七年级数学单元测试卷配套练习及答案
人教版七年级数学上册《第二章有理数》单元检测卷带答案
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
七年级数学下册第一章单元测试题(3套)及答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±2二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
七年级数学下册《相交线与平行线》单元测试卷(附答案)
七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。
最新人教版七年级数学上册单元测试题及答案全册
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
七年级数学下册《角》单元测试卷(带答案解析)
七年级数学下册《角》单元测试卷(带答案解析)1.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°2.若∠α与∠β互补(∠α<∠β),则∠α与(∠β﹣∠α)的关系是()A.互补B.互余C.和为45°D.和为22.5°3.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为()A.35°B.45°C.55°D.65°4.如图,∠AOD=120°,OC平分∠AOD,OB平分∠AOC.下列结论:①∠AOC=∠COD;②∠COD=2∠BOC;③∠AOB与∠COD互余;④∠AOC与∠AOD互补.其中,正确的个数是()A.1 B.2 C.3 D.45.如图,直线AB与直线CD交于点O.OE、OC分别是∠AOC与∠BOE的角平分线,则∠AOD为()A.45°B.50°C.55°D.60°6.如图,点P在直线l外,点A、B在直线l上,若PA=4,PB=7,则点P到直线l的距离可能是()A.3 B.4 C.5 D.77.如图,∠AOD=∠DOB=∠COE=90°,互补的角有()A.5对B.6对C.7对D.8对8.计算:1800′=()A.10°B.18°C.20°D.30°9.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或 40°D.80°或 40°10.一个角的余角比这个角的一半大15°,则这个角的度数为()A.70°B.60°C.50°D.35°11.计算:90°﹣44°14′15″=.12.已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27',则∠3=.13.如图,直线AB、CD相交于点O,∠COE是直角,OF平分∠AOD,若∠BOE=42°,则∠AOF的度数是.14.计算:48°47'+53°35'=.15.钟表上的时间是8:30时,时针与分针的夹角为度.16.若∠α的余角比它的补角的一半还少10°,那么∠α=°.17.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE =2 ,∠COD=∠AOD=,∠DOE=°.18.如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.则∠MON的度数为.19.(1)如图1,∠AOC:∠COD:∠BOD=4:2:1,若∠AOB=140°,求∠BOC的度数;(2)如图2,∠AOC:∠COD:∠BOD=4:2:1,OP平分∠AOB,若∠AOB=β,求∠COP的度数(用含β的的代数式表示);(3)如图3,∠AOC=80°,∠BOD=20°,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.21.如图,已知△ACD和△BCE是两个直角三角形,∠ACD=90°,∠BCE=90°.∠ACB=150°,求∠DCE 的度数.22.如图,点A、O、E在同一直线上,∠AOB=50°,∠EOD=28°42',OD平分∠COE.(1)∠AOB的余角是多少度?(2)求∠COB的度数.23.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=18°,求∠AOC的度数.24.如图,直线AB、CD相交于点O,∠AOD=2∠BOD,OE平分∠BOD,OF平分∠COE.(1)求∠DOE的度数;(2)求∠AOF的度数.参考答案与解析1.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.2.解:因为∠α与∠β互补(∠α<∠β),所以∠α+∠β=180°,所以∠α+(∠β﹣∠α)=,所以∠α与(∠β﹣∠α)的关系是互余.故选:B.3.解:∵两块三角板的直角顶点O重合在一起,∴∠BOD和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.4.解:①∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=60°,故①正确.②∵OB平分∠AOC,∴∠AOC=2∠BOC,∴∠COD=2∠BOC,故②正确;③∠AOB=∠BOC=∠AOC=30°,∴∠AOB+∠COD=90°,∴∠AOB与∠COD互余,故③正确.④∵∠AOC+∠AOD=60°+120°=180°,∴∠AOC与∠AOD互补,故④正确.故选:D.5.解:∵OE、OC分别是∠AOC与∠BOE的角平分线,∴∠AOE=∠EOC,∠EOC=∠BOC,∴∠AOE=∠EOC=∠BOC,∵∠AOE+∠EOC+∠BOC=180°,∴∠AOE=∠EOC=∠BOC=60°,∴∠AOD=60°.故选:D.6.解:因为垂线段最短,∴点P到直线l的距离小于4,故选:A.7.解:互补的角有:∠AOD与∠BOD,∠AOD与∠COE,∠COE与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE共5对,故选:A.8.解:1800′=(1800÷60)°=30°,故选:D.9.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.10.解:设这个角为x°,则这个角的余角为(90°﹣x°),根据题意,得90﹣x=x+15,解得:x=50.所以这个角的度数为50°,故选:C.11.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.12.解:∵∠1与∠2互余,∴∠2=90°﹣∠1,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,∵∠1=33°27',∴∠3=123°27',故答案为:123°27'.13.解:∵∠COE是直角,∴∠COE=90°,∴∠DOE=180°﹣90°=90°,∵∠BOE=42°,∴∠BOD=∠DOE﹣∠BOE=90°﹣42°=48°,∴∠AOD=180°﹣∠BOD=180°﹣48°=132°,∵OF平分∠AOD,∠AOF=∠AOD=×132°=66°.故答案为:66°.14.解:48°47'+53°35'=101°82′=102°22′,故答案为:102°22′.15.解:8:30时,钟表的时针与分针相距2.5份,8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.16.解:由题意得,90°﹣∠α=(180°﹣∠α)﹣10°,解得:∠α=20°,故答案为:20°.17.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.18.解:∵∠AOC=∠AOB+∠BOC=90°+30°=120°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.故答案为:45°.19.解:(1)由∠AOC:∠COD:∠BOD=4:2:1,设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∵∠AOB=140°,∴x+2x+4x=140,解得:x=20,∴∠BOD=20°,∠COD=40°,∠AOC=80°,∴∠BOC=20°+40°=60°;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∴x+2x+4x=β,∴x=β,∴∠AOC=β;∵OP平分∠AOB,∴∠AOP=,∴∠COP=β﹣=β;(3)∵OF平分∠BOC,∠BOD=20°,∴∠COF=(∠BOD+∠COD)=10°+COD,∵OE平分∠AOD,∠AOC=80°,∴∠AOE=(∠AOC+∠COD)=40°+COD,∴∠COE=∠AOC﹣∠AOE=80°﹣(40°+COD)=40°﹣COD,∴∠EOF=∠COE+∠COF=40°﹣COD+10°+COD=50°.20.