=+-= ⎪⎝⎭.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
∵(1052,102)P --在直线y x =上,
∴连OP 交OA 、BC 于点E 、F ,
设:BC y kx b =+,(8,2)(2,8)B C ,
82{28k b k +=+=,1{10
k b =-=, ∴直线:10BC y x =-+,
联立10{y x y x =-+=,得55x y =⎧⎨=⎩
, ∴(0,0)E ,(5,5)F .
2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由折叠的性质知,,,,则由得到;
(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.
【详解】
(1)四边形为矩形,
,,
又,
;
(2),
,
,
,
在中,,
过点作于,
,,
,
,,
,
、、共线,
,
四边形是矩形,
,
.
【点睛】
此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.
3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.
求证:AF=BF+EF.
【答案】详见解析.
【解析】
【分析】
由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.
【详解】
∵ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED .
在△ABF 与△DAE 中,
AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABF ≌△DAE (AAS ).
∴BF=AE .
∵AF=AE+EF ,
∴AF=BF+EF .
点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.
4.如图,在平行四边形ABCD 中,AD ⊥DB ,垂足为点D ,将平行四边形ABCD 折叠,使点B 落在点D 的位置,点C 落在点G 的位置,折痕为EF ,EF 交对角线BD 于点P . (1)连结CG ,请判断四边形DBCG 的形状,并说明理由;
(2)若AE =BD ,求∠EDF 的度数.
【答案】(1)四边形BCGD 是矩形,理由详见解析;(2)∠EDF =120°.
【解析】
【分析】
(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;
(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.
【详解】
解:(1)四边形BCGD 是矩形,理由如下,
∵四边形ABCD 是平行四边形,
∴BC ∥AD ,即BC ∥DG ,
由折叠可知,BC =DG ,