数学物理方程5
数学物理方程与特征函数-05
0 x l,t 0 t0 0 xl
n
n
l
2
,
n
1,2,3,
Xn
Bn sin
n
l
x
T a2 1 T 0
Tn
a
2
n 2
l2
2
1Tn
0
T A e
1
a
2 n 2 l2
2
t
n
n
un
X nTn
A e
1
a
2n2 l2
n
2
t
Bn
sin
n l
x
C e
1
a
2n2 l2
2
n
t
sin
n l
0
n
n
vn (t) Acosa l t B sin a l t
n2
vn (t) 0
v2(t)
a2
4 2
l2
v2 (t)
sin
2a
l
t
2u u(t02,
t)
a
2 2u
x 2 u (l , t )
f( 0,
x,
t
)
,
u ( x,0)
u ( x,0) t
0,
0 x l,t 0
u
vn (t) sin
n 1
n
l
x
t0 0 xl
v n (t )
a2
n 2
l2
2
vn (t)
f n (t)
0
u(x,0)
vn (0) sin
n1
n
l
x0
u ( x,0) t
vn (0) sin
数学物理方程_定解问题
根据边界条件确定任意函数 f:
令 故
规定,当
时
4、定解问题是一个整体
达朗贝尔公式的求解过程,与大家熟知的常 微分方程的求结果成完全类似。
但遗憾的是,绝大多数偏微分方程很难求出 通解;即是求出通解,用定解条件确定其中待 定函数往往更为困难。这说明,达朗贝尔公式 不适用于普遍的数学物理定解问题的求解?
(7.1.8)
称式(7.1.8)为弦的自由振动方程。
(2) 如果在弦的单位长度上还有横向外力 作用,则式(7.1.8)应该改写为
(7.1.9)
式中
称为力密度,为 时刻作用于
处单位质量上的横向外力
式(7.1.9)称为弦的受迫振动方程.
2、 均匀杆的纵振动
一根杆,只要其中任一小段做纵向移动,必然使 它的邻段压缩或伸长,这邻段的压缩或伸长又使 它自己的邻段压缩或伸长。这样,任一小段的纵 振动必然传播到整个杆,这种振动的传播是纵波.
泊松方程和拉普拉斯方程的定解条件不包含初始条件, 而只有边界条件. 边界条件分为三类:
1、在边界上直接给定未知函数 , 即为第一类边界条件.
2、在边界上给定未知函数导数的值,即为第二类边界条件.
3、在边界上给定未知函数和它的导数的某种线性组合, 即第三类边界条件.
第一、二、三类边界条件可以统一地写成
第二类边界条件 规定了所研究的物理量在边界外法线方向上方向导数 的数值
u n
x0 , y0 ,z0
f (x0, y0, z0,t)
(7.2.3)
第三类边界条件 规定了所研究的物理量及其外法向导数的线性组合在 边界上的数值
(7.2.4)
其中 是时间 的已知函数, 为常系数.
7.2.2 泊松方程和拉普拉斯方程的定解条件
数学物理方程第五章_傅里叶变换
阜师院数科院
2.奇函数和偶函数的傅里叶展开
sin kx l
是奇函数,cos
kx l
是偶函数。
故 奇函数 f(z) 有
f
(x)
bk
k 1
sin
kx
l
,
其中
bk
1 l
l l
f ( )sin
k l
d .
偶函数 f(z) 有
f
(x)
a0
k 1
ak
cos
kx ,
l
其中
ak
1 kl
l f ( ) cos k
0.
(5.1.3) (5.1.4)
因此
akbk11lk l
l l l
f
l
f ( ) cos k d l
( ) sin k d. l
,
此为傅里叶系数
(ห้องสมุดไป่ตู้.1.5)
其中
k
2 1
(k 0) (k 0)
此外,三角函数族还有完备性,即这个函数族足够展开任何周期函数。
狄里希利定理
函数和级数并不完全是一个东西,例如幂级数就有收 敛域的问题。故必须讨论它们在什么条件下完全一致
i kx
f (x) cke l ,
k
其中
ck
1 2l
l
f
(
i
)[e
kx l
]*
d
.
l
2i
例 矩形波
f
(x)
1 1
(2m , (2m 1) ) ((2m 1) ,2m )
f (x) ck eikx , k
1
ck 2
f ( )eikxd 1
数学物理方程习题解答案
数学物理方程习题解答习题一1,验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。
证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =−⋅⋅=−+++−⋅−=−=++=−⋅⋅=−+++−⋅−=−=++−−+=+=++所以(,)u x y =0xx yy u u +=的解。
(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=−⋅所以sin sin 0xxxx yy u u e y e y +=−=(,)sin x u x y e y =是方程0xx yy u u +=的解。
2,证明:()()u f x g y =满足方程0xy x y uu u u −=其中f 和g 都是任意的二次可微函数。
证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''−=⋅−⋅⋅=得证。
3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u −+= 的通解。
数学物理方程 陈才生主编 课后习题答案 章
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
数学物理方程-第五章格林函数法[整理版]
第五章 格林函数法在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用.§5⋅1 格林公式在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广.设Ω为3R 中的区域,∂Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体. 如()10()()()()u C C C C ∈Ω⋂ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去.如将(,,)P x y z 简记为P ,(,,)P x y z x ∂∂简记为Px∂∂或x P 等等.设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式()P Q RdV Pdydz Qdydx Rdxdy x y z Ω∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.1)或者()(cos cos cos )P Q R dV P Q R ds x y z αβγΩ∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.2)如果引入哈米尔顿(Hamilton )算子: (,,)x y z∂∂∂∇=∂∂∂,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式⎰⎰⎰⎰⎰∂⋅=⋅∇ΩΩds n F dv F(1.3)其中(cos ,cos ,cos )n αβγ=为∂Ω的单位外法向量.