解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==42°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC=,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴,∴=180°,∴∠AOC=80°.21.解:∵∠ACD=90°,∠ACB=150°,∴∠BCD=∠ACB﹣∠ACD=150°﹣90°=60°,∴∠DCE=∠BCE﹣∠BCD=90°﹣60°=30°.∴∠DCE的度数为30°.22.解:(1)∵∠AOB=50°,∴∠AOB的余角为:90°﹣50°=40°;(2)∵OD平分∠COE,∴∠EOC=2∠EOD=2×28°42'=57°24',又∵∠AOE=∠AOB+∠COB+∠EOC,而且点A、O、E在同一直线上,∴∠AOE=180°,∴∠COB=∠AOE﹣∠AOB﹣∠EOC=180°﹣57°24'=72°36'.23.解:因为OE为∠BOD的平分线,所以∠BOD=2∠BOE,因为∠BOE=18°,所以∠BOD=36°,又因为∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,所以∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD(4分)=360°﹣90°﹣90°﹣36°=144°.24.解:(1)∵∠AOD+∠BOD=180°,∠AOD=2∠BOD,∴∠AOD=180°×=120°,∠BOD=180°×=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,(2)∵∠COE+∠DOE=180°,∴∠COE=180°﹣∠DOE=190°﹣30°=150°,∵OF平分∠COE,∴∠COF=∠EOF=∠COE=×150°=75°,又∵∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+75°=135°。
七年级数学单元测试卷【含答案】
七年级数学单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 26厘米B. 36厘米C. 46厘米D. 56厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个等边三角形的三个角都是60度。
()3. 两个长方体的体积相等,那么它们的长、宽、高也相等。
()4. 0.5和1/2是相等的。
()5. 任何一个三角形的内角和都是180度。
()三、填空题(每题1分,共5分)1. 1米= _______ 分米。
2. 一个等腰三角形的底边长是8厘米,腰长是5厘米,那么这个三角形的周长是_______ 厘米。
3. 2的平方是 _______ ,3的平方是 _______ 。
4. 一个长方体的长是10厘米,宽是6厘米,高是8厘米,那么它的体积是 _______ 立方厘米。
5. 如果一个数的因数只有1和它本身,那么这个数是 _______ 。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 什么是质数?什么是合数?3. 请解释等边三角形和等腰三角形的区别。
4. 什么是比例?请举例说明。
5. 请简述长方体的表面积和体积的计算方法。
五、应用题(每题2分,共10分)1. 一个长方体的长是15厘米,宽是10厘米,高是5厘米,请计算它的表面积和体积。
2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,请计算这个三角形的周长。
七年级数学下册单元测试全套及答案
最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322b a 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
人教版七年级上册数学第一、二章单元检测(含简单答案)
七年级上册数学第一、二章单元检测班级:____ 姓名:______ 分数:_____一、单选题(每题4分,共40分)1.5-的相反数是( )5.A 51.B 5.-C 51.-D2. 如果水库的水位上升2米记作+2米,那么水库的水位下降1.2米记作( )米2.-A 米2.1.B 米2.1.-C 米2.3.D3.据统计,2023年上海市总人口数约为2400万,将其用科学计数法表示为( )6104.2.⨯A 7104.2.⨯B 81024.⨯C 8104.2.⨯D4.有理数2122--,,的大小关系是( )2122.--<<A 2212.<<--B 2221.<<--C 2122.--<<D 5.下列计算错误的是( )16218.=-÷-)(A 660.=--)(B 2212.2-=⨯-)(C 8)2.(3-=-D 6.绝对值大于1而小于5的所有非正整数的和为( )6.-A7.-B8.-C9.-D7.下列说法正确的是( )是相反数7.-A正数绝对值是它本身的数是.B正数和负数互为相反数.Ca a a D -==时,当0.8.已知n m n m 则,0)2(32=-++的值为( )9.A 9.-B 8.C 6.D9.已知!是一种运算符号,即,,,12344!1233!121,2!11!⨯⨯⨯=⨯⨯=⨯=⨯=则 6!的结果是( )120.A 720.B 240.C 360.D10.已知y x y x y x y x +==--=-则,9,4),(2的值为( )1.-A 7.-B 71.--或C 7.D二. 填空题(每题4分,共24分)11.有理数0,438.1,3--,中,整数是________.12.某商场出售某商品,当降价10元时,记作-10元,则涨价25元时,可记作_______.13.将6548.2精确到百分位,其结果是________.14.数轴上有两个有理数,分别是-5和2,则这两个有理数在数轴上的距离为_______.15.计算=-⨯-23221)()(_______. 16.有下列数⋅⋅⋅⋅⋅⋅---3216,84,2,,按照其中规律,则第7个数是_________.三. 解答题(每题4分,共36分)17.(6分)计算)(1038)1(-++- )(9265)2(---+-18.(8分)完成下列计算)()(513115)1(-⨯-⨯ 22336421)2()()(-÷+⨯-19.(6分)把下列各数填入对应的集合内.115036052.6,674-----,,,,,,π正有理数集合:{ }负有理数集合:{ }整数集合:{ }20.(6分)已知1313-+x x 和互为相反数,求x 的值.21.(8分)以下是某市2023年11月,12月到2024年1月,2月,3月,每一月的最低气温.℃℃,℃,℃,℃,5.26.0231----(1)求该市这5个月最低气温的温差.(2)将这些温度按从小打大的顺序排列.答案一. 选择题1. A2. C3. B4. B5. C6. D7. D8. A9. B10.C二.填空题11.-3,012.+25元. 13.2.65 14.7 15. 21 16.-128。
七年级数学单元测试卷答案【含答案】
七年级数学单元测试卷答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少厘米?()A. 16cmB. 26cmC. 28cmD. 36cm3. 一个数是24的倍数,那么这个数至少含有几个因数2?()A. 2B. 3C. 4D. 54. 小明有一些糖,如果他每天吃3块,那么可以吃20天,如果他每天吃5块,可以吃多少天?()A. 11天B. 12天C. 13天D. 14天5. 下列哪个图形是中心对称图形?()A. 等边三角形B. 正方形C. 长方形D. 梯形二、判断题1. 两个质数相乘,其结果一定是合数。
()2. 一个数的平方根有两个,且互为相反数。
()3. 在直角坐标系中,第二象限内的点其横坐标和纵坐标都是负数。
()4. 一个等腰三角形的两个底角相等。
()5. 任何数乘以0都等于0。
()三、填空题1. 12的因数有______。
2. 一个正方形的边长为6cm,那么它的周长是______cm。
3. 5^3表示______。
4. 一个数的立方根是8,那么这个数是______。
5. 在直角坐标系中,点(3, -4)位于______象限。
四、简答题1. 请简述质数和合数的区别。
