5全等三角形判定应用
三角形全等的判定方法5种例题+练习全面
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。
5种判定三角形全等的方法
5种判定三角形全等的方法判定三角形全等是几何学中的重要内容之一,意味着两个三角形的所有对应的边和角都相等。
全等的三角形具有相同的形状和大小,并且可以完全重合。
在此文章中,我们将介绍五种常用的判定三角形全等的方法。
方法一:SSS法(边边边法)SSS法是最简单和常用的方法之一、根据SSS法,如果两个三角形的对应边长度相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF 的三条边AB、BC、AC对应相等,则可以判定三角形ABC和三角形DEF是全等的。
方法二:SAS法(边角边法)SAS法是另一种常用的方法,根据SAS法,如果两个三角形的两个对应边和它们之间的夹角相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应边AB、DE相等,且它们之间的夹角ABC和DEF相等,则可以判定三角形ABC和三角形DEF是全等的。
方法三:ASA法(角边角法)ASA法是另一种常用的方法,根据ASA法,如果两个三角形的两个对应角和它们之间的一对对应边相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应角∠ABC和∠DEF相等,且对应边AB和DE 相等,则可以判定三角形ABC和三角形DEF是全等的。
方法四:AAS法(角角边法)AAS法是另一种常用的方法,根据AAS法,如果两个三角形的两个对应角和它们之间的一对对应边夹角相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应角∠ABC和∠DEF相等,且对应边AB之间的夹角与DE之间的夹角相等,则可以判定三角形ABC和三角形DEF是全等的。
方法五:HL法(斜边-高法)HL法是另一种常用于判定直角三角形全等的方法,根据HL法,如果两个直角三角形的斜边和高相等,则它们是全等的。
在此方法中,由于直角三角形的一个内角为90度,因此通过比较两个直角三角形的斜边和高就足够判断它们的全等性。
这五种方法是判定三角形全等的基本方法,可以结合使用,根据具体的题目情况选择合适的方法进行判定。
全等三角形的判定方法五种的证明
全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。
在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。
下面我们将介绍五种判定方法,并给出它们的证明。
一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。
设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。
我们要证明三角形ABC全等于三角形DEF。
【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。
所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。
由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。
我们介绍了五种全等三角形的判定方法以及它们的证明。
这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。
如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。
通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。
【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。
在几何学中,全等三角形之间具有一些特殊的性质和关系。
正确判断两个三角形是否全等是解决几何问题的关键。
全等三角形五大判定方法(两篇)
引言概述:三角形是几何学中最基本的形状之一。
在三角形中,全等三角形是指具有相等的三个角度和相等的三条边的三角形。
全等三角形的判定是几何学中的重要内容之一,它具有广泛的应用。
本文将介绍全等三角形的五大判定方法——边边边(SSS)、角边角(ASA)、边角边(SAS)、角角边(AAS)和直角边(HL)。
正文内容:一、边边边(SSS)判定方法:1.说明边边边(SSS)判定方法是三边相等的三角形判定方法。
2.介绍边边边(SSS)判定方法的步骤和要点。
3.详细解释如何利用边边边(SSS)判定方法来判断两个三角形是否全等。
4.举例说明边边边(SSS)判定方法的应用场景。
5.总结边边边(SSS)判定方法的特点和注意事项。