注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R =时,其运算定义为(,,)(,,),F P Q R x y zP Q Rx y z∂∂∂∇⋅=⋅∂∂∂∂∂∂=++∂∂∂形式上相当于两个向量作点乘运算,此即向量F 的散度div F. 而作用于数量函数(,,)f x y z 时,其运算定义为(,,)(,,)f f ff f x y z x y z∂∂∂∂∂∂∇==∂∂∂∂∂∂,形式上相当于向量的数乘运算,此即数量函数f 的梯度grad f .设(,,)u x y z ,2(,,)()v x y z C ∈Ω,在(1.3)中取F u v =∇得()u v dV u v nds Ω∂Ω∇⋅∇=∇⋅⎰⎰⎰⎰⎰(1.4)直接计算可得v u v u v u ∇∇+=∇⋅∇∆)( (1.5)其中xx yy zz v v v v ∆=++. 将(1.5)代入到(1.4)中并整理得vu vdV uds u vdV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.6)(1.6)称为Green 第一公式.在(1.6)中将函数u ,v 的位置互换得uv udV vds v udV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.7)自(1.6)减去(1.7)得()()v uu v v u dV uv ds n nΩ∂Ω∂∂∆-∆=-∂∂⎰⎰⎰⎰⎰ (1.8)(1.8)称为Green 第二公式.设点0(,,)P ξηζ∈Ω,点3(,,)P x y z R ∈,||00P P r P P -==引入函数 001(,)4P PP P r πΓ=,注意0(,)P P Γ是关于六个变元(,,)x y z 和(,,)ξης的函数且00(,)(,)P P P P Γ=Γ. 如无特别说明, 对b 求导均指关于变量(,,)x y z 的偏导数. 直接计算可得00(,)0, P P P P ∆Γ=≠即0(,)P P Γ在3R 中除点0P 外处处满足Laplace 方程.设0ε>充分小使得00(,){(,,) ||}B B P P x y z P P εε==-≤⊂Ω. 记\G B =Ω,则G B ∂=∂Ω⋃∂. 在Green 第二公式中取0(,)v P P =Γ,G Ω=. 由于在区域G 内有0∆Γ=,故有()GGuudV uds n n∂∂Γ∂-Γ∆=-Γ∂∂⎰⎰⎰⎰⎰ 或者()()GBu u udV uds u ds n n n n ∂Ω∂∂Γ∂∂Γ∂-Γ∆=-Γ+-Γ∂∂∂∂⎰⎰⎰⎰⎰⎰⎰ (1.9)在球面B ∂上,021()414P P r n rrrππ∂∂Γ∂Γ=-=-=∂∂∂,因此21(,,)4BBuuds ds u x y z n πε∂∂∂Γ==∂⎰⎰⎰⎰ (1.10)其中(,,)P x y z B ∈∂.同理可得14BBu u ds ds n n πε∂∂∂∂Γ=∂∂⎰⎰⎰⎰(,,)ux y z n ε∂'''=∂ (1.11)其中(,,)P x y z B '''∈∂.将(1.10)和 (1.11)代入到(1.9)中并令0ε+→,此时有(,,)(,,)P x y z P ξηζ→,(,,)0u x y z nε∂'''→∂,并且区域G 趋向于区域Ω,因此可得()(,,)uudV uds u n nξηζΩ∂Ω∂Γ∂-Γ∆=-Γ+∂∂⎰⎰⎰⎰⎰,即(,,)()u u u d s u d V n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (1.12)(1.12)称为Green 第三公式. 它表明函数u 在Ω内的值可用Ω内的u ∆值与边界∂Ω上u 及nu∂∂的值表示.注2 在二维情形,Green 第一公式和Green 第二公式也成立. 而对于Green第三公式, 需要取011(,)ln 2P P rπΓ=,其中0(,)P ξη∈Ω,2(,)P x y R ∈,r =0P P r=0||P P -=此时Green 第三公式也成立.§5⋅2 Laplace 方程基本解和Green 函数基本解在研究偏微分方程时起着重要的作用. 本节介绍Laplace 方程的基本解,并在一些特殊区域上由基本解生成Green 函数,由此给出相应区域上Laplace 方程或Poisson 方程边值问题解的表达式. 下面以Dirichlet 问题为例介绍Laplace 方程的基本解和Green 函数方法的基本思想.5.2.1 基本解设30(,,)P R ξηζ∈,若在点0P 放置一单位正电荷,则该电荷在空间产生的电位分布为(舍去常数0ε)001(,,)(,)4P Pu x y z P P r π=Γ=(2.1)易证: 0(,)P P Γ在30\{}R P 满足0 .u -∆= 进一步还可以证明[1],在广义函数的意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.2)其中0(,)()()()P P x y z δδξδηδζ=---. 0(,)P P Γ称为三维Laplace 方程的基本解.当n =2时,二维Laplace 方程的基本解为0011(,)ln2P PP P r πΓ=(2.3)其中0(,)P ξη,2(,)P x y R ∈,0P Pr =同理可证,0(,)P P Γ在平面上除点0(,)P ξη外满足方程0 u -∆=,而在广义函数意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.4)其中0(,)()()P P x y δδξδη=--.注1 根据Laplace 方程的基本解的物理意义可以由方程(2.2)和(2.4)直接求出(2.1)和(2.3),作为练习将这些内容放在本章习题中. 另外,也可以利用Fourier 变换求解方程(2.2)和(2.4)而得到Laplace 方程的基本解.5.2.2 Green 函数考虑如下定解问题(,,), (,,) (2.5)(,,)(,,), (,,) (2.6)u f x y z x y z u x y z x y z x y z ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩设0(,,)P ξηζ∈Ω,21(,,)()()u x y z C C ∈Ω⋂Ω是(2.5)— (2.6)的解,则由Green 第三公式可得(,,)()u u u ds udV n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (2.7)在公式(2.7)的右端,其中有两项可由定解问题(2.5)—(2.6)的边值和自由项求出,即有uds ds n n ϕ∂Ω∂Ω∂Γ∂Γ=∂∂⎰⎰⎰⎰u d V f d VΩΩΓ∆=-Γ⎰⎰⎰⎰⎰⎰.而在u ds n ∂Ω∂Γ∂⎰⎰中,un ∂∂在边界∂Ω上的值是未知的. 因此须做进一步处理.注2 若要求解Neumann 问题,即将(2.6)中边界条件换为(,,)ux y z nϕ∂=∂.