2. 什么是等腰三角形?它有哪些性质?3. 请解释因数和倍数的概念。
4. 什么是中心对称图形?请举例说明。
5. 请解释比例尺的概念,并给出一个例子。
五、应用题1. 一个长方形的长是宽的2倍,如果宽是4cm,那么这个长方形的面积是多少平方厘米?2. 小红有一些书,如果她每天读3本,可以在12天内读完。
如果她每天多读2本,那么她可以在多少天内读完?3. 一个班级有40名学生,其中男生占3/5,那么这个班级有多少名男生?4. 一个数的3/4是18,那么这个数是多少?5. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是多少厘米?六、分析题1. 小华有一些糖,如果他每天吃4块,那么可以吃18天,如果他每天吃6块,可以吃多少天?请用两种方法解答。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案学校:___________班级:___________姓名:___________考号:___________复习巩固1. 下列整式中哪些是单项式? 哪些是多项式? 是单项式的指出系数和次数,是多项式的指出项和次数:−12a2b,m4n27,x2+y2−1,x,3x2−y+3xy2+x4−1,32t3,2x−y.2. 写出一个单项式,使它与多项式m+2n²的和为单项式.3. 计算:(1)x²y−3x²y;(2)−32a2bc+12a2bc;(3)14mn−13mn+2;(4)5x⁴+3x²y−8−3x²y−x⁴−2;(5)7ab−3a²b²+7+8ab²+2a²b²−3−5ab.4. 计算:(1)(4a³b−10b³)+(−3a²b²+10b³);(2)(4x²y−5xy²)−(3x²y−4xy²);(3)3(2a²+4b)+3(−5a²−2b);(4)3(x²−2xy)−4(2x²−xy+1);(5)5a²−(a²+(5a²−2a)−2(a²−3a)];(6)3x2−[5x−(12x−3)+2x2].5. 先化简,再求值:(1)5x²+4−3x²−5x−2x²−5+6x,其中x=--3;(2)2(a2b+12ab2)−3(a2b−1)−2ab2−1,其中a=-2, b=2.综合运用6. (1) 列式表示比a 的5倍大4的数与比a 的2倍小3的数,并计算这两个数的和;(2) 列式表示比b的7 倍小3的数与比b 的6 倍大5的数,并计算这两个数的差.7. 某轮船先顺水航行3h ,后逆水航行1.5h ,已知轮船在静水中的速度是a km/h ,水流速度是b km/h ,轮船共航行了多少千米?8. 如图,边长相等的小正方形组成一组有规律的图案,其中部分小正方形涂有颜色. 按照这样的规律,第4个图案中有多少个涂色的小正方形? 第n 个图案呢?拓广探索9. 用代数式表示十位上的数字是a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得数与原数的和. 这个和能被11整除吗?10. 把(a+b)和(x+y)各看成一个整体,对下列各式进行化简: (1) 4(a+b)+2(a+b)--(a+b);(2)3(x +y )²−7(x +y )+8(x +y )²+6(x +y ).参考答案1.【答案】解: 单项式 -12a²bm4n²7x 32t³ 系数 -1/2 171 32 次数 3613多项式 x²+y²-1 3x²-y+3xy²+x ⁴-1 2x -y 项x²,y²,-13x²,-y,3xy²,x ⁴,-12x,-y次数241 2.-m.(答案不唯一)mn+2;3.解:(1)-2x²y;(2)-a²bc; (3)−112(4)4x⁴-10;(5)8ab²-a²b²+2ab+4.4.【答案】解:( (1)(4a³b−10b³)+(−3a²b²+10b³)=4a³b−10b³−3a²b²+10b³=4a³b−3a²b².(2)(4x²y−5xy²)−(3x²y−4xy²)=4x²y−5xy²−3x²y+4xy²=x²y−xy².(3)3(2a²+4b)+3(−5a²−2b)=6a²+12b−15a²−6b=−9a²+6b,(4)3(x²−2xy)−4(2x²−xy+1)=3x²−6xy−8x²+4xy−4=−5x²−2xy−4.(5)5a²−[a²+(5a²−2a)−2(a²−3a)]=5a²−(a²+5a²−2a−2a²+6a)=5a²−a²−5a²+2a+2a²−6a=a²−4a.x−3)+2x2](6)3x2−[5x−(12x+3+2x2)=3x2−(5x−12x−3−2x2=3x2−5x+12x−3.=x2−925.【答案】解:( (1)5x²+4−3x²−5x−2x²−5+6x=(5−3−2)x²+(−5+6)x−1=x-1.当x=-3时,原式= - 3-1 = - 4.ab2)−3(a2b−1)−2ab2−1(2)2(a2b+12=2a²b+ab²−3a²b+3−2ab²−1=−a²b−ab²+2.当a=-2,b =2时原式:=−(−2)²×2−(−2)×2²+2= - 4×2-(-2)×4+2 = - 8-(-8)+2=--8+8+2 = 2.6.解:(1)比a的5倍大4的数可表示为5a+4,比a的2倍小3的数可表示为2a-3,它们的和为(5a+4)+(2a-3)=5a+4+2a-3 = 7a+1.(2)比b的7倍小3的数可表示为7b-3,比b的6倍大5的数可表示为6b+5,它们的差为(7b-3)-(6b+5)=7b-3-6b-5 = b-8.7.【答案】解:轮船顺水航行3(a+b) km,轮船逆水航行1.5(a-b) km,轮船一共航行3(a+b)+1.5(a-b)=3a+3b+1.5a-1.5b=(4.5a+1.5b)( km)即轮船共航行(4.5a+1.5b) km.8.【答案】解:第4个图案中涂色的小正方形有5+3×4 = 17(个).第n个图案中涂色的小正方形有5+4(n-1)=(4n+1)(个).9.【答案】解:原数是10a+b交换位置后所得两位数是10b+a所以所得数与原数的和为(10b+a)+(10a+b)= 11(a+b).所以这个数能被11整除.10.【答案】解:(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).(2)3(x+y)²−7(x+y)+8(x+y)²+6(x+y)=(3+8)(x+y)²+(-7+6)(x+y)=11(x+y)²−(x+y).。
七年级数学下册《分式》单元测试卷(附带答案)
七年级数学下册《分式》单元测试卷(附带答案)一、选择题(共10小题)1. 下列方程中,x=2不是它的一个解的是( )A. x+1x =52B. x2−4=0C. xx−2+1=2x−2D. x−2x2+3x+2=03. 已知方程:①xx +x24=6②2x+2+x=3③1x2−9=0④(x+38)(x+6)=−1这四个方程中,分式方程的个数是( )A.1B. 2C. 3D. 47. 为了绿化环境,需要在一块矩形场地上移植草皮.已知矩形场地的宽为x米,矩形的长比宽多14米,恰好铺满场地所需草皮的面积是3200平方米.根据题意,可以列出关于x的方程是( )A. x(x−14)=3200B. x(x+14)=3200C. 2x(x+14)=3200D. 2x(x−14)=32008. 若分式x2−4x2+x−2的值为零,则x的值为( )A. 2B. −2C. 1D. 2或−29. 用换元法解分式方程x+1x2+x2x+1=2时,若设x+1x2=y,那么原方程可化为关于y的方程是( )A. y2−2y+1=0B. y2+2y+1=0C. y2+y+2=0D. y2+y−2=010. 两车在两城间不断往返行驶:甲车从A城开出,乙车从B城开出,且比甲车早出发1小时,两车在途中距A,B两城分别为200公里和240公里的C处相遇;相遇后乙车改为按甲车速度行驶,而甲车却提速若干公里/时,两车恰巧又在C处相遇;然后甲车再次提速5公里/时,乙车则提速50公里/时,两车恰巧又在C处相遇.那么从起行到第3次相遇,乙车共行驶了( )小时.二、填空题(共6小题)11. 分式aa2+2ab+b2和ba+b的最简公分母是.12. 已知甲乙两人共同完成一件工作需12天.若甲乙两人单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍,设甲单独完成这件工作需x天,则可列方程.13. 分母中含有,叫做.14. 当x时,分式x+5x+2有意义.15. 同分母分式加减法则:同分母分式相加减,分母,分子相.16. 若用去分母的方法解关于x的方程2x−1=1−k1−x有增根,则k=.三、解答题(共7小题)17. 下列方程中,哪些是分式方程?(1)x+1x=3(2)1x=2(3)2x−54+x3=12(4)2x−2=1x−118. 