二、角边角(ASA)判定方法:1.介绍角边角(ASA)判定方法是角度和边相等的三角形判定方法。
2.说明角边角(ASA)判定方法的步骤和要点。
3.详细解释如何利用角边角(ASA)判定方法来判断两个三角形是否全等。
4.举例说明角边角(ASA)判定方法的实际应用。
5.总结角边角(ASA)判定方法的特点和适用条件。
三、边角边(SAS)判定方法:1.说明边角边(SAS)判定方法是一边、一角和另一边相等的三角形判定方法。
2.介绍边角边(SAS)判定方法的具体步骤和要点。
3.详细解释如何利用边角边(SAS)判定方法来判断两个三角形是否全等。
4.引用实际问题,说明边角边(SAS)判定方法的应用场景。
5.总结边角边(SAS)判定方法的特点和限制条件。
四、角角边(AAS)判定方法:1.介绍角角边(AAS)判定方法是两个角和一边相等的三角形判定方法。
2.说明角角边(AAS)判定方法的步骤和要点。
3.详细解释如何利用角角边(AAS)判定方法来判断两个三角形是否全等。
4.举例说明角角边(AAS)判定方法在实际问题中的应用。
5.总结角角边(AAS)判定方法的特点和使用条件。
五、直角边(HL)判定方法:1.介绍直角边(HL)判定方法是直角边和斜边相等的三角形判定方法。
三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)
三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。
第5讲 三角形的全等及其应用
第5讲 三角形的全等及其应用(竞赛)【例题精讲】例1 如图2-1所示.∠1=∠2,∠ABC=∠DCB .求证:AB=DC .分析 用全等三角形证明线段(或角)相等,最常用的方法是探究所求证的线段(或角)分别在一对可证的全等三角形之中.本题的AB ,DC 分别属于两对三角形△ABE 和△CDE 及△ABC 和△DBC .经分析可证明△ABE ≌△CDE .例2 如图2-2所示.△ABC 是等腰三角形,D ,E 分别是腰AB 及AC 延长线上的一点,且BD=CE ,连接DE 交底BC于G .求证:GD=GE .分析 从图形看,GE ,GD 分别属于两个显然不全等的三角形:△GEC 和△GBD .此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.教师寄语: DSE 五星级数学系列 为明天做准备的最好方法就是集中你所有的智慧,所有的热忱,把今天的工作做得尽善尽美,这就是你能应付未来的唯一方法。
例3 如图2-5所示.在等边三角形ABC中,AE=CD,AD,BE交于P点,BQ⊥AD于Q.求证:BP=2PQ.分析首先看到BP,PQ在Rt△BPQ之中,只要证明∠BPQ=60°(或∠PBQ=30°).然而,∠BPQ是△ABP的一个外角,所以∠BPQ=∠PAB+∠PBA.但∠A=∠PAB+∠PAC=60°,若能证明∠PBA=∠PAC,问题即能解决,这两个角分别在△ABE与△CAD中,可以证明这两个三角形全等.例4 如图2-6所示.∠A=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E.求证:∠AMB=∠DMC.分析1从图形观察∠AME与∠DMC所在的两个三角形△AME与△DMC显然不全等,但是这两个三角形中有其他相等元素:AM=MC.若能利用已知条件在现有的三角形中构造出新的对应相等的元素,形成全等三角形,这是理想不过的事.由于∠C=45°,∠A=90°,若作∠A的平分线AG,则在△AGM中,∠GAM=45°=∠C.结合求证中的∠AMB=∠DMC(这当然不能作为已知,但在分析中可以“当作已知”来考虑,以便寻找思路),我们可以断言△AGM “应该”与△CDM全等!为此,只要在这两个三角形中求得一组边相等即可.图形及条件启发我们可考虑去证明△AGB≌△CDA.例5如图2-8所示.正方形ABCD中,在边CD上任取一点Q,连AQ,过D作DP⊥AQ,交AQ于R,交BC于P,正方形对角线交点为O,连OP,OQ.求证:OP⊥OQ.分析欲证OP⊥OQ,即证明∠COP+∠COQ=90°.然而,∠COQ+∠QOD=90°,因此只需证明∠COP=∠DOQ即可.这归结为证明△COP≌△DOQ,又归结为证明CP=DQ,最后,再归结为证明△ADQ≌△DCP的问题.例6如图2-9所示.已知正方形ABCD中,M为CD的中点,E为MC上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和(BC+CE),再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段(AE)上截取与线段中的某一段(如BC)相等的线段,再证明截剩的部分与线段中的另一段(CE)相等.我们用(1)法来证明.【实战演练】1.