此时,在方程(2.7)右端第二项uds n∂Ω∂Γ∂⎰⎰中,u 在边界∂Ω上的值是未知的,而其余两项可由相应定解问题的边值和自由项求出.如何由(2.7)得到定解问题(2.5)-(2.6)的解?Green 的想法就是要消去(2.7)右端第一项uds n ∂Ω∂Γ∂⎰⎰. 为此,要用下面的Green 函数取代(2.7)中的基本解.设h 为如下定解问题的解0,(,,)(2.8),(,,)(2.9)h x y z h x y z -∆=∈Ω⎧⎨=-Γ∈∂Ω⎩ 在Green 第二公式中取v h =得()h u h udV uh ds n nΩ∂Ω∂∂-∆=-∂∂⎰⎰⎰⎰⎰ 或者0()u hhu ds h udV n n ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.10)将(2.7)和(2.10)相加得(,,)()u Gu Gu ds G udV n n ξηζ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.11)其中0(,)G P P h =Γ+.由(2.2)和(2.8)—(2.9)可得,0(,)G P P 是如下定解问题的解00(,), (,,)(2.12)(,)0, (,,)(2.13)G P P P x y z G P P P x y z δ-∆=∈Ω⎧⎨=∈∂Ω⎩0(,)G P P 称为Laplace 方程在区域Ω的Green 函数.由于G 在∂Ω上恒为零,由(2.11)可得(,,)Gu uds G udV n ξηζ∂ΩΩ∂=--∆∂⎰⎰⎰⎰⎰ Gds GfdV n ϕ∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰. (2.14)因此,若求出了区域Ω的Green 函数0(,)G P P ,则(2.14)便是定解问题(2.5)— (2.6)的解.§5⋅3 半空间及圆域上的Dirichlet 问题由第二节讨论可知,只要求出了给定区域Ω上的Green 函数,就可以得到该区域Poisson 方程Dirichlet 问题的解. 对一般区域,求Green 函数并非易事. 但对于某些特殊区域,Green 函数可借助于基本解的物理意义利用对称法而得出. 下面以半空间和圆域为例介绍此方法.5.3.1 半空间上Dirichlet 问题设{(,,)|0},{(,,)|0}x y z z x y z z Ω=>∂Ω==. 考虑定解问题2(,,),(,,) (3.1)(,,0)(,),(,) (3.2)u f x y z x y z u x y x y x y Rϕ-∆=∈Ω⎧⎨=∈⎩设0(,,),P ξηζ∈Ω则1(,,)P ξηζ-为0P 关于∂Ω的对称点. 若在0P ,1P 两点各放置一个单位正电荷,则由三维Laplace 方程的基本解知,它们在空间产生的电位分别为00111(,)41(,)4P P r P P r ππΓ=Γ=其中0011||,||r P P r P P =-=-. 由于0P 和1P 关于∂Ω对称,且1P ∉Ω,故有01001[(,)(,)](,), (,)(,)0,.P P P P P P P P P P P P δ-∆Γ-Γ=∈Ω⎧⎨Γ-Γ=∈∂Ω⎩即001(,)(,)(,)G P P P P P P =Γ-Γ为上半空间的Green 函数,且有001(,)(,)(,)G P P P P P P =Γ-Γ011114r r π⎛⎫=- ⎪⎝⎭14π⎡⎤= (3.3)直接计算可得3/2222012()()z G Gn zx y ζπξηζ∂Ω=∂∂=-=-∂∂⎡⎤-+-+⎣⎦(3.4)将(3.3)—(3.4)代入到公式(2.14)得(,,)Gu ds Gfd n ξηζϕν∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰ 3/2222001(,)2()() (,)(,,)x y dxdyx y G P P f x y z dxdydzϕζπξηζ∞∞-∞-∞∞∞∞-∞-∞=⎡⎤-+-+⎣⎦+⎰⎰⎰⎰⎰上式便是定解问题(3.1)— (3.2)的解.5.3.2 圆域上Dirichlet 问题设222{(,)|}x y x y R Ω=+<,则222{(,)|}x y x y R ∂Ω=+=. 考虑圆域Ω上的Dirichlet 问题(,), (,) (3.5)(,)(,), (,) (3.6)u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 设0(,)P ξη∈Ω,1(,)P ξη为0(,)P ξη关于圆周∂Ω的对称点,即201,OP OP R =如图3-1所示 . 由于201OP OP R =,因此对任意M ∈∂Ω有01~OP M OMP ∆∆ROP r r MP M P ||010=1P01011||P MPMR r OP r =图3.1因此有0101111ln ln 022||P M PMR r OP r ππ-= (3.7)上式说明函数01001111(,)ln ln22||P P P PR G P P r OP r ππ=- (3.8)在∂Ω上恒为零. 又由于1P ∉Ω,故有000(,)(,),(,)0,.G P P P P P G P P P δ-∆=∈Ω⎧⎨=∈∂Ω⎩即0(;)G P P 是圆域上的Green 函数.引入极坐标(,)P ρθ,设0000(,)(,)P P ξηρθ=,则21100(,)(,)R P P ξηθρ=. 用α表示0OP 与OP 的夹角,则有000cos cos cos sin sin cos()αθθθθθθ=+=-利用余弦定理可得0P P r = (3.9)1P P r =(3.10)将(3.9)和(3.10)代入到(3.8)中并整理得22222000042220002cos()1(,)ln 42cos()R R R G P P R R ρρρρθθπρρρρθθ+--=-+-- (3.11)直接计算可得RG Gn ρρ∂Ω=∂∂=∂∂2222000122cos()R R R R ρπρρθθ-=-+-- . (3.12)记()(cos ,sin )g R R ϕθθθ=,则有00(,)Gu ds Gfd n ρθϕσ∂ΩΩ∂=-+∂⎰⎰⎰ 222022000()()122cos()R d R R πρϕθθπρρθθ-=+--⎰- 22222200042220002cos()1(cos ,sin )ln 42cos()R R R R f d d R R πρρρρθθρθρθρρθπρρρρθθ+--+--⎰⎰(3.13)(3.13)便是定解问题(3.5)—(3.6)的解.注1 当0f =时(3.13)称为圆域上调和函数的Poisson 公式.注2 利用复变函数的保角映射,可以将许多平面区域变换为圆域或半平面.因此,与保角映射结合使用,可以扩大对称法以及Green 函数法的应用范围. 在本章习题中有一些这类题目,Green 函数法更多的应用可查阅参考文献[13].