解分式方程的一般步骤,可用流程图表述为:19. 计算:(1)2x +3x=;(2)23x −13x=;(3)xx−y −yx−y=;(4)2a+1ab −1ab=.20. 化简再求值3a2−ab9a2−6ab+b2,其中a=34,b=−23.21. 小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米,他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚,假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.22. 按照解分式方程的一般步骤解关于x的分式方程k(x+1)(x−1)+1=1x+1,出现增根x=−1,求k的值.23.甲的速度每小时a千米,乙的速度每小时b千米,如果从A地到B地,甲用m小时,那么乙要用多少小时?(结果用分式表示)参考答案1. C2. B3. C4. B5. B6. D7. B8. A9. A11. (a+b)212. 1x +11.5x=11213. 未知数的方程,分式方程14. ≠−215. 不变,加减16. 217. (1)(2)(4)是分式方程.18. 去分母;检验19. (1)5x (2)13x(3)1(4)2b20. a3a−b9 3521. 设上山时的速度为x千米每小时,则下山的速度为(x+1)千米每小时小张从山脚出发到回到山脚,总用时为:7小时30分,即7.5小时由题意得12 x +12x+1+0.5=7.5整理得7x2−17x−12=0解得x1=3,x2=−47 (舍)经检验,x=3是原方程的解故小张上山时的速度是3千米每小时22. k=−223. amb。
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)一、选择题1.向东行驶2km ,记作2km +,向西行驶7km 记作( )A .7km +B .7km -C .2km +D .2km -2.有理数中,负数的个数为( )A .1B .2C .3D .43.下列四个数中,绝对值最小的数是( )A .-3B .0C .1D .24.绍兴市1月份某天最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A .2 ℃B .8℃C .8℃D .2℃5.2023的倒数是( )A .-2023B .3202C .12023-D .120236.下列各组数中,互为相反数的是( )A .1||3-和13-B .1||3-和3-C .1||3-和13D .1||3-和37.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a b >B .0ab >C .a b >D .0a -<8.若0a b +>,且0ab <,则以下正确的选项为( )A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大9.宁波文创港三期已正式开工建设,总建筑面积约2272000m ,272000用科学记数法表示,正确的是( ) A .427.210⨯B .52.7210⨯C .42.7210⨯D .60.27210⨯10.下列说法不正确的是( )A .近似数1.8与1.80表示的意义不同B .0.0200精确到0.0001C .5.0万精确到万位D .1.0×104精确到千位二、填空题11.如果向西走30米记作30-米,那么20+米表示 . 12.数a ,b 在数轴上对应点的位置如图所示,化简a-|b-a|= .13.某地一天早晨的气温是2C ︒-,中午温度上升了9C ︒,则中午的气温是 ℃. 14.近似数68.4万精确到 位.三、计算题15.计算(1)-7-11+4-(-2) (2)(-2)×(-5)÷(-5)+9 (3)()155********⎛⎫-+-⨯-⎪⎝⎭ (4)()242512339--⨯---÷⎡⎤⎣⎦. 四、解答题16.把下列有理数填入它属于的集合的圈内:17.已知:〡a 〡=3,b 是最大的负整数,求a-b 的值。
最新人教版七年级数学上册单元测试题全套及答案
最新人教版七年级数学上册单元测试题全套及答案人教版七年级数学第1章有理数同步检测试题(全卷总分100分)姓名得分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作()A.7 ℃B.-7 ℃C.2 ℃D.-12 ℃2.在数轴上表示数-1和2 017的两点分别为A和B,则A,B两点之间的距离为()A.2 016 B.2 017C.2 018 D.2 0193.|-6|的相反数是()A.6 B.-6C.16D.-164.在数轴上与表示-2的点之间的距离是5的点表示的数是()A.3 B.-7C.-3 D.-7或35.第31届夏季奥运会将于2016年8月5日~21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450 000套,450 000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106D.4.5×1066.用四舍五入法按要求对0.050 49分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)7.下列说法中,正确的是()A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身8.下列各数:-(-2),(-2)2,-22,(-2)3,负数的个数为()A.1 B.2C.3 D.49.已知有理数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<-a<bC.1<|a|<b D.-b<a<-110.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m,如图,第一棵树左边5 m处有一个路牌,则从此路牌起向右510 m~550 m之间树与灯的排列顺序是()二、填空题(每小题3分,共18分)11.-1.5的倒数是.12.近似数2.12×104精确到位.13.如图是一个简单的数值运算程序,当输入x的值为-2时,则输出的数值为.输入x→×(-1)→-4→输出14.已知(x-3)2+|y+5|=0,则xy-y x=.15.定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=.16.找出下列各图形中数的规律,依此,a的值为.三、解答题(共52分)17.(6分)已知下列各数:0.5,-2,2.5,-2.5,0,-1.4,4,-1 3.(1)在数轴上表示以上各数;(2)用“<”号连接以上各数;(3)求出以上各数的相反数和绝对值.18.(16分)计算:(1)1÷(-1)+0÷4-5×0.1×(-2)3(2)-32-(-8)×(-1)5÷(-1)4(3)[212-(79-1112+16)×36]÷5(4)317×(317-713)×722÷112119.(6分)一辆汽车沿着南北向的公路往返行驶,某天早上从A地出发,晚上最后到达B地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.(1)B地在A地何方?相距多少千米?(2)如果汽车行驶每千米耗油0.335升,那么这一天共耗油多少升?20.(8分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 21.(8分)阅读下面材料:因为11×2=1-12,12×3=12-13,13×4=13-14,…,119×20=119-120,所以11×2+12×3+13×4+…+119×20=1-12+12-13+13-14+…+119-120=1-120=1920.请你用上面的方法计算:12×3+13×4+14×5+…+12 017×2 018.22.(8分)请你先看懂下面给出的例题,再按要求计算. 例:若规定⎪⎪⎪⎪⎪⎪a 1 b 1a 2 b 2=a 1b 2-a 2b 1,计算:⎪⎪⎪⎪⎪⎪324 3. 解:依规定,则⎪⎪⎪⎪⎪⎪3 24 3=3×3-4×2=1. 问题:若规定⎪⎪⎪⎪⎪⎪a 1b 1c 1a 2b 2c 2a 3b 3c 3=a 1b 2c 3+a 2b 3c 1+a 3b 1c 2-a 3b 2c 1-a 1b 3c 2-a 2b 1c 3. 请你计算:⎪⎪⎪⎪⎪⎪3 1 -115 -2 3-214 -5.人教版七年级数学 第1章 有理数 同步检测试题参考答案一、选择题(每小题3分,共30分) 1.