如图2-10所示.AD,EF,BC相交于O点,且AO=OD,BO=OC,EO=OF.求证:△AEB≌△DFC.2.如图2-11所示.正三角形ABC中,P,Q,R分别为AB,AC,BC的中点,M为BC上任意一点(不同于R),且△PMS为正三角形.求证:RM=QS.3.如图2-12所示.P为正方形ABCD对角线BD上任一点,PF⊥DC,PE⊥BC.求证:AP⊥EF.4.如图2-13所示.△ABC的高AD与BE相交于H,且BH=AC.求证:∠BCH=∠ABC.5.如图2-14所示.在正方形ABCD中,P,Q分别为BC,CD边上的点,∠PAQ=45°.求证:PQ=PB+DQ.6.如图2-15所示.过△ABC的顶点A分别作两底角∠B和∠C的角平分线的垂线,AD⊥BD于D,AE⊥CE于E.求证:ED∥BC.FED CBA过手训练(快练五分钟,稳准得分建奇功)【请仔细】一、选择题1.下列三角形不一定全等的是( )A .有两个角和一条边对应相等的三角形B .有两条边和一个角对应相等的三角形C .斜边和一个锐角对应相等的两个直角三角形D .三条边对应相等的两个三角形 2.下列说法:①所有的等边三角形都全等②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个3.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形4.AD 是△ABC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是 ( ) A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF5.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是130°,那么△ABC 中与这个角对应的角是( ). A .∠A B .∠B C .∠C D .∠B 或∠C6.如图所示,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( ). A .25° B .27° C .30° D .45°7.如右图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,且AB =10 cm ,则△BED 的周长为 ( )A .5 cm B .10 cm; C .15 cm D .20 cm8.如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( )A .3个B .2个C .1个D .0个9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF; B 、AF=BF; C 、AF>BF; D 、AF<BFED CBADACEB CB AEFO【回家作业】1.如果△ABC ≌△A ’B ’C ’,若AB =A ’B ’,∠B =50°,∠C =70°,则∠A ’= °2.如图,若BD ⊥AE 于B ,DC ⊥AF 于C ,且DC=DC ,∠BAC=40°,∠ADG=130°,则∠DGF=________。
5种判定三角形全等的方法
5种判定三角形全等的方法判定三角形全等的方法有很多种,下面我将介绍其中五种常见的方法。
方法一:SSS全等法SSS全等法是指当两个三角形的三条边分别相等时,这两个三角形全等。
例如,如果三角形ABC的三条边与三角形DEF的三条边分别相等,即AB=DE,BC=EF,AC=DF,则可以判定三角形ABC全等于三角形DEF。
方法二:SAS全等法SAS全等法是指当两个三角形的两条边和夹角分别相等时,这两个三角形全等。
例如,如果三角形ABC的边AC和边BC分别与三角形DEF的边DF和边EF相等,且夹角∠ABC等于夹角∠DEF,则可以判定三角形ABC全等于三角形DEF。
方法三:ASA全等法ASA全等法是指当两个三角形的两个夹角和一条边分别相等时,这两个三角形全等。
例如,如果三角形ABC的两个夹角∠BAC和∠ABC分别等于三角形DEF的两个夹角∠EDF和∠DEF,且边AC等于边DF,则可以判定三角形ABC全等于三角形DEF。
方法四:AAS全等法AAS全等法是指当两个三角形的两个夹角和一条边的对边比例分别相等时,这两个三角形全等。
例如,如果三角形ABC的两个夹角∠BAC和∠ABC分别等于三角形DEF的两个夹角∠EDF和∠DEF,且边AC与边DF的对边比例相等,则可以判定三角形ABC全等于三角形DEF。
方法五:HL全等法HL全等法是指当两个三角形的一条斜边和两个直角边分别相等时,这两个三角形全等。
例如,如果三角形ABC的斜边BC和直角边AB、AC分别等于三角形DEF的斜边EF和直角边DE、DF,则可以判定三角形ABC全等于三角形DEF。
这五种判定三角形全等的方法在实际应用中经常被使用。
通过观察和比较三角形的边长、夹角以及比例关系,可以准确判定两个三角形是否全等。
