高等数学B试题及答案
2021年全国大学高等数学考试试题及解析B
2021年全国大学高等数学试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设函数()y y x =由方程cos()0x yexy ++=确定,则dydx=____________. (2) 函数222ln()u x y z =++在点(1,2,2)M -处的梯度M gradu =____________. (3) 设21, <0,()1, 0<,x f x x x ππ--≤⎧=⎨+≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于____________.(4)设数量场u =则(grad )div u =______________.(5) 设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1n -,则线性方程组0Ax =的通解为______________.二、选择题(本题共5小题,每小题3分,满分15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.) (1) 设sin 20()sin()xf x t dt =⎰,34()g x x x =+则当0x →时,()f x 是()g x 的 ( )(A) 等价无穷小 (B) 同阶但非等价无穷小 (C) 高阶无穷小 (D) 低阶无穷小(2) 双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为 ( )(A) 402cos 2d πθθ⎰ (B) 404cos 2d πθθ⎰(C) 2θ (D) 2401(cos 2)2d πθθ⎰(3) 设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为 ( ) (A)6π (B) 4π (C) 3π (D) 2π(4) 设32()3||f x x x x =+,则使(0)nf 存在的最高阶数n 为 ( )(A) 0 (B) 1 (C) 2 (D) 3(5) 要使121 00, 121ξξ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦都是线性方程组0Ax =的解,只要系数矩阵A 为 ( ) (A) ()2 1 1- (B) 2 0 1 0 1 1-⎛⎫⎪⎝⎭(C) 1 0 2 0 1 1-⎛⎫ ⎪-⎝⎭ (D) 011422011-⎛⎫⎪-- ⎪⎪⎝⎭三、(本题共3小题,每小题5分,满分15分.) (1) 求x x →.(2) 设22(sin ,)xz f e y x y =+,其中f 具有二阶连续偏导数,求2zx y∂∂∂.(3) 设21, 0,(), >0,x x x f x e x -⎧+≤⎪=⎨⎪⎩求31(2)f x dx -⎰.四、(本题满分6分)计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分8分)计算曲面积分323232()()()x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰,其中∑为上半球面z =.六、(本题共2小题,每小题5分,满分10分.)(1) 设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,+)∞内有且仅有一个零点.(2) 设b a e >>,证明b a a b >.七、(本题满分8分)在变力F yz zx xy i j k =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c ++=上第一卦限的点(,,)M ξηζ,问当,,ξηζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中n m <,E 是n 阶单位矩阵,若AB E =,证明B 的列向量组线性无关.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为1231111,2,3149ξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,又向量123β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1) 将β用123,,ξξξ线性表出. (2) 求nA β(n 为自然数).十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.)(1) 一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为_______.(2) 设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =_______.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,)N μσ,Y 服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数()x φ表示,其中22()t xx e dt φ--∞=).2021年全国大学高等数学考试题解析一、填空题(本题共5个小题,每小题3分,满分15分.)(1)【答案】sin()sin()x y x y e y xy e x xy ++---【解析】函数()y y x =是一个隐函数,即它是由一个方程确定,写不出具体的解析式. 方程两边对x 求导,将y 看做x 的函数,得(1)sin()()0x yey xy xy y +''+++=.解出y ',即sin()sin()x y x y dy e y xy y dx e x xy ++-'==--. 【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.两函数乘积的求导公式:[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅.(2)【答案】{}21,2,29- 【解析】对函数u 求各个分量的偏导数,有2222u x x x y z ∂=∂++;2222u y y x y z ∂=∂++;2222u z z x y z∂=∂++. 由函数的梯度(向量)的定义,有{}2221,,2,2,2u u u gradu x y z x y z x y z ⎧⎫∂∂∂==⎨⎬∂∂∂++⎩⎭, 所以 {}{}222122,4,41,2,212(2)9Mgradu=-=-++-.【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. (3)【答案】212π【解析】x π=是[,]ππ-区间的端点,由收敛性定理—狄利克雷充分条件知,该傅氏级数在x π=处收敛于22111[(0)(0)][11]222f f ππππ-++-=-++=. 【相关知识点】收敛性定理—狄利克雷充分条件:函数()f x 在区间[,]l l -上满足:(i) 连续,或只有有限个第一类间断点;(ⅱ) 只有有限个极值点.则()f x 在[,]l l -上的傅里叶级数收敛,而且01(cos sin )2n n n a n n a x b x l lππ∞=++∑ [][] (), (,)()1(0)(0), (,)()21(0)(0), .2f x x l l f x f x f x x l l f x f l f l x l ⎧⎪∈-⎪⎪=++-∈-⎨⎪⎪-++-=±⎪⎩若为的连续点,若为的第一类间断点,若 (4)【答案】2221x y z++ 【解析】先计算u 的梯度,再计算该梯度的散度. 因为 grad u u u u i j k x y z∂∂∂=++∂∂∂, 所以 222222(grad ),,u u u u u udiv u div x y z x y z ⎧⎫∂∂∂∂∂∂==++⎨⎬∂∂∂∂∂∂⎩⎭.数量场u =,,x y z 求偏导数,得222uxxx y z ∂==∂++, 由对称性知222u y y x y z ∂=∂++, 222u z z x y z ∂=∂++,将,,u u ux y z∂∂∂∂∂∂分别对,,x y z 求偏导,得 2222222222222222()2()()u x y z x x y z x x x y z x y z ∂++-⋅+-==∂++++, 222222222()u z x y y x y z ∂+-=∂++, 222222222()u x y z z x y z ∂+-=∂++, 因此, 2222222221(grad )u u u div u x y z x y z∂∂∂=++=∂∂∂++. (5)【答案】(1,1,,1)T k【解析】因为()1r A n =-,由()1n r A -=知,齐次方程组的基础解系为一个向量,故0Ax =的通解形式为k η.下面根据已知条件“A 的各行元素之和均为零”来分析推导0Ax =的一个非零解,它就是0Ax =的基础解系.各行元素的和均为0,即111212122212000n n n n nn a a a a a a a a a ++=⎧⎪++=⎪⎨⎪⎪++=⎩,而齐次方程组0Ax =为111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩. 两者比较,可知121n x x x ====是0Ax =的解.所以应填(1,1,,1)T k .二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(B) 【解析】0()lim()x f x g x →为“0”型的极限未定式,又分子分母在点0处导数都存在, 运用洛必达法则,有sin 222034232300000sin()()sin(sin )cos sin(sin )lim lim lim lim lim cos ()3434xx x x x x t dt f x x x x x g x x x x x x x →→→→→===⋅+++⎰洛2230sin(sin )lim 34x x x x →=+.因为当0x →,sin 0,x →所以222sin(sin )sin x x x ,所以222323000sin(sin )11lim lim lim 3434343x x x x x x x x x x →→→===+++, 所以()f x 与()g x 是同阶但非等价的无穷小量.应选(B). 【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (2)【答案】(A)【解析】由方程可以看出双纽线关于x 轴、y 轴对称,(如草图) 只需计算所围图形在第一象限部分的面积; 双纽线的直角坐标方程复杂,而极坐标方程 较为简单:2cos 2ρθ=.显然,在第一象限部分θ的变化范围是[0,]4πθ∈.再由对称性得2441001442cos 22S S d d ππρθθθ==⋅=⎰⎰,应选(A). (3)【答案】(C)【解析】这实质上是求两个向量的夹角问题,1L 与2L 的方向向量分别是12(1,2,1),110(1,1,2)021i j k l l =- =-=--,1L 与2L 的夹角ϕ的余弦为121212||31cos |cos(,)|2||||6l l l l l l ϕ⋅====,所以3πϕ=,应选(C).(4)【答案】(C)【解析】因33x 处处任意阶可导,只需考查2||()x x x ϕ,它是分段函数,0x =是连接点. 所以,写成分段函数的形式,有33,0,(), 0,x x x x x ϕ⎧-<⎪=⎨≥⎪⎩ 对分段函数在对应区间上求微分,223,0,()3, 0,x x x x x ϕ⎧-<⎪'⇒=⎨>⎪⎩ 再考查()x ϕ在连接点0x =处的导数是否存在,需要根据左导数和右导数的定义进行讨论.30(0)()0x x ϕ++=''==,3(0)()0(0)0x x ϕϕ--='''=-=⇒=,即 223,0,()3, 0.x x x x x ϕ⎧-≤⎪'=⎨>⎪⎩同理可得 6,0,()6, 0,x x x x x ϕ-<⎧''=⎨ >⎩ (0)0ϕ''=,即 6,0()6||6, 0x x x x x x ϕ-≤⎧''==⎨>⎩.