§5⋅4* 一维热传导方程和波动方程半无界问题5.4.1 一维热传导方程半无界问题为简单起见,仅考虑以下齐次方程定解问题20 , 0 , 0 (4.1)(0,)0 , 0 (4.2)(,0)() , 0 t xx u a u x t u t t u x x x ϕ-=<<∞>=≥=<<∞ (4.3)⎧⎪⎨⎪⎩该定解问题称为半无界问题, 这是一个混合问题,边界条件为(4.2). 类似于上节Poisson 方程在半空间和圆域上Dirichlet 问题的求解思想,也要以热方程的基本解为基础,使用对称法求出问题(4.1)—(4.3)的Green 函数,并利用所得到的Green 函数给出该问题的解.一维热传导方程的基本解为224(,)() .x a tx t H t -Γ (,)x t Γ是如下问题的解20, , 0 (4.4)(,0)(), . (4.5)t xx u a u x t u x x x δ⎧-=-∞<<∞>⎨=-∞<<∞⎩相当于在初始时刻0t =,在0x =点处置放一单位点热源所产生的温度分布.若将上面定解问题中的初始条件换为(,0)()u x x δξ=-,只要利用平移变换'x x ξ=-易得此时(4.4)—(4.5)的解为(,)x t ξΓ-.为求解定解问题(4.1)—(4.3),先考虑()()x x ϕδξ=-,其中ξ为x 轴正半轴上的任意一点. 此时,相当于在x ξ=点处置放一单位点热源. 则此单位点热源在x 轴正半轴上产生的温度分布,如果满足边界条件(4.2),它便是(4.1)—(4.3)的解,即为该问题的Green 函数. 为此,设想再在x ξ=-点,此点为x ξ=关于坐标原点的对称点,处置放一单位单位负热源,这时在x ξ=点处置放的单位点热源产生的温度分布(,)x t ξΓ-和在x ξ=-处置放的单位负热源产生的温度分布(,)x t ξ-Γ+在0x =处相互抵消,从而在0x =处的温度恒为零. 因此,问题(4.1)—(4.3)的Green 函数为(,)(,)(,) G x t x t x t ξξξ-=Γ--Γ+ (4.6)利用叠加原理可得原问题的解为(,)() (,)u x t G x t d ϕξξξ∞=-⎰ . (4.7)若将(4.2)中的边界条件换为(0,)()u t g t =或(0,)0x u t =,请同学们考虑如何求解相应的定解问题.5.4.2 一维波动方程半无界问题考虑以下齐次方程定解问题20, 0, 0 (4.8)(0,)0, 0 (4.9)(,0)0, (,0)(), 0 tt xx t u a u x t u t t u x u x x x ψ-=<<∞>=≥==<<∞ (4.10)⎧⎪⎨⎪⎩一维波动方程的基本解(,)x t Γ为1, 2(;) 0, .x ata x t x at ⎧<⎪Γ=⎨⎪≥⎩完全类似于上小节的分析,可得该问题的Green 函数为(,)(,)(,G x t x t x t ξξξ-=Γ--Γ+, (4.11)其中0ξ>. 因此,该定解问题的解便可表示为(,)() (,)u x t G x t d ψξξξ∞=-⎰. (4.12)注意到(,)x t ξΓ-的具体表示式为1, 2(;) 0, x atax t x at ξξξ⎧-<⎪Γ-=⎨⎪-≥⎩类似地有1, 2(;) 0, x ata x t x at ξξξ⎧+<⎪Γ+=⎨⎪+≥⎩将上面两式代入到(4.12)中并整理可得1(), 0 2(,)1(), 0.2x atx atx atat xd x at a u x t d x at a ψξξψξξ+-+-⎧-≥⎪⎪=⎨⎪-<⎪⎩⎰⎰ 若将(4.9)中的边界条件换为(0,)0x u t =,请同学们考虑如何求解相应的定解问题.注1 对一维波动方程半无界问题,除上面使用的Green 函数法以外,也可以用延拓法或特征线法求解[1]. 相比之下,Green 函数法最简单.注2 类似于本章前两节,对一维热传导方程和波动方程初边值问题,也可以建立起解的Green 公式表达式,相当于本章第二节中的(2.14), 并以此为基础而给出上面(4.7)和(4.12)两式的严格证明[2]. 由于本章主要是通过对一些比较简单的偏微分方程定解问题的求解,重点介绍Green 函数法的基本思想和一些特殊区域Green 函数的具体求法,故略去了(4.7)和(4.12)两式的推导过程.习 题 五1.设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(1)uudV ds n Ω∂Ω∂∆=∂⎰⎰⎰⎰⎰.(2)2u u udV uds u dV n Ω∂ΩΩ∂∆=-∇∂⎰⎰⎰⎰⎰⎰⎰⎰.2. 设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题0, (,,)(,,)0, (,,).xx yy zz u u u u x y z u x y z x y z ∆=++=∈Ω⎧⎨=∈∂Ω⎩证明 (,,)0u x y z ≡,并由此推出Poisson 方程Dirichlet 问题解的唯一性.若将定解问题中的边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在Ω中等于什么?Poisson 方程Neumann 问题的解是否具有唯一性?3*设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题(,,)(,,), (,,)(,,)(,,), (,,).u c x y z u f x y z x y z u x y z x y z x y z ϕ-∆+=∈Ω⎧⎨=∈∂Ω⎩其中 (,,)c x y z 在闭域Ω非负有界且不恒为零. 证明或求解以下各题(1) 如果0,(,,), 0,(,,),f x y z x y z ϕ=∈Ω=∈∂Ω证明(,,)0u x y z ≡.(2)如果0,(,,),f x y z =∈Ω而边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在区域Ω中等于什么?4.(1) 验证0∆Γ=,0P P ≠,其中0(,) 3P P n Γ==01(,)22P P n πΓ==(2)设()u u r =, 22y x r +=, 求0,0xx yy u u r +=≠,并且满足(1)0,u =(0,)1B u n ds δ∂∇⋅=-⎰的解, 其中(0,)B δ是以原点为圆心δ为半径的圆形域,n 为(0,)B δ∂的单位外法向量.(3) 设()u u r =, 222z y x r ++=, 求0=++zz yy xx u u u ,0≠r ,并且满足B(0,)lim ()0, 1r u r u nds δ→∞∂=∇⋅=-⎰⎰的解, 其中(0,)B δ是以原点为球心δ为半径的球形域,n为(0,)B δ∂的单位外法向量.5. 设2R Ω⊂有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(,)()u u u ds ud n n ξησ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰ 其中0(,)P ξη∈Ω,0(,)P P Γ如第4题所示.6. 设2R Ω⊂有界区域,∂Ω充分光滑,0(,)P ξη∈Ω,2(,)P x y R ∈,0(,)P P Γ为二维Laplace 方程的基本解. 