这在几何学中具有重要的意义,不仅可以用于解决实际问题,还可以推导出其他几何性质和定理。
需要注意的是,在判定三角形全等时,要保证所给的条件足够,不能漏掉关键信息。
全等三角形的性质与判定的综合应用
全等三角形的性质与判定的综合应用全等三角形的对应角、对应边是相等的,全等三角形的判定是“SAS”、“ASA”、“AAS”、“SSS”,在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定,下面举例予以说明。
一、说明线段相等例1、如图1,在△ABC 与△ABD 的顶点A 和D 均在BC 的同旁,AB=DC ,AC=DB ,AD 与BC 相交于O 点,则OA 与OD 相等吗若相等,请说明理由。
分析:要使OA=OD ,可分析△ABO 与△DCO 是否全等,但是条件中有一组边对应相等(AB=DC ),一组角对应相等(对顶角),显然不具备全等的条件。
但由已知条件可推出△ABC ≌△DCB ,再根据全等的性质可得∠A=∠D ,再根据全等三角形的判定“AAS”推出△ABO ≌△DCO ,从而得到OA=OD 。
解:OA=OD ,理由如下:在△ABC 和△DCB 中,因为AB=DC ,AC=BD ,BC=CB ,所以△ABC ≌△DCB (SSS ),所以∠A =∠D ,在△ABO 与△DCO 中因为∠A =∠D ,∠AOB=∠DOC ,AB=DC所以△ABO ≌△DCO ,所以OA=OD点评:本题考查了全等三角形的判定和性质。
说明两条线段相等时,可考虑着两条线段所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其它的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件。
二、说明角相等例2、如图2,AB 、MN 与CD 相交于点O ,OA=OB ,OM=ON ,试问:∠D 与∠C 相等吗若相等,请进行说明理由. O D C B A 图1分析:要得到∠D=∠C,只需说明△BOD≌△AOC Array即可,但是由已知条件不能直接说明这两个三角形全等,但是由已知条件可推出△BON≌△AOM,由全等三角形的性质得到∠A=∠B,再结合OA=OB,∠AOC=∠BOD,即可说明△BOD≌△AOC。
三角形全等的判定及应用
中小学1对1个性化辅导 爱上学习,从执学开始知识要点: 全等三角形② 全等三角形面积相等. 方法指引:2、证明两个三角形全等的基本思路:(1)已知两边__________)(____________)(__________)⎧⎪⎨⎪⎩找第三边(找夹角其中一边的对角是直角 (2)已知一边一角(_____)(_____)(_____)(_____)(_____)⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩找这边的另一邻角已知一边与邻角找这个角的另一邻边找这边的对角找一角已知一边与对角已知是直角,找一边 (3)已知两角______________)(______________)⎧⎪⎨⎪⎩找夹边(找夹边外任意一边 3. 证明的书写步骤:(1)准备条件:证全等时要用的间接条件要先证好; (2)三角形全等书写三步骤:①写出在哪两个三角形中;②摆出三个条件用大括号括起来;③写出全等结论。
4.利用全等三角形证明线段或角相等的思路如下:⑴观察要证的线段和角在哪两个可能全等三角形之中;⑵分析要证的这两个全等三角形,已知什么条件,还缺什么条件;⑶设法证出所缺的条件。
注:学习全等三角形应注意以下几个问题(1)正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义; (2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”等。
经典例题讲解1、(2008年四川省宜宾市)已知:如图,AD=BC,AC=BD.求证:OD=OCAB2、(2008年陕西省)已知:如图,B C E=,∥,AC CE,,三点在同一条直线上,AC DE∠=∠.ACD B求证:ABC CDE△≌△.O点,12∠=∠,4、(2008 四川泸州)如图4,E是正方形ABCD的边DC上的一点,过点A作FA⊥AE交CB 的延长线于点F,求证:DE=BFF ED CB A5、(2008福建省泉州市)已知:如图,E 、C 两点在线段BF 上,BE=CF ,AB=DE , AC=DF,求证:ABC DEF ∆≅∆6、(2011=∠DAE =90°,AB =AC ,AD BD.求证:(1)△BAD ≌△有何特殊位置关系,并证明.7、如图:AB=CD , 求证:AF=DE 。
北师大版七年级数学下册 三角形全等的五种常见应用
7.【2019·宜昌】如图,在△ABC 中,D 是 BC 边上的一点,AB
=DB,BE 平分∠ABC,交 AC 边于点 E,连接 DE.