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作(B ) A .7 ℃ B .-7 ℃C .2 ℃D .-12 ℃2.在数轴上表示数-1和2 017的两点分别为A 和B ,则A ,B 两点之间的距离为(C )A .2 016B .2 017C .2 018D .2 019 3.|-6|的相反数是(B )A .6B .-6C .16D .-164.在数轴上与表示-2的点之间的距离是5的点表示的数是(A ) A .3 B .-7C .-3D .-7或35.第31届夏季奥运会将于2016年8月5日~21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450 000套,450 000这个数用科学记数法表示为(B ) A .45×104 B .4.5×105 C .0.45×106 D .4.5×1066.用四舍五入法按要求对0.050 49分别取近似值,其中错误的是(C ) A .0.1(精确到0.1) B .0.05(精确到百分位) C .0.05(精确到千分位) D .0.050(精确到0.001) 7.下列说法中,正确的是(D ) A .0是最小的有理数B .任一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身8.下列各数:-(-2),(-2)2,-22,(-2)3,负数的个数为(B ) A .1 B .2 C .3 D .49.已知有理数a ,b 在数轴上的位置如图所示,下列结论错误的是(A )A .|a|<1<|b|B .1<-a <bC .1<|a|<bD .-b <a <-110.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m ,如图,第一棵树左边5 m 处有一个路牌,则从此路牌起向右510 m ~550 m 之间树与灯的排列顺序是(B )二、填空题(每小题3分,共18分) 11.-1.5的倒数是32 .12.近似数2.12×104精确到百位.13.如图是一个简单的数值运算程序,当输入x 的值为-2时,则输出的数值为-2.输入x →×(-1)→-4→输出14.已知(x -3)2+|y +5|=0,则xy -y x =110.15.定义一种新运算:a ⊗b =b 2-ab ,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=-9. 16.找出下列各图形中数的规律,依此,a 的值为226.三、解答题(共52分)17.(6分)已知下列各数:0.5,-2,2.5,-2.5,0,-1.4,4,-13. (1)在数轴上表示以上各数; (2)用“<”号连接以上各数;(3)求出以上各数的相反数和绝对值. 解:(1)略.(2)-2.5<-2<-1.4<-13<0<0.5<2.5<4.(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,13.绝对值分别为0.5,2,2.5,2.5,0,1.4,4,13.18.(16分)计算: (1)1÷(-1)+0÷4-5×0.1×(-2)3 解:原式=-1+0+4=3(2)-32-(-8)×(-1)5÷(-1)4 解:原式=-9-(-8)×(-1)÷1=-9-8=-17(3)[212-(79-1112+16)×36]÷5解:原式=[212-(79×36-1112×36+16×36)]÷5=[212-(28-33+6)]÷5=(212-1)÷5=310(4)317×(317-713)×722÷1121解:原式=227×722×(227-223)×2122=227×2122-223×2122 =3-7 =-4.19.(6分)一辆汽车沿着南北向的公路往返行驶,某天早上从A 地出发,晚上最后到达B 地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5. (1)B 地在A 地何方?相距多少千米?(2)如果汽车行驶每千米耗油0.335升,那么这一天共耗油多少升? 解:(1)18.3-9.5+7.1-14-6.2+13-6.8-8.5=-6.6(千米). 因此B 地在A 地南边,相距6.6千米.(2)18.3+9.5+7.1+14+6.2+13+6.8+8.5=83.4(千米). 83.4×0.335=27.939(升). 答:这一天共耗油27.939升.20.(8分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 解:(1)3-(-3)=6(千克). (2)-3×1+(-2)×4+(-1)×2+0×3+1.5×2+3×8=14(千克). 答:总计超过14千克. (3)2.6×(25×20+14)≈1 336(元).答:出售这20筐白菜可卖1 336元.21.(8分)阅读下面材料:因为11×2=1-12,12×3=12-13,13×4=13-14,…,119×20=119-120, 所以11×2+12×3+13×4+…+119×20=1-12+12-13+13-14+…+119-120=1-120=1920.请你用上面的方法计算:12×3+13×4+14×5+…+12 017×2 018.解:原式=12-13+13-14+14-15+…+12 017-12 018=12-12 018 = 1 009-12 018=5041 009. 22.(8分)请你先看懂下面给出的例题,再按要求计算. 例:若规定⎪⎪⎪⎪⎪⎪a 1 b 1a 2 b 2=a 1b 2-a 2b 1,计算:⎪⎪⎪⎪⎪⎪324 3. 解:依规定,则⎪⎪⎪⎪⎪⎪3 24 3=3×3-4×2=1. 问题:若规定⎪⎪⎪⎪⎪⎪a 1b 1c 1a 2b 2c 2a 3b 3c 3=a 1b 2c 3+a 2b 3c 1+a 3b 1c 2-a 3b 2c 1-a 1b 3c 2-a 2b 1c 3.请你计算:⎪⎪⎪⎪⎪⎪ 3 1 -115 -2 3-21 4 -5. 解:原式=3×(-2)×(-5)+15×4×(-1)+(-21)×1×3-(-21)×(-2)×(-1)-3×4×3-15×1×(-5)=30-60-63+42-36+75 =-12.人教版七年级数学 第2章 整式的加减 同步检测试题(全卷总分100分) 姓名得分一、选择题(每小题3分,共30分)1.下列式子符合书写要求的是( )A .-xy 22 B .a -1÷bC .413xy D .ab×3 2.在下列表述中,不能表示“4a”意义的是( ) A .4的a 倍 B .a 的4倍 C .4个a 相加 D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( ) A .-x 2,12x ,1 B .-x 2,-12x ,-1 C .x 2,12x ,1 D .x 2,-12x ,-14.若-3x m y 2与2x 3y 2是同类项,则m 等于( ) A .1 B .2 C .3 D .4 5.计算3a 2-a 2的结果是( ) A .4a 2 B .3a 2 C .2a 2 D .3 6.-[a -(b -c)]去括号正确的是( ) A .-a -b +c B .-a +b -c C .-a -b -c D .-a +b +c7.数x 、y 在数轴上对应点的位置如图所示,则化简|x +y|-|y -x|的结果是( )A .0B .2xC .2yD .2x -2y8.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 为( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19.已知整式6x -1的值是2,y 2的值是4,则(5x 2y +5xy -7x)-(4x 2y +5xy -7x)=( )A .-12 B.12C.12或-12 D .2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )A .22B .24C .26D .28 二、填空题(每小题3分,共18分)11.单项式7πa3b2的系数是,次数是.12.计算:3a2-a2=.13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a元,则该商店卖出一个篮球可获利润元.14.-54a2b-43ab+1是三次三项式,其中常数项是1,最高次项是,二次项系数是.15.若3a m+2b4与-a5b n-1的和仍是一个单项式,则m+n=.16.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为.