对于y x =有(0)1,(0) 1.y y +-''==- 所以y x =在0x =不可导,(0)ϕ'''⇒不存在,应选(C). (5)【答案】(A)【解析】1ξ,2ξ向量对应的分量不成比例,所以1ξ,2ξ是0Ax =两个线性无关的解,故()2n r A -≥.由3n =知()1r A ≤.再看(A)选项秩为1;(B)和(C)选项秩为2;而(D)选项秩为3.故本题选(A). 【相关知识点】对齐次线性方程组0Ax =,有定理如下:对矩阵A 按列分块,有()12n A ,,,ααα=,则0Ax =的向量形式为11220n n x x x .ααα+++=那么, 0Ax =有非零解 12n ,,,ααα⇔线性相关()12n r ,,,n ααα⇔< ()r A n.⇔<三、(本题共3小题,每小题5分,满分15分.) (1)【解析】由等价无穷小有0x →时,22111()22x x --=, 原式=0021sin lim 12x x x x e xx →→--=, 上式为“”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式00cos sin lim lim 1x x x x e x e x x →→-+洛必达洛必达1011+==.(2)【解析】这是带抽象函数记号的复合函数的二阶混合偏导数,重要的是要分清函数是如何复合的.由于混合偏导数在连续条件下与求导次序无关,所以本题可以先求zx∂∂,再求()z y x ∂∂∂∂. 由复合函数求导法则得221212(sin )()sin 2x x z f e y f x y f e y f x x x x∂∂∂''''=++=⋅+⋅∂∂∂, 212(sin 2)x z f e y f x x y y∂∂''=+∂∂∂ 111212122(cos 2)sin cos (cos 2)2x x x x f e y f y e y f e y f e y f y x '''''''''=++++ 21112221sin cos 2(sin cos )4cos x x x f e y y f e y y x y f xy f e y '''''''=⋅+⋅++⋅+⋅. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (3)【解析】分段函数的积分应根据积分可加性分段分别求积分.另外,被积函数的中间变量非积分变量,若先作变量代换,往往会简化计算.令2x t -=,则.dx dt =当1x =时,1t =-;当3x =时,1t =,于是()31121110(2)()1tf x dx f t dt t dt e dt ----=++⎰⎰⎰⎰分段01301171.33t t t e e --⎛⎫=+-=- ⎪⎝⎭四、(本题满分6分) 【解析】将I 表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则22P Q R z z z z x y z∂∂∂++=+-=∂∂∂. 又∑是封闭曲面,可直接用高斯公式计算.记∑围成区域Ω,见草图,∑取外侧,由高斯公式得P Q R I dV zdV x y z ΩΩ⎛⎫∂∂∂=++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰.用球坐标变换求这个三重积分.在球坐标变换下,Ω为:02,0,024πθπϕρ≤≤≤≤≤≤,于是22240cos sin I zdV d d d ππθϕρϕρϕρΩ==⎰⎰⎰⎰⎰⎰23402sin sin d d ππϕϕρρ=⋅⎰⎰242401112sin 212442πππϕρπ⎡⎤⎡⎤=⋅⋅=⋅⋅=⎢⎥⎢⎥⎣⎦⎣⎦.五、(本题满分8分) 【解析】将原式表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则2223()P Q R x y z x y z∂∂∂++=++∂∂∂. 以考虑用高斯公式来求解,但曲面∑不是封闭的,要添加辅助面.如果本题采用投影法计算是比较复杂的,故不采用.添加辅助面222:0()S z x y a =+≤,法向量朝下,S 与∑围成区域Ω,S 与∑取Ω的外法向量.在Ω上用高斯公式得323232222()()()3()SI x az dydz y ax dzdx z ay dxdy x y z dV Ω++++++=++⎰⎰⎰⎰⎰.用球坐标变换求右端的三重积分得222222203()3sin ax y z dV d d d ππθϕϕρρρΩ++=⋅⎰⎰⎰⎰⎰⎰4552001632sin 32155a d d a a ππϕϕρρππ=⨯=⨯⨯⨯=⎰⎰.注意S 垂直于平面yOz 与平面xOz ,将积分投影到xOy 平面上,所以左端S 上的曲面积分为SPdydzdx Qdzdx Rdxdy ++⎰⎰2200(,,0)xySSD R x y dxdy ay dxdy a y dxdy =++==-⎰⎰⎰⎰⎰⎰2220sin a a d r rdr πθθ=-⋅⎰⎰ (极坐标变换)422350sin 44aa a d r dr a a ππθθπ=-=-⨯⨯=-⎰⎰.因此 5556295420I a a a πππ=+=. 【相关知识点】1.高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式. 2.对于球面坐标与直角坐标的关系为:sin cos ,sin sin ,cos ,x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩其中ϕ为向量与z 轴正向的夹角,0ϕπ≤≤;θ为从正z 轴来看自x 轴按逆时针方向转到向量在xOy 平面上投影线段的角,02θπ≤≤;r 为向量的模长,0r ≤<+∞.球面坐标系中的体积元素为2sin ,dv r drd d ϕϕθ=则三重积分的变量从直角坐标变换为球面坐标的公式是:2(,,)(sin cos ,sin sin ,cos )sin .f x y z dxdydz f r r r rdrd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰六、(本题共2小题,每小题5分,满分10分.)