因为 AB∥DC,所以∠BAE=∠G, 又 BE=CE,∠AEB=∠GEC, 所以△AEB≌△GEC(AAS).所以 AB=GC. 因为 AE 是∠BAF 的平分线,所以∠BAG=∠FAG. 因为∠BAG=∠G,所以∠FAG=∠G.所以 AF=GF. 因为 CG=CF+GF,所以 AB=CF+AF.
2.如图,在正方形 ABCD 中,点 E,F 分别在边 AB,BC 上, AE=BF,AF 和 DE 交于点 G.
(1)观察图形,写出图中所有与∠AED 相等的角(∠CDE 除外);
解:∠DAG、∠AFB 与∠AED 相等.
2.如图,在正方形 ABCD 中,点 E,F 分别在边 AB,BC 上, AE=BF,AF 和 DE 交于点 G.
(2)求∠APN 的度数. 解:由(1)可知△ABM≌△BCN, 所以∠BAM=∠CBN. 因为∠APN=∠BAM+∠ABP, 所以∠APN=∠CBN+∠ABP=∠ABC=(5-25)×180°=108°.
(2)选择图中与∠AED 相等的任意一个角(∠CDE 除外)加以 证明. 解:(答案不唯一)选择∠DAG=∠AED. 证明如下:
因为四边形 ABCD 是正方形, 所以∠DAB=∠B=90°,DA=AB.
DA=AB, 在△DAE 和△ABF 中,∠DAB=∠B,
AE=BF. 所以△DAE≌△ABF(SAS),所以∠ADE=∠BAF.
三角形全等的判定方法(5种)例题+练习(全面)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
全等三角形的判定和性质的应用
CE=5 cm,AF=BE.因为 EF=2 cm,所以 BE=BF-EF=5-2=3 cm,所以 AF=3 cm.
(2)因为△ABF≌△BCE,所以AF=BE,BF=CE.因为BE+EF=BF,所以EF= CE-AF.
3. 含45°的直角三角尺如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则 点C的坐标为 (-3,2) .
4. (2018菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的 结论.
解:DF=AE.证明:因为AB∥CD,所以∠C=∠B.因为CE=BF,所以CE-EF=BF-FE,所以CF= BE.又因为CD=BA,所以△DCF≌△ABE(SAS),所以DF=AE.
(3)过B点在等腰△ABC外作一条直线,分别过A,C两点作直线的垂线段,垂 足分别是F,E,请画出图形,并探讨AF,EF,EC之间的数量关系并说明理由.
解:(3)如图,过 B 点在△ABC 外作一条直线,分别过 A, C 两点作直线的垂线段,垂足分别是 F,E,则 EF=CE+AF, 理由如下:因为 AF⊥BF,CE⊥BF,所以∠AFB=∠CEB=90°, 所以∠ABF+∠EBC=∠EBC+∠ECB=90°,所以∠ABF=∠ECB.
解:因为 AB∥CD,所以∠ABO=∠CDO.又因为 OD⊥CD,所以∠CDO=90°,所以 ∠ABO= 90°,即 BO⊥AB.因为 AB∥OH∥CD,相邻两平行线间的距离相等,所 以 OB=OD.在△ABO 和△CDO 中,因为∠ABO=∠CDO,OB=OD,∠AOB=∠COD,所以 △ABO≌△CDO(ASA).所以 CD=AB=20(米).即标语 CD 的长度为 20 米.