考虑定解问题(,), (,)(,)(,), (,)u f x y x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 若(,)h x y 是如下定解问题的解00, (,)(,)(,),(,)h x y h x y P P x y ∆=∈Ω⎧⎨=-Γ∈∂Ω⎩证明 若21(,)()()u x y C C ∈Ω⋂Ω,则有(,)Gu ds Gfd n ξηϕσ∂ΩΩ∂=-+∂⎰⎰⎰,其中G h =Γ+.7. 设3R Ω⊂有界区域,∂Ω充分光滑, 考虑定解问题(,,), (,,)(,,), (,,).u f x y z x y z ux y z x y z nϕ-∆=∈Ω⎧⎪∂⎨=∈∂Ω⎪∂⎩ 证明该问题可解的必要条件为0f dV ds ϕΩ∂Ω+=⎰⎰⎰⎰⎰.8*证明上半空间Laplace 方程Dirichlet 问题的Green 函数0(,)G P P 满足020010(,), (,),0, .4P PG P P x y R z P P r π<<∈>≠ 对平面上圆域Laplace 方程Dirichlet 问题的Green 函数0(,)G P P ,给出类似结果.9. 利用对称法求二维Laplace 方程Dirichlet 问题在上半平面的Green 函数, 并由此求解下面定解问题0, (,),0(,0)(), (,).u x y u x x x ϕ-∆=∈-∞∞>⎧⎨=∈-∞∞⎩ 10. 求二维Laplace 方程在下列区域上 Dirichlet 问题的Green 函数.(1) {(,)|}x y x y Ω=>. (2) {(,)|0,0}x y x y Ω=>>.11. 设222{(,)|,0}x y x y R y Ω=+<>. 考虑半圆域Dirichlet 问题0,(,)(,)(,), (,).u x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 应用对称法求区域Ω上的Green 函数.12*求解定解问题0,(,,)(,,)(,,),(,,).u x y z u x y z g x y z x y z -∆=∈Ω⎧⎨=∈∂Ω⎩其中32222,(0,){(,,)|}xx yy zz u u u u B R x y z R x y z R ∆=++Ω==∈++<.13.[解对边值的连续依赖性]设Ω为半径等于R 的圆域,考虑如下问题(,), (,)(,)(,),(,) 1,2.k k k u f x y x y u x y g x y x y k -∆=∈Ω⎧⎨=∈∂Ω=⎩ 利用Poisson 公式证明2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω14*证明在广义函数的意义下,11(,0)ln 2P rπΓ=满足 ()()u x y δδ-∆=,其中xx yy r u u u =∆=+.15*设Ω为半径等于R 的圆域,考虑如下问题0, (,)(,)(,),(,) .u x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 如果(,)g x y 在∂Ω连续,证明由Poisson 公式给出的解是该问题的古典解(真解).16*设(,)u x y 为平面上区域Ω上的调和函数,000(,)P x y ∈Ω且0(,)B P R ⊂Ω.证明调和函数的平均值公式00002(,)(,)11(,)(,)(,)2B P R B P R u x y u x y ds u x y dxdy R R ππ∂==⎰⎰⎰ 17*[极值原理]设2R Ω⊂有界区域,边界充分光滑,2()()u C C ∈Ω⋂Ω为Ω内的调和函数,并且在某点000(,)P x y ∈Ω达到u 在闭域Ω上的最大(小)值,利用平均值公式证明u 为常数.18*[极值原理]设2R Ω⊂有界区域,边界∂Ω充分光滑, 2()()u C C ∈Ω⋂Ω. 如果u 在区域Ω内调和且不等于常数,则u 在闭域Ω上的最大值和最小值只能在区域的边界∂Ω上达到.19*利用第12题的结果,建立在3R Ω⊂内调和函数的平均值公式,并证明和第16题类似的结果.20*设2R Ω⊂有界区域,2()(), (),1,2,k k u C C g C k ∈Ω⋂Ω∈∂Ω=满足(,), (,)(,)(,),(,) k kk u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 证明 2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω.21.设D 和Ω为平面上的两个区域,()(,)(,)f z x y i x y ϕψ=+在区域D 内解析且不等于常数,()f D =Ω,即f 将区域D 保形映射到区域Ω.证明 如果(,)u x y 在区域Ω内调和,则((,),(,))u x y x y ϕψ在区域D 内调和.22.(1)找一个在上半平面解析的函数()f z ,在边界{(,),0}x y x R y ∈=上满足00(),, (),,f x A x x f x B x x =>=<其中A 和B 为实常数.(2)求下面定解问题的一个解0, 0,0(,0)0,0, (0,)10,0.xx yy u u x y u x x u y y +=>>⎧⎨=>=>⎩ 23*求下面定解问题的一个解22220, 1(,)0,0, (,)1,0, 1.xx yy u u x y u x y y u x y y x y ⎧+=+<⎪⎨=<=>+=⎪⎩ 24. 求下面定解问题的一个解0, 0<(,0)0, (,)1, 0.xx yy u u y xu x u x x x +=<⎧⎨==>⎩ 25. 求下面定解问题的一个解0, , 0<(,)0, (,0)0, 0, (,0)1, 0.xx yy u u x R y u x x Ru x x u x x ππ+=∈<⎧⎪=∈⎨⎪=<=>⎩26. 设(0,)B R Ω=,1(0,)2RB Ω=,(,)u x y 在Ω内调和且在Ω上连续,在边界上非负,证明以下结果(1)(,),x y ∀∈Ω有(0,0)(,)(0,0),R r R ru u x y u R r R r-+≤≤+-其中r =.(2)存在常数0M > 使得 11max (,)min (,).u x y M u x y ΩΩ≤。
数学物理方程第五章勒让德多项式习题
( k c )(k c 1) n( n 1) ak ( k c 2)(k c 1)
取 c 0, a0 , a1 是任意常数。
ak 2
1)当 k
(k n)( k n 1) ak (k 2)( k 1)
k 0,1,2,
(2.9)
n n 2k 2 M n 1 n 2k 1 2
m 0
M
( 2n 2m )! n 2 m x 2 n m!( n m )!( n 2m )!
称作第一类勒让德多项式
常用的几个第一类勒让德多项式
P0 ( x) 1
P1 ( x ) x
3 2 1 P2 ( x ) x 2 2
y( x ) a 0 [1
n( n 1) 2 n( n 2)( n 1)( n 3) 4 x x ] 2! 4!