(1)【解析】证法一:由拉格朗日中值定理可知,在(0,)x 存在一点ξ,使得()(0)()(0)()f x f f x xf ξξ''-=-=,即 ()()(0)f x xf f ξ'=+.因为()0f k ξ'≥>,所以当x →+∞时,()xf ξ'→+∞,故()f x →+∞. 由(0)0f <,所以在(0,)x 上由介值定理可知,必有一点(0,)x η∈使得()0f η=.又因为()0f k ξ'≥>,故()f x 为严格单调增函数,故η值唯一. 证法二:用牛顿-莱布尼兹公式,由于()(0)()(0)(0)xxf x f f t dt f kdt f kx '=+≥+=+⎰⎰,以下同方法1.(2)【解析】先将不等式做恒等变形:因为b a e >>,故原不等式等价于ln ln b a a b >或ln ln a ba b>. 证法一:令()ln ln ,()f x x a a x x a e =- >>,则 ()ln af x a x'=-.因为x a e >>,所以ln 1,1a a x ><,故()ln 0af x a x'=->. 从而()f x 在x a e >>时为严格的单调递增函数,故 ()()0,()f x f a x a e >= >>. 由此 ()ln ln 0f b b a a b =->,即 b a a b >. 证法二:令ln ()()x f x x e x =>,则 21ln ()xf x x -'=. 当(,)x e ∈+∞时,()0f x '<,所以()f x 为严格的单调递减函数,故存在b a e >>使得ln ln ()()b af b f a b a=<=成立.即b a a b >.七、(本题满分8分)【解析】(1)先求出在变力F 的作用下质点由原点沿直线运动到点(,,)M ξηζ时所作的功W 的表达式.点O 到点M 的线段记为L ,则LLW F ds yzdx zxdy xydz =⋅=++⎰⎰.(2)计算曲线积分:L 的参数方程是 ,,,x t y t z t ξηζ===t 从0到1,1122220()3W t t t dt t dt ηζξξζηξηζξηζξηζ⇒=⋅+⋅+⋅==⎰⎰.化为最值问题并求解:问题变成求W ξηζ=在条件2222221(0,0,0)a b c ξηζξηζ++=≥≥≥下的最大值与最大值点.用拉格朗日乘子法求解.拉格朗日函数为222222(,,,)1F a b c ξηζξηζλξηζλ⎛⎫=+++- ⎪⎝⎭,则有22222222220,20,20,10.Fa Fb F cF a b c ξηζλξηξζληζξηλγξηζλ∂⎧=+=⎪∂⎪∂⎪=+=⎪∂⎪⎨∂⎪=+=⎪∂⎪∂⎪=++-=⎪∂⎩解此方程组:对前三个方程,分别乘以,,ξηζ得222222,a b c ξηζ==(0λ≠时)代入第四个方程得,,ξηζ===. 相应的9W ==.当0λ=时相应的,,ξηζ得 0W =. 因为实际问题存在最大值,所以当(,,)a ξηγ=时W. 【相关知识点】拉格朗日乘子法:要找函数(,)z f x y =在附加条件(,)0x y ϕ=下的可能极值点,可以先作拉格朗日函数(,)(,)(,),L x y f x y x y λϕ=+其中λ为参数.求其对x 与y 的一阶偏导数,并使之为零,然后与附加条件联立起来:(,)(,)0,(,)(,)0,(,)0.x x y y f x y x y f x y x y x y λϕλϕϕ⎧+=⎪+=⎨⎪=⎩ 由这方程组解出,x y 及λ,这样得到的(,)x y 就是函数(,)f x y 在附加条件(,)0x y ϕ=下的可能极值点.八、(本题满分6分)【解析】证法一:对B 按列分块,记12(,,)n B βββ=,若11220n n k k k βββ+++=,即 1212(,,,)0n n k kk βββ⎛⎫⎪ ⎪= ⎪⎪⎝⎭, 亦即 120n k k B k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.两边左乘A ,得 120n k k AB k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,即 120n k k E k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,亦即 120n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.所以12,,n βββ线性无关.证法二:因为B 是m n ⨯矩阵,n m <,所以()r B n ≤. 又因()()()r B r AB r E n ≥==,故()r B n =.所以12,,n βββ线性无关.【相关知识点】1. 向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k ,使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.2. 矩阵乘积秩的结论:乘积的秩小于等于单个矩阵的秩九、(本题满分7分)【解析】(1)设112233x x x βξξξ=++,即是求此方程组的解.对增广矩阵123(,,,)ξξξβ作初等行变换,第一行乘以()1-分别加到第二行和第三行上,再第二行乘以()3-加到第三行上,第三行自乘12,有 111111111111123101200120149303820011 ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 第三行乘以()2-、()1-分别加到第二行和第一行上,再第二行乘以()1-加到第一行上,有增广矩阵10020102001 1 ⎛⎫ ⎪→- ⎪ ⎪⎝⎭.解出31x =,22x =-,12x =,故12322βξξξ=-+.(2) 由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘A ,得22()()A A A A A ααλαλαλα====,再一直这样操作下去,有n n A αλα=.因为0α≠,故0λ≠.按特征值定义知nλ是nA 的特征值,且α为相应的特征向量.