全等三角形的判定方法五种例题
全等三角形的判定方法五种例题三角形是初中数学学习中的重要内容之一,而全等三角形又是其中比较基础且重要的一部分。
那么,如何判断两个三角形是否全等呢?我们可以从以下5个方法入手。
第一种方法:角角角(AAA)判定法。
当两个三角形的对应角度相等时,就可以判断它们是全等的。
例如:若在两个三角形中角A、角B、角C分别对应相等,则这两个三角形就全等。
第二种方法:边角边(AAS)判定法。
当两个三角形的两边和夹角分别相等时,就可以判断它们是全等的。
例如:若在两个三角形中,两边AB、AC相等,并且夹角A的大小也相等,则这两个三角形就全等。
第三种方法:角边角(ASA)判定法。
当两个三角形的一对角和对应边相等,且另外一对角也相等时,就可以判断它们是全等的。
例如:若在两个三角形中,角A、边BC和角C分别对应相等,并且角B的大小也相等,则这两个三角形全等。
第四种方法:直角边(HL)判定法。
当两个直角三角形的一条直角边和另外一条边相等时,就可以判断它们是全等的。
例如:若在两个三角形中,直角边AB、边AC的长度分别相等,并且三角形ABC还有一个相等的直角,则这两个三角形就全等。
第五种方法:全等多边形拼凑法。
将一个三角形分割成两个或多个小三角形,然后将这些小三角形重新拼凑成另一个三角形。
如果这个三角形和另一个给定的三角形重合,则它们是全等的。
例如:将一个三角形ABC划分成两个小三角形,分别是三角形ABE和三角形AEC,然后将它们重新拼凑成三角形FDC,如果三角形FDC和另一个给定的三角形重合,则这两个三角形就全等。
在实际操作时,我们可以根据题目所给条件,选择一种或多种判定方法,来判断两个三角形是否全等。
因为不同的题目所给条件不同,因此我们要灵活掌握这些判定方法,并且要根据具体情况加以分析和判断。
只有将这些方法掌握好,才能在解题中灵活应用,提高我们的解题能力。
三角形全等的五种判定方法及如何构造三角形全等
三角形全等的五种判定方法及如何构造三角形全等三角形全等是指两个三角形的所有对应边和对应角相等。
在几何学中,有五种常见的判定方法来确定两个三角形是否全等:SSS(边-边-边)判定法、SAS(边-角-边)判定法、ASA(角-边-角)判定法、AAS(角-角-边)判定法和HL(斜边-直角-斜边)判定法。
下面将分别介绍这五种方法,并给出如何构造三角形全等的例子。
1.SSS(边-边-边)判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若AB=DE,BC=EF,AC=DF,则可判断三角形ABC和DEF全等。
2.SAS(边-角-边)判定法:如果两个三角形的两条边和它们之间的夹角分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若AB=DE,∠BAC=∠EDF,AC=DF,则可判断三角形ABC和DEF全等。
3.ASA(角-边-角)判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若∠BAC=∠EDF,AB=DE,∠ABC=∠DEF,则可判断三角形ABC和DEF全等。
4.AAS(角-角-边)判定法:如果两个三角形的两个角和一边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若∠BAC=∠EDF,∠ABC=∠DEF,AB=DE,则可判断三角形ABC和DEF全等。
5.HL(斜边-直角-斜边)判定法:如果两个直角三角形的一个直角和一个斜边分别相等,则这两个三角形全等。
例子:给定两个直角三角形ABC和DEF,若∠BAC=∠EDF,AB=DE,则可判断三角形ABC和DEF全等。
以上是判定两个三角形全等的五种方法。
下面将介绍如何通过给定条件构造全等的三角形。
1.给定两边和夹角:以一条边为边长,另一条边为夹角的边,在端点处画出一条与给定边相等的线段作为第二条边,然后以给定夹角为顶点画出第三边,两个三角形即构造完成。
5全等三角形的判定(SAS,ASA)
第8题
11.已知如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D
12.已知:如图,AB=DC ,AD=BC , O是BD中点,过O的直线分别与DA、BC的延长线交于E、F.
求证:OE=OF
二.拓展提高
13.如图,线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,说明∠A=∠C.
【变式】已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.
【随堂测试】
1、(2014•陕西)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F,求证:AB=BF.
2、(2014•内江)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
C.只能证明△AOB≌△COB
D.能证明△AOB≌△COD和△AOD≌△COB
2.已知△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是( )
A.甲和乙B.乙和丙C.只有乙D.只有丙
3.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( )
A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN
知识点二:全等三角形的判定(ASA)
全等三角形判定3——“角边角”
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
注:如图,如果∠A=∠ ,AB= ,∠B=∠ ,则△ABC≌△ .
【例2.1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.