( n 1)( n 2) 3 ( n 1)( n 3)(( n 2)( n 4)( n 6) 5 x x ] 3! 5! n( n 1) 2 n( n 1)( n 1)( n 3) 4 y 0 ( x ) a 0 [1 x x ] ( 2.11) 2! 4! a1 [ x
当 n 为偶数时 y0 ( x) 是一个多项式,可以证明 y1 (1) 发散。 此时取 a1 0 ,则得到方程在 [1,1] 上的有界非零解,或 者满足自然边界条件的非零解。 同理, 当 n 为奇数时 y1 ( x) 是 一个多项式,可以证明 y0 (1) 发散。此时取 a0 0 , 则得到 方程在[1,1] 上的有界非零解,或者满足自然边界条件的非 n 零解。通常把这种多项式的最高次方幂 x 的系数规定为
数学物理方程总结
试证:圆锥形枢轴的纵振动方程为2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ其中h 为圆锥的高。
并求通解及它的初值问题:0:(),()ut u x x tϕψ∂===∂的解。
(1)证明:在圆锥形枢轴内取出],[x x x ∆+一小段来研究。
端面丛向位移为),(t x u [,][(,),(,)]x x x u x t u x x t +∆→+∆ 在时刻t,端面的相对延伸为),(t x u 与),(t x x u ∆+根据胡克定律为),(t x ESux-及),(t x x ESu x ∆+由牛顿第二定律有合力为:),(t x x ESu x ∆+),(t x ESu x -x Su tt ∆=ρ又因为 2222[()t a n ]()()S r h x h x t a nππαπα==-=- 2[()tan ](,)x E h x x u x x t πα--∆+∆),(]tan )[(2t x u x h E x απ--x u x h tt∆-=2]tan )[(αρπttx u x h xu x h E 22)()(-=∂-∂ρππ tt x u x h x u x h E 22)()(-=∂-∂ρ 即:2222222222[(1)](1)1[(1)](1)E ()x u x uE x h x h t x u x u x h x a h t a ρρ∂∂∂-=-∂∂∂∂∂∂-=-∂∂∂=令。
(5分)(2)设(,)()(,)v x t h x u x t =-(5分) 2()()x x v h x v u h x -+=-2222222[(1)]()1[(1)](1)()x x ux h x v h x v x x ux h h x a h t ∂∂-∂∂-+∂∂=-=-∂-∂ 2222221()()v u h x h x x a t ∂∂-=-∂∂ ∴ 2222221[()][()]h x u h x u x a t∂∂-=-∂∂ (5分) 即:222221v v x a t∂∂=∂∂, 或22222v v a t x ∂∂=∂∂则其通解为:()()()h x u v F x at G x at -==-++ (5分)2.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x u a t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0) 所以 F(x)=)2(x ψ-G(0). G (x )=)2(x ϕ-F(0). 且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ 即为古尔沙问题的解。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程公式总结
数学物理方程公式总结数学和物理是自然科学的两个重要分支,它们在研究自然界的规律时不可分割。
在数学和物理的学习过程中,我们经常会遇到大量的方程和公式。
这些方程和公式帮助我们理解和解决问题,归纳总结这些方程和公式有助于我们更好地掌握它们。
下面是一些数学物理方程公式的总结。
1.牛顿力学相关方程:- 运动方程: F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。
-牛顿第一定律:F=0,一个物体若无外力作用,则物体保持静止或匀速直线运动。
- 牛顿第二定律: F = ma,物体的加速度与作用力成正比,与物体的质量成反比。
-牛顿第三定律:F12=-F21,两个物体之间的作用力大小相等,方向相反。
2.热力学相关方程:-热力学第一定律:ΔU=Q-W,系统内部能量的变化等于吸热减去对外界做功。
-热力学第二定律:ΔS≥0,隔离系统内部的熵不会减少,或者说熵的增加不可逆。
-热力学第三定律:绝对零度时,熵为零。
3.电磁学相关方程:-库仑定律:F=k*(Q1*Q2)/r^2,两个点电荷之间的力与电荷大小成正比,与距离的平方成反比。
-高斯定律:Φ=E*A=Q/ε0,电场通过任意闭合曲面的通量与该曲面内的电荷成正比。
-法拉第电磁感应定律:ε=-ΔΦ/Δt,电磁感应产生的电动势与磁通量的变化率成正比。
4.波动与光学相关方程:-波速公式:v=λ*f,波速等于波长乘以频率。
- 光的折射定律: n1 * sin(θ1) = n2 * sin(θ2),光线从一种介质进入另一种介质时,入射角和折射角与两种介质的折射率成正比。
5.直流电路相关方程:-欧姆定律:V=I*R,电压与电流和电阻的关系。
- 串联电阻的总电阻: R_total = R1 + R2 + ...,串联电阻的总电阻等于各个电阻之和。
- 并联电阻的总电阻: 1/R_total = 1/R1 + 1/R2 + ...,并联电阻的倒数总电阻等于各个电阻的倒数之和。
数学物理方程与特殊函数第五版王元明课后答案
数学物理方程与特殊函数第五版王元明课后答案1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)<0,则方程f(x)=0在[-1,1]内( )a.可能将存有3个实数根b.可能将存有2个实数根c.有唯一的实数根d.没有实数根解析:由f -12f 12<0得f(x)在-12,12内有零点,又f(x)在[-1,1]上以增函数,∴f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.答案:c2.(长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:x 1 2 3 4 5 6f(x) .13 15. -3.92 10.88 -52. -.则函数f(x)存有零点的区间存有( )a.区间[1,2]和[2,3]b.区间[2,3]和[3,4]c.区间[2,3]、[3,4]和[4,5]d.区间[3,4]、[4,5]和[5,6]解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,∴f(x)在区间[2,3],[3,4],[4,5]上都存在零点.答案:c3.若a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是( )a.(3.5,+∞)b.(1,+∞)c.(4,+∞)d.(4.5,+∞)解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出来函数y=ax,y=logax,y=-x+4的图象,融合图形所述,n+m为直线y=x与y=-x+4的交点的横坐标的`2倍,由y=xy=-x+4,Champsaurx=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm≥4,又n≠m,故(n+m)1n+1m>4,则1n+1m>1.答案:b4.(昌平演示)未知函数f(x)=ln x,则函数g(x)=f(x)-f′(x)的零点所在的区间就是( )a.(0,1)b.(1,2)c.(2,3)d.(3,4)答案:b答案:(0,1)。
数学物理方程习题答案(李明齐 田太心)
282数学物理方程习题选做习题 1.11. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,横向拉它一下,使之作微小的横振动。