三、解答题(共52分)17.(16分)化简:(1)(x2-7x)-(3x2-5-7x);(2)(4ab-b2)-2(a2+2ab-b2);(3)x-[y-2x-(x-y)];(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.19.(7分)已知A=3x2+3y2-5xy,B=4x2-3y2+2xy,当x=-1,y=1时,计算2A-3B的值.20.(7分)观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④;⑤;(2)通过猜想,写出与第n个图形相对应的等式.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款0.9x 元,当x 大于或等于500时,他实际付款元(用含x 的式子表示);(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的式子表示:两次购物王老师实际付款多少元?人教版七年级数学 第2章 整式的加减 同步检测试题参考答案一、选择题(每小题3分,共30分)1.下列式子符合书写要求的是( A )A .-xy 22 B .a -1÷bC .413xyD .ab×32.在下列表述中,不能表示“4a”意义的是( D )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( B ) A .-x 2,12x ,1 B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-14.若-3x m y 2与2x 3y 2是同类项,则m 等于( C )A .1B .2C .3D .45.计算3a 2-a 2的结果是( C )A.4a2B.3a2C.2a2D.36.-[a-(b-c)]去括号正确的是(B)A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c7.数x、y在数轴上对应点的位置如图所示,则化简|x+y|-|y-x|的结果是(C)A.0 B.2xC.2y D.2x-2y8.若A=3x2-4y2,B=-y2-2x2+1,则A-B为(C)A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+19.已知整式6x-1的值是2,y2的值是4,则(5x2y+5xy-7x)-(4x2y+5xy-7x)=(C)A.-12 B.12C.12或-12D.2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是(C)A.22 B.24C.26 D.28二、填空题(每小题3分,共18分)11.单项式7πa3b2的系数是7π,次数是5.12.计算:3a2-a2=2a2.13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a元,则该商店卖出一个篮球可获利润0.12a元.14.-54a2b-43ab+1是三次三项式,其中常数项是1,最高次项是-54a2b,二次项系数是-4 3.15.若3a m+2b4与-a5b n-1的和仍是一个单项式,则m+n=8.16.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为[10(n-1)+5]×[10(n-1)+5]=100n(n -1)+25.三、解答题(共52分)17.(16分)化简:(1)(x2-7x)-(3x2-5-7x);解:原式=x2-7x-3x2+5+7x=-2x2+5.(2)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=b2-2a2.(3)x-[y-2x-(x-y)];解:原式=x-y+2x+x-y=4x-2y.(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).解:原式=(x-y)+2(x+y)=x-y+2x+2y=3x+y.18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;解:原式=4a2-2a-6-4a2+4a+10=2a+4.当a=-1时,原式=2.(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.解:原式=-12a -2a +b 2-32a +13b 2 =-4a +43b 2. 当a =-2,b =32时,原式=11.19.(7分)已知A =3x 2+3y 2-5xy ,B =4x 2-3y 2+2xy ,当x =-1,y =1时,计算2A -3B 的值.解:因为A =3x 2+3y 2-5xy ,B =4x 2-3y 2+2xy ,所以2A -3B =6x 2+6y 2-10xy -12x 2+9y 2-6xy =-6x 2+15y 2-16xy , 当x =-1,y =1时,原式=-6+15+16=25.20.(7分)观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3; ②4×1+1=4×2-3; ③4×2+1=4×3-3;④4×3+1=4×4-3;⑤4×4+1=4×5-3;(2)通过猜想,写出与第n 个图形相对应的等式.解:4(n -1)+1=4n -3.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款530元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款0.9x 元,当x 大于或等于500时,他实际付款(0.8x +50)元(用含x 的式子表示);(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的式子表示:两次购物王老师实际付款多少元?解:0.9a +0.8(820-500-a)+450=0.9a +656-400-0.8a +450=0.1a +706(元).人教版七年级数学 第3章 一元一次方程 同步检测试题(全卷总分100分) 姓名得分一、选择题(每小题3分,共30分)1.已知下列方程:①13x =2;②1x =3;③x 2=2x -1;④2x 2=1;⑤x =2;⑥2x +y =1.其中一元一次方程的个数是( )A .2B .3C .4D .52.下列方程中变形正确的是( )①3x +6=0变形为x +2=0;②2x +8=5-3x 变形为x =3;③x 2+x 3=4去分母,得3x +2x =24;④(x +2)-2(x -1)=0去括号,得x +2-2x -2=0.A .①③B .①②③C .①④D .①③④3.当x =3时,式子3x 2-5ax +10的值为7,则a 等于( )A .2B .-2C .1D .-14.若x =2是方程ax +bx +6=0的解,则a +b 的值是( )A .3B .6C .-3D .-65.解方程5x +12-2x -16=1时,去分母后,正确的结果是( )A .15x +3-2x -1=1B .15x +3-2x +1=1C .15x +3-2x +1=6D .15x +3-2x -1=66.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=447.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .x 3+3(100-x)=100B .x 3-3(100-x)=100C .3x +100-x 3=100D .3x -100-x 3=1008.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A .240元B .250元C .280元D .300元9.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A .不赚不亏B .赚5元C .亏5元D .赚10元10.如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是( )A .39B .43C .57D .66二、填空题(每小题4分,共20分)11.已知是关于x 的一元一次方程,则m=.12.已知x =23是方程3(m -34x)+32x =5m 的解,则m =.13.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜袋.14.现规定一种新的运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么⎪⎪⎪⎪⎪⎪3 32-x 4=9时,x =. 