D.一个锐角和锐角所对的直角边对应相等
全等三角形及其应用(含解答)
全等三角形及其应用专题辅导1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常需要借助全等三角形的知识。
三角形全等的判定方法(5种)例题+练习(全面)
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
判定全等三角形的五种方法
判定全等三角形的五种方法一、引言全等三角形是指具有相同形状和相等边长的两个三角形。
判定两个三角形是否全等是几何学中非常重要的问题,它们在计算几何、图形设计和工程测量中都有广泛的应用。
本文将介绍五种常用的方法来判定两个三角形是否全等。
二、方法一 - SSS判定法SSS判定法是根据两个三角形的所有边长是否相等来判定它们是否全等的方法。
具体步骤如下:1.比较两个三角形的三条边长是否一一对应相等。
2.如果两个三角形的边长相等,那么它们是全等的。
三、方法二 - SAS判定法SAS判定法是根据两个三角形的一个边和两个夹角的大小关系来判定它们是否全等的方法。
具体步骤如下:1.比较两个三角形的一个边和夹角是否一一对应相等。
2.如果两个三角形的一个边和两个夹角相等,那么它们是全等的。
四、方法三 - ASA判定法ASA判定法是根据两个三角形的两个夹角和一个边的大小关系来判定它们是否全等的方法。
具体步骤如下:1.比较两个三角形的两个夹角和一个边是否一一对应相等。
2.如果两个三角形的两个夹角和一个边相等,那么它们是全等的。
五、方法四 - SAA判定法SAA判定法是根据两个三角形的一个边和两边之间的夹角以及两个相应的夹角的大小关系来判定它们是否全等的方法。
具体步骤如下:1.比较两个三角形的一个边和两边之间的夹角是否相等。
2.比较两个三角形的两对相应夹角是否相等。
3.如果两个三角形的一个边和两边之间的夹角,以及两个相应的夹角都相等,那么它们是全等的。
六、方法五 - HL判定法HL判定法是根据两个三角形的一个斜边和与其相对的两个直角边的大小关系来判定它们是否全等的方法。
具体步骤如下:1.比较两个三角形的一个斜边和与其相对的两个直角边是否一一对应相等。
2.如果两个三角形的一个斜边和与其相对的两个直角边相等,那么它们是全等的。
七、总结判定两个三角形是否全等是几何学中的重要问题,对于几何学的研究和实际应用都具有重要意义。
本文介绍了五种常用的方法来判定全等三角形,分别是SSS判定法、SAS判定法、ASA判定法、SAA判定法和HL判定法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学备课组
凤州初级中学八年级数学导学案
备课组成员:范超科 王伟琼 李琴 陈楠 主备人:王伟琼 审核
【课 题】:11.2 三角形全等的判定应用
课型:习题课
【学习目标】:1掌握全等三角形的性质,并会应用
2 会利用全等三角形的判定解题; 【学习重点】:全等三角形的判定的应用
【学习难点】:全等三角形的判定的应用
【自主学习】(以下的题目,你能独立完成吗?相信自己,你一定能够做得到。
)
一、展示问题:全等三角形的定义?全等三角形的性质( 个人思考、展示,教师点评。
)
二、全等三角形的判定 1和2?
【合作学习】
「、合作探究 (团结力量大!小组合作探究,仔细阅读题目,完成下面的问题。
) 活动1、阅读课本理解课本内容? (独立完成,然后组内交流)
1.如图,长方形 ABCD& AE 折叠,使点D 落在BC 边上的
A D
活动2、思考问题(仔细阅读课本内容,组内交流,两名学生展示并解答大家的问题)
ACB 也 DFE ,且D 与A 是对应顶点,求证(
F
、展示交流(交流、展示、评价)
数。
如图,
请各小组派代表展示自己组的讨论结果,其他同学补充和评价。
【归纳训练】
、归纳小结:同学们今天你主要学习了
、基础训练学生当堂完成,可同伴互助,小组交流如图:点B,E,C,F 在一条直线上,AB= DE
AC=DF,BE=CF求证/ A=Z D.
三、提升训练多吃点,长胖些
如图AC和BD相较于点0, 0A=0C,0B=0D,求证DC AB
【学习反思】:还有那些地方存在疑问?
自我评价: 小组评价: 教师评价:
(相信自己,你是最棒的!)
八年级数学备课组。