所以有,(1,2,3)n ni i i i i i A A i ξλξξλξ===,据(1)结论12322βξξξ=-+,有123123(22)22A A A A A βξξξξξξ=-+=-+,于是 123123112233(22)2222n n n n n n n nA A A A A βξξξξξξλξλξλξ=-+=-+=-+121322231112122233223149223n nn n n n n n +++++⎡⎤-+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⋅+=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.) (1)【解析】可以用古典概型,也可以用抽签原理.方法一:从直观上看,第二次抽出次品的可能性与第一次抽到正品还是次品有关,所以考虑用全概率公式计算.设事件i B =“第i 次抽出次品”1,2,i =由已知得11210(),(),1212P B P B == 121212(|),(|)1111P B B P B B ==.应用全概率公式 1121212211021()()(|)()(|)121112116P B P B P B B P B P B B =+=⨯+⨯=. 方法二:对填空题和选择题可直接用抽签原理得到结果.由抽签原理(抽签与先后次序无关),不放回抽样中第二次抽得次品的概率与第一次抽得次品的概率相同,都是21126=. (2)【解析】方法一:可以用分布函数法,即先求出分布函数,再求导得到概率密度函数.由已知条件,X 在区间(0,2)上服从均匀分布,得X 的概率密度函数为1,02()20,X x F x ⎧ <<⎪=⎨⎪ ⎩其它. 先求F 的分布函数2()()()Y F y P Y y P X y =≤=≤.当0y ≤时,()0Y F y =;当4y ≥时,()1Y F y =;当04y <<时,{}{}{2()Y F y P Y y P X y P X =≤=≤=≤≤1()2X x dx dx dx ==+=⎰. 即0,0()04,1, 4.Y y F y y y ≤ ,⎧=<<⎪≥⎪⎩于是,对分布函数求导得密度函数04()()0,Y Y y f y F y <<'== ⎩其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =方法二:也可以应用单调函数公式法.由于2y x =在(0,4)内单调,反函数()x h y ==(0,2)内可导,且导数()h y '=恒不为零,因此,由连续型随机变量函数的密度公式,得到随机变量Y 的概率密度为[]1,04,04,()(),042()0,0,0,X Y y y h y f h y y f y << <<'⎧ <<⎪===⎨ ⎪⎩ ⎩⎩其他其他,其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =十一、(本题满分6分)【解析】方法一:利用分布函数求密度函数:首先,因2(,)XN μσ,所以X的密度函数为22()()x X f x μσ--=,因Y 服从[,]ππ-上的均匀分布,故Y 的密度函数为11()()2Y f y πππ==--.因为随机变量X 与Y 相互独立,所以二维随机变量(,)X Y 的联合概率密度为(,)()()X Y f x y f x f y =.要求Z 的密度函数,先求Z 的分布函数()()()Z F z P Z z P X Y z =≤=+≤(,)x y zf x y dxdy +≤=⎰⎰()()X Y x y zf x f y dxdy +≤=⎰⎰22()12x x y zdxdy μσπ--+≤=⎰⎰.2222()()1122x x z yz ydy dx dy dx μμππσσππππ--------∞--∞==⎰⎰⎰⎰12z y dy ππμπσ---⎛⎫=Φ ⎪⎝⎭⎰(由标准正态分布来表示一般正态分布) 求出Z 的分布函数,因此,对分布函数求导得密度函数,Z 的密度函数为11()()2Z Z z y f z F z dy ππμϕπσσ---⎛⎫'==⎪⎝⎭⎰ 其中()x ϕ 是标准正态分布的概率分布密度.由于()x ϕ 是偶函数,故有z y y z μμϕϕσσ--+-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭于是 111()22Z y z z z f z dy ππμπμπμϕπσσπσσ-+-⎡+--+-⎤⎛⎫⎛⎫⎛⎫==Φ-Φ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰. 最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度. 方法二:用卷积公式直接计算:直接应用相互独立随机变量之和密度的卷积公式,求()Z f z 更为简单. 因为随机变量X 与Y 相互独立,由卷积公式1()()()2Z X Y f z f z y f y dy π+∞-∞=-⎰2222()()1122z y z y dy dy μμππσσππππ--------==⎰⎰22()12y z dy μπσππ+---=⎰12y z dy ππμπσ-+-⎛⎫=Φ ⎪⎝⎭⎰ 112y z dy ππμϕπσσ-+-⎛⎫=⎪⎝⎭⎰ 12z z πμπμπσσ⎡+--+-⎤⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度.。
南京工业大学 高数B(B)试卷含答案