试导出振动方程。
解:考虑垂直悬挂的细弦线上一段微元ds ,该微元在坐标轴上投影为区间[x ,x+d x ],在微元的上端点处有张力:)(1x L g T -=ρ,在下端点处有张力:)(2dx x L g T --=ρ考虑张力在位移方向的分解,应用牛顿第三定律,有tt u m T T =-1122sin sin αα 由于细弦作微小振动,所以有近似)(tan sin 22dx x u x +=≈αα )(tan sin 11x u x =≈αα代入牛顿第三定律的表达式,有tt x x u ds t x u x L g t dx x u dx x L g ρρρ≈--+--),()(),()(上式两端同除以ds ρ,得tt x x u dsx u x L dx x u dx x L g≈--++-)()()())((由于dx ds ≈,而x x x x x u x L dxx u x L dx x u dx x L )]()[()()()())((-≈--++-所以,细弦振动的方程为tt x x u u x L g =-])[(4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。
试写出定解问题。
解:由牛顿定律tt x x Sdxu t x YSu t dx x YSu ρ=-+),(),(其中,x u S Y ,,的意义与3题定义一样283∴ 20000,0,()0,0,(0)tt xx xxx x x L t t t Y u u a uu u I L x L u u x L ρεερε====⎧⎪⎪==⎪⎪==⎨⎪⎧⎪-<<⎪⎪==⎨⎪⎪<<-⎩⎩5. 定解问题:2000,(0,0),011(),()tt xx x x L t t t x u a u x L t u E u u x u i x c c ψϕ====⎧⎪=<<>⎪==⎨⎪⎪'==-=-⎩其中,u 为电压函数,i 为电流函数,c 为分布电容。
数学物理方程第5章习题及答案
11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n
或
ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )
数学物理方程
一章:偏微分方程1.基本概念作用:描述物理规律,过程和状态。
函数:1.()()()()x t f u x t c xu x t b xu x t a t u ,,,,22+⨯+∂∂⨯+∂∂⨯=∂∂2.拉普拉斯方程:02222223=∂∂+∂∂+∂∂=∇zu yu xu u3.波动方程:()z y x t f u a tu ,,,3222+∇⨯=∂∂4.冲击波方程:0=⨯+x t u u u5.Kdv 方程:0=+⨯⨯+xxx x t u u u u σ其中:1.2.3方程都是二阶线性方程;4.是一阶非线性方程;5. 是三阶非线性方程。
拉普拉斯方程的一个解是: ()()()()2020201,,z z y y x x z y x u -+-+-=例 1.当a,b 满足怎样的条件时,二维拉普拉斯方程022222=∂∂+∂∂=∇yu xu u ,有指数解byax e u +=,并把解求出。
解:把by ax e u +=代入所给的方程,得()022=++by ax e b a ,因为()0≠+by ax e ,所以022=+b a ,即ia ib 或b a ±=±=,方程解是()()ay i ay ax bxi bx by e及u eu sin cos sin cos ±±==,其中a,b 是任意实数。
1.4 定解条件和定解问题泛定方程:描写一个物理过程的方程。
定解条件:为确定一个过程的进展情况,需知道发生的具体条件。
定解问题:泛定方程带上定解条件。
1.4.1 初始条件和初始问题如一条无限长弦的自由振动方程:()0,;2>∞<<∞-=t x u a u xx tt 即泛定方程;定解条件:()()()()x x u x x u t φϕ==,0,0,即初始条件,其中t=0。
1.4.2 边界条件和边值问题边界条件:在空间某一区域V 研究物理过程,在V 的边界面S 上有约束状态。
电子科技大学《数学物理方程》课后习题答案 李明奇版
数学物理方程 李明奇主编 电子科技大学出版社习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x I u u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt n uk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt nuk )(441ϕ-=∂∂-, 即可得边界条件:)(441ϕ--=∂∂u k k nu s。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。
数学物理方程
⎧y ⎪
t=0
=d
= v0
⎨
⎪⎩ y t=0 = d ' = 0
⇒ vy = v0 − gt
⇒
y
=
v0t
−
1 2
gt 2
(2) 对斜向上抛:
⎧⎪x t=0 = v0 cosθ = c
⎨ ⎪⎩x
t=0
=
c'
=
0
⇒ vx = v0 cosθ ⇒ x = (v0 cosθ )t
⎧y ⎪
t =0
=
d
=
v0
sin θ
x
= SY[∂u(x + dx,t) − ∂u ] = SY ∂ [u(x + dx,t) − u(x,t)]= SY
∂ [u(x + dx,t) − u(x,t) dx] = SY
∂x
dx
∂2u ∂x2
dx
由牛顿第二定律: ma = F (a = ∂2u , m = ρdv = ρ sdx)
⇒ vy = v0 sinθ − gt
⎨ ⎪⎩ y t=0 = d ' = 0
⇒
y
=
v0
sin θ
t
−
1 2
gt 2
5
结论:不同的初始条件 ⇒ 不同的运动状态,但都服从
牛顿第二定律。
综上所述,定解问题的完整提法: 在给定的边界条件和初始条件下,根据已知的物理
规律,解出某个物理量u 在给定的区域里随着地点(x,y,z) 和时刻t怎样变化,即求u(x,y,z,t)。
20
(3) 第三类边界条件:给出边界上未知数u及其法向导 数之间的线性关系
例:杆在x=0端固定,在x=l端受到弹性系数为k的弹簧 的拉力,其边界条件为
数学物理方程小结
解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1
∞
nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1
∞
数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 2 dy (1 − x ) dx + λy = 0 dx
g ( x ) = 0 , ρ ( x ) = 1.
分离变量: v(r ,θ ,ϕ ) = R(r )Y (θ ,ϕ ) 代入(1)式
Y d 2 dR R ∂ ∂Y R ∂ 2Y r + 2 sinθ + 2 2 + k 2 RY = 0 2 r dr dr r sinθ ∂θ ∂θ r sin θ ∂ϕ 2
r2 RY
1 d 2 dR 2 2 −1 ∂ ∂Y −1 ∂2Y r +k r = sinθ + R dr dr Y sinθ ∂θ ∂θ Y sin2 θ ∂ϕ 2
= l(l +1)
l(l+1)是常数
特殊函数 第五章 即: d 2 dR
2 2 r + [k r − l (l + 1)]R = 0 dr dr 1 ∂ ∂Y 1 ∂ 2Y + l (l + 1)Y = 0 sinθ + 2 2 sinθ ∂θ ∂θ sin θ ∂ϕ
)
第五章
特殊函数
(2) a = 0 , b =
(3) a = −1, b = +1, k (x ) = 1 − x 2 ,
d dy n 2 y + λ xy = 0 x − dx dx x 此式为贝塞尔方程。
ρ 0 , k (x ) = x , g (x ) =
n2
x
, ρ (x ) = x.