15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(共50分)16.(16分)解方程:(1)-2x -32=x +13;(2)3(5x -6)=3-20x ;()0332=-+--m x mm(3)x-32+2x-13=x-1;(4)0.1x-0.20.02-x+10.5=3.17.(8分)已知方程2x-35=23x-3与方程3n-14=3(x+n)-2n的解相同,求(2n-27)2的值.18.(8分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)如果要使水面上升到50 cm,应放入大球、小球各多少个?19.(10分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂生产三种不同型号的电视机,出厂价分别为甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请求出商场有哪几种进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?20.(8分)在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,看见门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(16人以上含16人):按成人票价六折优惠”。
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.根据有关数据,目前全球稀土资源储量为1.2亿吨,而中国储量为4400万吨,居世界第一位,请用科学记数法表示44000000为( )A .0.04×109B .0.04×107C .4.4×107D .44×1062.用四舍五入法按要求对1.8040分别取近似值,其中错误的是( )A .1.8(精确到0.1)B .1.80(精确到0.01)C .1.80(精确到千分位)D .2(精确到个位)3.甲、乙、丙三地的海拔高度分别为30米,-25米和-10米,那么最高的地方比最低的地方高( )A .25米B .40米C .15米D .55米4.已知a =|5|,|b|=8,且满足a+b <0,则a ﹣b 的值为( )A .13或3B .11或3C .3D .﹣35.如果|a +2|+(b −1)2=0,那么(a +b )2023的值是( )A .3B .1C .−1D .−1或16.有理数a,b 在数轴上对应的位置如图所示,则下列选项错误的是( )A .a +b <0B .a −b >0C .−b a >0D .ab <07.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( )A .(12)6mB .(12)7mC .(12)8mD .(12)12m 8.|13−12|+|14−13|+|15−14|+⋅⋅⋅+|110−19|的值是( )A .−23B .23C .−25D .25 9.根据以下程序,当输入x =1时,输出的结果为( )A .﹣3B .﹣1C .2D .810.规定一种运算:aΨb =a (b +a )(a −b ),如2Ψ3=2×(3+2)×(2−3)=−10,则3Ψ4=( )A .7B .12C .−16D .−21 二、填空题11.比较大小:−(−5)2 −|−62|.12.近似数7.200万精确到 位.13.若|x|=|−2|,|y −3|=2且|x −y|=y −x 则x +y = .14.根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式(每个数字只能用一次),使12,−12,3,−1的运算结果等于24: (只要写出一个算式即可 )15.数学家发明了一个魔术盒,当任意数对(a ,b )放入其中时,会得到一个新的数:a 2+b +1.将数对(﹣3,2)放入其中得到数m = .16.已知a 、b 、c 都是有理数,其中a 为正数,若代数式abc |abc|的值为−1,则代数式|a|a +|b|b +|c|c 的值为 .17.进制也就是进位计数制,是人为定义的带进位的计数方法.我们常用的十进制是逢十进一,如4652可以写作4×103+6×102+5×101+2×100,数要用10个数字组成:0、1、2、3、4、5、6、7、8、9.在小型机中引入了八进制,只要八个数字:0、1、2、3、4、5、6、7,如八进制中174可以写作1×82+7×81+4×80等于十进制的数124.将八进制中的数1234等于十进制中数应为 .(请直按写结果)三、解答题18.计算:(1)(−38)×(−112)÷(−214); (2)(−2)2×5−(−2)3÷4;(3)2×(−3)3−4×(−3)+15; (4)−14+(−5)×[(−1)3+2]−(−3)2÷(−12).19.元朝时期人们已经把正负数作为一个专门的数学研究科目,朱世杰在《算学启蒙》一书中还写出了正负数的乘法法则,这是人们对正负数研究迈出的新的一步.小云学习了有理数的运算后,在计算(−5)−(−5)×110÷110×(−5)时,她的解法如下:解:原式=−5−(−12)÷(−12)① =−5−1①=−6①请回答:(1)小云的解法有错误,错误处是______(填序号),错误原因是__________________;(2)请写出正确的解答过程.20.一只小虫从某点O 出发在一条直线上爬行. 规定向右爬行为正,向左为负. 小虫共爬行5次,小虫爬行的路程依次为:(单位:厘米)−5,−3,+10,−4,+8.(1)小虫最后在出发点的左边还是右边?离出发点多少厘米?(2)若小虫爬行速度保持不变,共用了6分钟,请问小虫的爬行速度是多少?21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价26元,则出售这8筐白菜可卖多少元?22.金秋,学校的劳动实践果园里苹果挂满枝头,老师组织七年级同学一共采摘了10袋苹果,每袋质量各不相同,为了计算简便,以每袋5千克为标准,超过标准质量的记作正数,不足的记作负数,所做记录如下表:袋子编号12345678910记录结果+0.8−1−0.3+1.1+0.7+0.2−0.4+1−0.7−1.3(1)在摘得的10袋苹果中,质量最多和最少的一袋各是多少千克?(2)七年级同学共摘得苹果多少千克?23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”(−3)÷(−3)÷(−3)÷(−3)记作(−3)④,读作“−3的圈4次方”,一般地,把a÷a÷a⋅⋅⋅÷a(n个a)(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=________,(−12)③=________;(2)关于除方,下列说法错误的是________:A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1的圈n次方都等于1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(−3)的圈4次方=________5的圈5次方=________;(−12)的圈6次方=________(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;(3)算一算:24÷23+(−8)×2③.参考答案1.C2.C3.D4.A5.C6.B7.C8.D9.C10.D11.>12.十13.7或3或−114.3×(−12)×(−1)−12=2415.1216.117.668.18.(1)−14;(2)22;(3)-27;(4)1219.运算顺序错误20.(1)右边,6厘米(2)5厘米/分钟21.(1)24.5(2)这8筐白菜总计不足5.5千克.(3)出售这8筐白菜可卖5057元.22.(1)质量最多的一袋是6.1千克,最少的一袋是3.7千克;(2)七年级同学共摘得苹果50.1千克.23.初步探究(1)12,−2;(2)C;深入思考(1)(−13)2,(15)3,(−2)4;(2)(1a)n−2(3)−1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 自测试卷
一、填空题(每空3分,共27分)
1. 数学竞赛成绩75分以上为优秀, 老师将某一小组三名同学的成绩以 75分为标准简记为:10,5,0+-,这三名同学的实际成绩是______ , _______ , __________.