南京工业大学 高等数学B 试题(B )卷(闭)2011--2012学年第一学期 使用班级 浦生工等 班级 学号 姓名一、填空题(共18分,每小题3分)1. 1.设()()则,12xx x f += ()=∞→x f x lim2.设()x f 在1=x 处可导,且 ()21='f ,则 ()()=-+→hf h f h 121lim3.设函数()x y 是由方程 3=+xy e y所确定,则 ='|y4.如 ()422++=x x x f ,则适合等式 ()()()()0202-'=-ξf f f 的=ξ5.如()()=+=⎰x f C edx x xf x则,6.()⎰-=+113cosdx x x x二、选择题(共12分,每小题2分)1.当0→x 时,下列无穷小中与 x cos 1-等价的是( )A.xB. x 21 C. 2x D 221x .2.设 ()()⎩⎨⎧>+<+=0,0,1ln x a e x x x f x,是连续函数,则 ,a 满足:( )A.a 为任意实数,B.1-=aC. ,0=aD.1=a3.若()()(),R x x f x f ∈--= ,且在 ()∞,0内()(),0,0>''>'x f x f 则()x f 在()0,∞-内必有:( ) A.()()0,0<''<'x f x f B.()()0,0>''<'x f x f C.()()0,0<''>'x f x f D.()()0,0>''>'x f x f4.在下列极限中,正确的是:( )A.22sin lim 0=→x x xB.1arctan lim =+∞→xx x C .e x xx =+→0lim D.∞=--→24lim22x x x 5.定积分 =⎰dx x π20sin ( )A. 0B. 4C. 2D. 16.直线L 与x 轴平行,且与曲线 xe x y -=相切,则切点坐标是( )A.()1,1B.()1,1-C.()1,0-D.()1,0三、计算题(共48分,每小题6分)1.xe x x 1lim 20-→ 2.设 2222++=x x y ,求 y '3.设有参数方程()0sin 322>⎩⎨⎧=++=t tt y t t x ,求 dx dy4.()dx x x ⎰+1215.dx xx ⎰+1316.设 ()()⎰+=13sin dx x f x x x f ,求()x f 的表达式。
大连市高等数学竞赛试题B答案完整版
大连市高等数学竞赛试题B答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】大连市第二十三届高等数学竞赛试卷答案(B)一、填空题(本大题共5小题,每小题2分,计10分)1. n ⎭⎝∞→= e^2 . 2. 30tan sin lim x x xx→-= 1/2 . 3. 0lim x x x +→= 1 . 4. 2cos lim xx t dtx→⎰= 1 .5.若221lim 2,2x x ax b x x →--=+-则(,)(4,5).a b =- 二、(本题10分)设⎪⎩⎪⎨⎧=≠=),0(1),0(1sin)(3x x xx x f 求)(x f '.解 当0≠x 时,xx x f 1sin )(3=为一初等函数,这时;1cos 1sin 311cos 1sin 3)(2232xx x x x x x x x x f -=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+='(6分) 当0=x 时,由于),0(01sin lim )(lim 300f xx x f x x ≠==→→(8分) 所以)(x f 在0=x 处不连续,由此可知)(x f 在0=x 处不可导。
(10分)解:0,1,1x x x ===-为间断点。
(3分) 当0x =时,由于00lim ()lim 1,1||x x x f x x x ++→→==+而00lim ()lim 1,x x f x --→→==- 所以0x =是跳跃间断点。
(5分) 当1x =时,由于11lim ()lim 1,1||x x x f x x x →→==+所以1x =是可去间断点。
(7分) 当1x =-时, 而1lim (),x f x →-=∞所以1x =-是无穷间断点。
(8分)考生注意: 考试时间 150 分钟 试卷总分 100 分 共 四 页第 1页曲线)0(316>=x x y 上哪一点处的法线在y 轴上的截距最小? 3在),(y x 处的法线方程为 )(x X k y Y -=-,因为52x y =',所以521x k -=,法线方程为 )(215x X x y Y --=-,(4分)整理后为 64545312121212x x X x x x X y Y ++-=+-=,法线在y 轴上的截距为 643121x x b +=。
(2)高等数学B2试卷参考答案
华南农业大学期末考试试卷(A 卷)2009学年第2学期 考试科目: 高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、 填空题(本大题共5小题,每小题3分,共15分)1. 试定义函数在点的值的 ,使得函数在该点连续。
2.函数在点处可微分的必要条件是函数在该点处连续或可偏导;充分条件是函数的偏导数在该点处连续。
3.设函数在闭区域上连续,且,则。
4. 判断敛散性:已知且,则是收敛的。
5. 已知某二阶常系数非齐次线性微分方程的通解为,则该微分方程为。
二、选择题(本大题共5小题,每小题3分,共15分) 1. 直线与平面的交点是(B )。
(A )(9,2,-3)。
(B )(2,9,11)。
(C )(2,11,13)。
(D )(11,9,2)。
2. 若级数在处收敛,则此级数在处(A )。
(A )绝对收敛。
(B )条件收敛。
(C )发散。
(D )收敛性不能确定。
3.二元函数 在点处 (C )(A )连续,偏导数存在。
(B )连续,偏导数不存在。
(C )不连续,偏导数存在。
(D )不连续,偏导数不存在。
4. 设是连续的奇函数,是连续的偶函数, ,则以下结论正确的是( A )。
(A ) 。
(B ) 。
(C ) 。
(A ) 。
5. 微分方程的一个特解应具有形式(A,B,C 是待定常数)( B )。
(A )。
(B )。
(C )。
(D )。
三、计算题(本大题共5小题,每小题6分,共30分) (1)设,其中和具有连续导数,求。
【解】(2)求由方程所确定的函数的全微分。
【解】方程两边求微分得 整理得(3)交换积分次序。
【解】(4)求差分方程在给定初始条件下的特解。
【解】特征方程为,所以对应的齐次方程的通解为。
又不是特征根,故可令特解为,代入原方程,得比较系数可得,,故非齐次方程的一个特解为,于是非齐次方程的通解为,由所给初始条件,可得,所以方程满足给定初始条件下的特解为。
高等数学B-下册-历年考试题目及答案