附加相应的边界条件,构成斯特姆-刘维尔本征值理论问题。 例如: (1) a = 0 , b = l , k ( x ) = count , g (x ) = 0 , ρ ( x ) = count .
y (0) = 0 , y (l ) = 0
本征值: 本征函数:
y ′′ + λy = 0
λn
yn
n 2π 2 (n = 1 ,2 ,3 ,L = 2 l nπ = C sin x l
2
(2)
(3)
(2)式称为欧拉方程,其解为 (2)
R(r ) = Cr l + Dr −(l+1)
(3)式称为球函数方程,进一步分离变量
(4)
Y (θ ,ϕ ) = Θ (θ )Φ (ϕ )
dΘ Φ d Θ d 2Φ + l (l + 1)ΘΦ = 0 代入(3) sinθ + 2 2 sinθ dθ dθ sin θ dϕ
第五章
特殊函数
§5-2 特殊函数
一、拉普拉斯方程 ∆3u = 0
我们考虑使用球坐标系和柱坐标系。 1、球坐标系 u(r ,θ ,ϕ )
1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u = 0 (1) r + 2 sinθ + 2 2 2 2 r ∂r ∂r r sinθ ∂θ ∂θ r sin θ ∂ϕ
(24)
(25)
(25)式与(3)式相同,进一步分离变量成为(5)式(已知)、 (8)式 (缔合勒让德方程)。 缔合勒让德方程) 缔合勒让德方程 讨论(24) 式:r 2
d R dR + 2r + [k 2 r 2 − l (l + 1)]R = 0 2 dr dr
2
(26)
球贝塞尔方程。 (26) 式称为l阶的球贝塞尔方程 球贝塞尔方程 作变换:
µz
⇒ R = Eρ m + F ρ − m
µz
(3) 若µ>0,则:Z (z ) = C coshz + D sinhz
+ De−
(h
2
= −µ )
(16)
µ ρ ,注:x 是记号而不是直角坐标
d 2 R 1 dR m 2 + + 1 − 2 R = 0 2 dx x dx x d 2R dR 2 x +x + [x 2 − m 2 ]R = 0 dx 2 dx
1
R′′ R′ n 2 Z ′′ + − 2 =− = −µ R ρR ρ Z
ρ2
并整理得:
分解成为两个常微分方程:
Z ′′ − µZ = 0 1 n2 R′′ + R′ + µ − 2 R = 0 ρ ρ
(14) (15)
第五章
特殊函数
讨论(14)式: (1) 若µ=0,则:Z (z ) = C + Dz (2) 若µ>0,则:Z (z ) = Ce 讨论(15)式: (1) 若µ>0,作变换 x = (15)式变为: 得贝塞尔方程 贝塞尔方程: 贝塞尔方程
第五章 即:
特殊函数
Θ2′′ + n 2Θ = 0 ρ ρ ρ2 R′′ + R′ + Z ′′ = n 2 R R Z
(11) (12)
讨论(11)式,其解为本征函数:
(13) Θ n (θ ) = A cos nθ + B sin nθ 由自然周期条件 Θ (θ + 2π ) = Θ (θ )只能有 n = 1 ,2 ,3 ,L 讨论(12)式,等式两边同乘
(6)
讨论(5)式,其解为本征函数: (7) Φ (ϕ ) = A cos mϕ + B sin mϕ 讨论(6)式,作变换 x = cosθ ,注:x 是记号而不是直角坐标 d 2Θ dΘ m2 (1 − x 2 ) 2 − 2x + l (l + 1) − 2 Θ = 0 (8)
dx
第五章
特殊函数
§5 -1 引 言
前面讲的分量变量法 分量变量法采用的是直角坐标系,而在薄圆 分量变量法 膜振动问题中宜采用极坐标,此时分离变量时会出现贝塞 尔(Bessel)方程,而对三维拉普拉斯方程在球坐标下分离 变量时会出现勒让德(Legendre)方程,本章我们将分别引 出这两种方程及特殊函数,讨论这两类函数的性质及其在 解数学物理方程中的应用。
(32) 式称为 n 阶的贝塞尔方程 贝塞尔方程。 贝塞尔方程
(32)
第五章
特殊函数
斯特姆-刘维尔(Sturm Liouvilla)理论 (Sturm§5-3 斯特姆-刘维尔(Sturm-Liouvilla)理论
一、斯特姆-刘维尔型二阶常微分方程
d x dx dy k (x ) dx − g (x ) y + λρ (x ) y = 0 x ∈ [a , b ]
(17)
第五章
特殊函数
(2) 若µ<0,作变换 x = hρ
h 2 = −µ
d 2 R 1 dR m 2 + − 1 + 2 R = 0 (15)式变为: 2 dx x dx x
得虚宗贝塞尔方程 虚宗贝塞尔方程: 虚宗贝塞尔方程
d 2R dR 2 x +x − [x 2 + m 2 ]R = 0 dx 2 dx 从(18)式到(19)式只需作变换 x → ix 即可。
Θ ′′ + n 2Θ = 0 Z ′′ − µZ = 0 代入(10) 式得:
)Θ (θ )Z (z )
(29) (30) (31)
x = ρ k 2 − h 2 , y ( x ) = R (r ) (31)式作变换: 2 2 d y 1 dy n + + 1 − 2 y = 0 (31) 式变为: 2 dx x dx x
T ′v − a 2 T ∆ 3 v = 0 T ′ ∆3v 2 = = −k 2 aT v
(22)
T ′ + k 2 a 2T = 0 2 ∆3v + k v = 0
(23)式的解已知。(21)式仍为亥姆亥兹方程。
(23) (21)
第五章
特殊函数
四、亥姆亥兹方程 1、球坐标系 u(r ,θ ,ϕ ) 1 ∂ 2 ∂v 1 ∂ ∂v 1 ∂2v 2 + k v = 0 (24) r + 2 sinθ + 2 2 2 2 r ∂r ∂r r sinθ ∂θ ∂θ r sin θ ∂ϕ
dx
1− x
(8)式称为l 阶缔合勒让德方程 缔合勒让德方程。 缔合勒让德方程
特殊函数 第五章 若对球坐标的标轴是对称轴,则 u 与 ϕ 无关,m = 0,得
d 2Θ dΘ 2 (1 − x ) 2 − 2x + l (l + 1)Θ = 0 dx dx
(9)
(9)式称为勒让德方程 勒让德方程。 勒让德方程 2、柱坐标系
u(ρ ,θ , z ) 1 ∂ ∂u 1 ∂ 2u ∂ 2u ρ + 2 ∂ρ ρ ∂θ 2 + ∂z 2 = 0 ρ ∂ρ
u (ρ ,θ , z ) = R(ρ )Θ (θ )Z (z )
(10)
分离变量:
RZ ΘZ 代入(10) 式:Θ Z R ′′ + ⋅ 1 ⋅ R ′ + 2 Θ ′′ + R Θ Z ′′ = 0 ρ ρ ρ2 ρ2 ρ ρ2 Θ ′′ RΘZ R′′ + R′ + Z ′′ = − = n2 R R Z Θ
分离变量: u ( ρ ,θ , z ) = R ( ρ
1 ∂ ∂u 1 ∂ 2u ∂ 2u 2 ρ + 2 ∂ρ ρ ∂θ 2 + ∂z 2 + k v = 0 ρ ∂ρ
(28)
2 n2 R ′′ + R ′ + k + µ − 2 R = 0 ρ ρ (29)式与(11)式相同, (30)式与(14)式相同,解已知。 1