2. __________ , ___________ 和 _________称为数轴的三要素.
3. 数轴上与表示﹣2点相距3个单位的点所表示的数是________
4. 大于1-且不大于2的整数有________ 个, 它们是________.
5. 在有理数中最大的负整数是________, 最小的正整数是________, 最小的非负数是_______.
6. 28.40精确到____位,有____个有效数字;42.99810⨯保留3个有效数字为 .
7. 若a =2
13-, 则∣a ∣=________; 若∣a ∣=3, 则a =_______ 8. 用“>”“=”或“<”号填空:
(1)
75 ____ 7
6-(2) -π ____ -3.14(3) -(31-) ____ -(-∣31-∣) 9.已知23a b c m ++=, 34a b c m ++=,则b 和c 的关系为 二、判断题(每题3分,共12分)
1. 只要一个数的前面带有负号, 这个数就是负数. ( )
2. 0米表示没有高度. ( )
3. 数轴上的所有点都表示有理数. ( )
4. 在数轴上,3和4之间有无数个表示有理数的点. ( )
三、选择题(每题3分,共15分)
1. 关于数“0”,以下各种说法中,错误的是 ( )
A. 0是整数
B. 0是偶数
C. 0不是自然数
D. 0既不是正数也不是负数
2. 下列说法中, 正确的是( )
A. 有最大的整数
B. 有最小的负数
C. 有最小的正数
D. 有最小的正整数
3. 不大于3-的非负整数有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
4. 对于数轴, 下列说法正确的是( )
A. 数轴是一条规定了原点, 正方向和长度单位的线段
B. 离原点越远的有理数越大
C. 数轴上右边的数总比左边的数大
D. 数轴的原点必须取在所画数轴的正中间
5. 下列说法中,正确的个数是 ( )
①几个因数相乘的积为负数, 其中必有奇数个负因数
②一个因式中有奇数个负因数, 其积为负数
③数a 的倒数为1a
④两个有理数(0除外)比较大小时, 倒数大的那个数反而小
A. 0
B. 1
C. 2
D. 3
四、 (每空2分,共12分)
把下列各数分别填在相应的大括号里: 387,,0,1,,, 1.2,523,0.01,0.2847
π•--- 自然数集合: { ···};
整数集合:{ ···}
分数集合:{ ···};
正有理数集合:{ ···}
负有理数集合:{ ···};
有理数集合:{ ···}
五、计算题(每题7分,共14分)
1.3315221
215201283⎡⎤⎛⎫⎛⎫+÷-÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2.1111113579612203042++++
六、解答题(每题10分,共20分)
1. ∣x ∣=8,∣y ∣=6,求x +y 的值;若∣x ∣=3,∣y ∣=5,且∣x -y ∣=y -x , 再求x +y 的值;
2. 已知n 是正整数,a -2b = -1
求()
()()()121212222252223+-----+-+-n n n n b a b a a b b a 的值
第二章 自测试卷
一、填空题
1. 85,70,75
2. 原点,正方向,单位长度
3.-5,1
4. 3个 0,1,2
5. -1, 1 , 0
6.百分 ,4,43.0010⨯
7. 132
, ±3
8.>,<,=
9. 互为相反数
二.判断: × × × √
三.选择题:
1. C
2. D
3. D
4. C
5. B
四.
自然数集合:{7,0…}
整数集合: {7,0,-1,523…}
分数集合: {38,, 1.2,0.01,0.2847
•--…} 正有理数集合:{87,,523,0.01,0.287
•…} 负有理数集合:{3,1, 1.24
---…} 有理数集合:{38,1, 1.2,7,,523,0.01,0.28,047
•---…} 五.1.307 2.52514 六. 1. 2或-2或14或-14;8或2
2. 2
小结与思考
一、基础训练
1.在有理数中,整数包括 ;分数包括 .
2.3的相反数是 ,213
-的倒数是 . 3.绝对值等于3的数是 ,平方为
169的数是 . 4.长为2个单位长度的木条放在数轴上,最多能覆盖 个整数点.
5.三峡水库设计总容量约为39 000 000 000立方米,这个总容量用科学记数法表示应为 立方米.
二、典型例题
1.计算:(1)()
()200820090.254-⨯- (2)22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭
2.已知:x 是最小的正整数,y ,z 是有理数,并且有()2232y x z +++=0,求式子2244
xy z x y +-++的值.
三、拓展提升
有若干个数,第1个数记为1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a .若112
a =-,从第2个数起,每个数都等于1与它前面的那个数的差的倒数.试求2a 、3a 、4a 的值,并推断2007a 、2008a 的值,写出推断过程.
四、课后作业
1.计算:
(1) ()()2321235(5)⎡⎤-÷-+-÷-⎣⎦
(2) ()()()335423102---÷-+⨯-
(3) ()244113131112244283
4⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4) ()()423116
430.443
46⎧⎫⎡⎤⎛⎫-⨯÷--⨯-÷--⎨⎬ ⎪⎢⎥⎣⎦⎝⎭⎩⎭
2.如果()22110x y z +-++=,则345x y z yz z -+++= . 3.已知a a =-,化简2122a a ---= .
4.a 、b 为有理数,如果 a+b>0,a-b<0,ab<0,则a 0,b 0, a .
5.比较大小56- 67
-, --()6.3--⎡⎤⎣⎦, 4102 6.若x 、y 互为相反数,p 、q 互为倒数,则代数式22x pq y -+的值是 .
7.绝对值小于126而大于26的整数共有 个.
8.有一组数:2.5,3,122
-,-1.5,0,()301-,()22-, 3.5-- (1)画出一条数轴,并用数轴上的点表示各数;
(2)把这些数用“<”连接起来.
小结与思考
一、基础训练
1.正整数、负整数和零 正分数、负分数
2.-3,35-
3.±3,43±
4. 3
5. 103.910⨯
二、典型例题
1.(1)-4 (2)
1120 21914
- 三、
23,3,12-,3,12- 四、课后作业
1.(1)-3 (2)15 (3)2 (4)3
2.-11
3. -1
4. < > <
5. > = <
6. -1
7. 198
8. 3.5--<12
2-<-1.5<0<()301-<2.5<3<()22-。