华南农业大学期末考试试卷(A 卷)2004学年第2学期 考试科目 高等数学(经济类)考试类型:(闭卷) 考试时间: 120分钟学号 姓名 专业年级一、填空题(每空2分)1.设函数()f x 可微,若()()01,11,1lim2x f x f x x →+--=,则11x y fx==∂∂= 。
2.设(){}22,4D x y xy y =+≤,则(),Df x y dxdy ⎰⎰在极坐标系下的二次积分为。
3.()200sin limx y xy x→→= 。
4.级数1025n n +∞=⎛⎫⎪⎝⎭∑= 。
5.设2x xy z y e =+,则()1,2z y∂∂= 。
6.320y y y '''-+=的通解为 。
7.设收益函数()260R x x x =-(元),当产量10x =时,其边际收益是 。
8. 差分方程12n n n y y n +-=⋅的通解为 。
9. 函数()sin 2x z e x y -=+在点04π⎛⎫⎪⎝⎭,处的全微分为 。
10. 若级数211p n n∞+=∑发散,则p ≤ 。
二、选择题(每题3分)1. 若lim 0n n u →∞=,则级数1n n u ∞=∑( )A 条件收敛B 发散C 不能确定D 收敛2. 设22D 14x y ≤+≤:,则二重积分Ddxdy ⎰⎰=( ) A π B 4π C 3π D 15π3. 微分方程3xy y '+=满足条件()10y =的特解是( )()11313111A B x C D x x x ⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭4. 设点()00,是函数(),f x y 的驻点,则函数(),f x y 在()00,处( ) A 必有极大值 B 可能有极值,也可能无极值 C 必有极小值 D 必无极值5. 若级数1n n u ∞=∑及1n n v ∞=∑都发散,则( )A()1nn n uv ∞=+∑必发散 B ()1n n n u v ∞=∑必发散C()1nn n uv ∞=+∑必发散 D ()221n n n u v ∞=+∑必发散三、计算题(每题8分) 1. ()arctan z xy =,求dz2. 设()22,z f x y xy =-,f 可微,求zx∂∂ 3. 求级数13nnn x n ∞=⋅∑的收敛域 4. 将函数()14f x x=-展开成()2x -的幂级数,并确定收敛区间 5. 求由抛物面225z x y =--与平面1z =所围成的立体的体积。
(完整word版)高等数学B试卷及答案
高等数学试卷一、 单项选择题(本题共5小题,每小题4分,满分20分)1. 由[,]a b 上连续曲线y = g (x ),直线x a =,x b =()a b <和x 轴围成图形的面积S =( )。
(A )dx x g ba⎰)((B)dx x g ba⎰)((C )dx x g b a⎰)((D )2))](()([a b a g b g -+2. 下列级数中,绝对收敛的是( )(A )()∑∞=--11321n nn n (B )()∑∞=-+-11)1ln(311n n n(C )()∑∞=-+-12191n n n n (D )3.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数.则=∂∂22y z( )。
(A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂ (B )22y v v f ∂∂⋅∂∂ (C)22222)(y v v f y v v f ∂∂⋅∂∂+∂∂∂∂ (D)2222y vv f y v v f ∂∂⋅∂∂+∂∂⋅∂∂4.⎰-1121dx x ( )(A)2 (B )—2(C )0 (D )发散5. 求微分方程2x y =''的通解( )(A )21412c x c x y ++=(B)cx x y +=124 (C )c x y +=124 (D )221412c x c x y ++= 二、 填空(本题共5小题,每小题4分,满分20分)1. 若⎰=22sin 3)(x dt t x x f ,则()f x '=2. 设f (x ,y )是连续函数,交换积分次序:⎰⎰⎰⎰+21214141),(),(yy ydx y x f dy dx y x f dy =3.幂级数()()∑∞=--121!21n nn n x 的收敛半径是4. 已知5)2(,3)2(,1)0('===f f f ,则⎰=2'')(dx x xf通解为x ce y x +=的微分方程为三、 计算下列各题(本题共4小题,每小题5分,满分20分)1. x y z cos )(ln =,求。
浙江省“22”高等数学B试卷及答案
2005年浙江省普通高校“2+2”联考《高等数学B 》试卷一、填空题:( 8*3)1.若 0)1ln()2(lim≠=+⋅-⎰→k xdtt t x nxx , 则自然数 n = .2.=⋅--++⋅-⋅+⋅--++∞→])2()!12()1()2(!71)2(!51)2(!312[lim 121753n n n n πππππΛ . 3 . =++-⎰21010cos sin 1cos sin πdx x x xx . 4. 已知 x xe ex y 4)23(2+⋅+= 是二阶常系数非齐次线性微分方程x e c by ay y 2'''⋅=++ 的一个特解,则该方程的通解是5. 已知 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡252321100001 , A * 为 A 的伴随阵,则 ()1*-A = 6.已知三元非齐次线性方程组 A Ⅹ=b ,A 的秩 r (A) = 1 ;α1 、α2 、α3 是该线性方程组的三个解向量,且α1+α2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101,α2+α3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡531,α3+α1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212该非齐次线性方程组的通解7.设方程 02=++βαx x 中的 α 和β 分别是连续抛掷一枚骰子先后出现的点数,则此方程有实根的概率为 .8.