纳米金属研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

nature materials VOL 7 APRIL 2008
Figure 2 TEM images. a,b, Ru@Pt (a) and PtRu alloy (b) nanoparticles. The insets show HRTEM images (top), and particle size histograms (bottom). Histograms are made by counting 200 particles. Each bar represents 0.5 nm diameter, and dashed lines the average sizes, which are 4.1 nm and 4.4 nm, respectively.
Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesised by co-precipitation technique
(a) Typical low magnification image of aggregated particles. (b) Shape and size distribution of dispersed nanoparticles. Inset: selected area electron diffraction pattern of nanoparticles with typical rings of diffraction spots. (c) SAED pattern with calculated ED ring patterns superposed and labeled with (h, k, l) indices cell parameters a = 5.285A˚ , b = 7.480A˚ , c = 5.272A˚ (Pnma space group).
纳米金属研究进展
LOGO
Contents
1 2 3 4
背景介绍
纳米金属材料的新进展 纳米金属材料的应用 总结与展望
背景介绍 “纳米金属”( nanometal) 利用纳米技术制造的金属材料,具有纳米 级尺寸的组织结构,在其组织中也包含着 纳米颗粒杂质。
纳米金属材料
纳米金 属粉末
纳米金属 结构材料
Contents
1 2 3 4
背景介绍
纳米金属材料的新进展 纳米金属材料的应用 总结与展望
纳米金属材料的应用
微孔材ຫໍສະໝຸດ Baidu 催化材料
活化烧结材料
助燃剂
高性能磁性材料
波能吸收材料
Contents
1 2 3 4
背景介绍
纳米金属材料的新进展 纳米金属材料的应用 总结与展望
总结与展望 纳米金属材料是传统金属材料超细化后 出现的新材料。它具有宏观物体所没有的 新效应, 因而开拓新的应用领域。利用纳米 金属材料特殊的特性与效应, 将开拓出前所 未有的和不可替代的新的材料世界的领域
6,Delbecq, F. & Zaera, F. Origin of the selectivity for trans-to-cis isomerizationin 2butene on pt(111) single crystal surfaces. J. Am. Chem. Soc. 130,14924–14925 (2008).
背景介绍
纳米金属结构材料 的特性 界面缺陷模型
纳米金属颗 粒的特性 表面效应
体积效应
量子尺寸效应 宏观量子隧道效应
纳米金属材 料的特性
类气态模型
界面可变模型
纳米金属的制备方法
快速凝固法 非晶晶化法
惰性气体蒸发、原位加压制备法
强烈塑性变形法
电解沉积技术
高能球磨法(机械合金化)
Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles
Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine–nitrate process for solid oxide fuel cell cathode
Flowchart for glycine–nitrate synthesis of BSCF powders.
Journal of Alloys and Compounds 453 (2008) 418–422
SEM photographs of as-prepared powders. G/n molar ratio is (a) 0.28, (b) 0.56, and (c) 0.84.
Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
参考文献
1, Knecht, M. R. et al. Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem. Mater.20, 5218– 5228 (2008). 2, Lee, I., Delbecq, F., Morales, R., Albiter, M. A. & Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nature Mater. 8, 132–138 (2009). 3, Mahmoud, M. A., Tabor, C. E., El-Sayed, M. A., Ding, Y. & Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostarsingle crystal. J. Am. Chem. Soc. 130, 4590–4591 (2008). 4,Bhattacharjee, S., Dotzauer, D. M. & Bruening, M. L. Selectivity as a functiononanoparticle size in the catalytic hydrogenation of unsaturated alcohols. J. Am. Chem. Soc. 131, 3601–3610 (2009). 5,Lee, H. et al. Morphological control of catalytically active platinum nanocrystals.Angew. Chem. Int. Ed. 45, 7824–7828 (2006).
7,Nakamura, I., Sato, Y. & Terada, M. Platinum-catalyzed dehydroalkoxylationcyclization cascade via N–O bond cleavage. J. Am. Chem. Soc. 131,4198–4199 (2009).
Figure 1 | Depiction of the two nanoparticle synthesis techniques used and the initial reactivity results for electrophilic catalysis
Materials Research Bulletin 45 (2010) 558–563
www.themegallery.com
LOGO
XRD pattern of Ca0.96Sm0.04MnO3 powders calcined for 6 h at (a) 873 K (b)973 K and (c) 1073 K.
Temperature dependence of S (a) and ZT (b) two k (a) and r (b) of Micrographs of of two samples of Ca0.96Sm0.04MnO3, Ca0.96Sm0.04MnO3 bar sintered samples of Ca0.96Sm0.04MnO3, CP1623 (black squares)(black squares) and CP1623 and NP1373 (red circles). at (a) 1373 K and (b) 1623 K.
相关文档
最新文档