已知男性中有 5% 为色盲患者,女性中有 0.25% 为色盲患者,今从男女人数相等的人群中随机地挑选一人,其恰好是色盲患者,则此人是男性的概率为 二.选择题. (8*3) 1.设函数 xx x f 1)(-=, 则正确的结论是(A ) 1=x 是 )(x f 的极值点,但 )0,1( 不是曲线 )(x f y = 的拐点; (B ) 1=x 不是 )(x f 的极值点,但 )0,1( 是曲线 )(x f y = 的拐点; (C ) 1=x 是 )(x f 的极值点,且 )0,1( 是曲线 )(x f y = 的拐点;(D ) 1=x 不是 )(x f 的极值点,)0,1( 也不是曲线 )(x f y = 的拐点.2. 设二元函数 ),(y x f 在点 )1,1( 处可微,1)1,1(')1,1(')1,1(===y x f f f ,又知)),(,(x x f x f z =,则1=x dxdz =( ).(A ) 1 (B ) 2 (C ) 3 (D ) 4 3.下列命题中正确的结论是 ( ) .(A ) 若∑+∞=1n n u 发散 ,则∑+∞=+-11)1(n n n u 必发散 ;B ) 若∑+∞=+-11)1(n n n u 发散 ,则 ∑+∞=1n n u 必发散 ;C ) 若∑+∞=14n nu发散 ,则∑+∞=1n n u 必发散(D ) 若 1lim 1>++∞→nn n u u, 则∑+∞=14n nu必发散.4.下列等式成立的是 ( ).(A ) 若⎰+∞)(dx x f 和 ⎰∞-0)(dx x f 均发散,则 ⎰+∞∞-dx x f )( 必发散 ;(B ) 若⎰+∞0)(dx x f 和 ⎰+∞0)(dx x g 均发散,则 ⎰+∞+0)]()([dx x g x f 必发散 ;(C ) 若⎰+∞)(dx x f 和 ⎰+∞)(dx x g 均发散,则 ⎰+∞⋅0)]()([dx x g x f 必发散 ;(D ) 若⎰+∞)(dx x f 收敛, ⎰+∞)(dx x g 发散,则 ⎰+∞⋅0)]()([dx x g x f 必发散 .5.设二次型 32312123222142244x x x x x x x x x f +-+++=λ 为正定二次型 ,则λ 的取值范围为( ).(A )1<λ (B )2->λ(C )22<<-λ (D )12<<-λ6.设随机变量 ξ~N (μ,52),η~N (μ,42),概率值 )5(1+<=μξP P , )4(2->=μξP P ,则下式( )是正确的 . (A )对任意μ 均有 21P P = (B )对任意 μ 均有 21P P <(C )对任意μ 均有 21P P > (D )只对 μ 的个别值有 21P P =7.一个复杂的系统由 100 个相互独立起作用的部件组成,在整个运行期间,每个部件损坏的概率为 0.1 ,为了使整个系统起作用,至少必须有 85个部件正常工作,则整个系统起作用的概率约为( ).( )(x Φ 为标准正态分布函数)(A ))1(Φ (B )1-)1(Φ (C ))34(Φ (D ))35(Φ 8.已知随机向量(ξ,η)的联合密度函数为⎪⎩⎪⎨⎧<<<<--=其它,,04220)6(81),(y x y x y x f则概率值 P (4≤+ηξ)=( ) (A )21 (B )32 (C )83 (D )43三.计算题:(9*7)1. 计算极限 )]1sin 1([lim 2xx x x ⋅-∞→ .2.)0(4>+=x xb ax y 与 x a b y ln 3-= 在 1=x 处垂直相交(即它们在交点处的切线相互垂直),求常数 a 与 b 值.3. 计算二重积分 )(31σd y x x I D⎰⎰+= ,其中 D 为直线 1=+y x ,0=x和 0=y 所围成的平面区域 . 4.设函数 a x x y --=sin 2 在 )2,0(π 内有且仅有1个零点,求正数 a 的取值范围 .5.设函数 )(x f 在 ),(+∞-∞ 上可导 ,且满足dt t f x f x dt t x f x)()1(1)(01⎰⎰-+=+++ , 求)(x f 的表达式 .6.已知矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011101110,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111011001 ,且矩阵 P 满足 E BPA APB BPB APA ++=+ ,其中 E 为单位阵 ,求 P7.已知矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡60002282x 相似于对角阵 Λ,试求常数 x ,并求可逆阵 P ,使 Λ=-AP P 1.8.设随机变量 ξ 的密度函数为 ⎩⎨⎧<<=其它10)(2x ax x f , 求(1)常数 a ; (2) ξ 的期望 ξE 和方差 ξD ; (3) 2ξ 的概率密度函数; (4) 概率值 )2(=ηP ,其中 η 表示对 ξ 的三次独立重复观察中事件 ⎭⎬⎫⎩⎨⎧≤21ξ 出现的次数. 9.已知随机向量 (ξ,η) 的联合分布律为η-1 1 2 ξ-1 0.25 0.1 0.32 0.15 0.15 0.05求(1ηξ+ 的分布律; (2)在 η=-1 条件下 ξ 的分布律(3)期望值 )(ηξ⋅E .四.应用题: (3*8)1.为销售某产品,拟作电视和电台广告宣传,当电视广告与电台广告宣传费分别为 和 y (万元)时,销售量为yyx x +++10725100(吨). 若该产品每吨销售价为2000元 . 问: 1) 如要使总广告费不超过 10 万元 ,应如何分配电视与电台广告费 使广告产生的利润最大 ?最大利润是多少 ?2)如总广告费恰好是 4.8 万元 ,又应如何分配电视与电台广告费 ,使广告产生的利润最大 ?最大利润是多少2.设 ⎪⎪⎪⎭⎫ ⎝⎛=2111ξ,⎪⎪⎪⎭⎫ ⎝⎛=112k ξ,⎪⎪⎪⎭⎫ ⎝⎛=113k ξ,⎪⎪⎪⎭⎫ ⎝⎛=c b a η ; 问:(1)在什么条件下,η 可由 1ξ,2ξ,3ξ 线性表示 ,且表法唯一 ? (2)在什么条件下,η 可由 1ξ,2ξ,3ξ 线性表示 ,表法不唯一 并写出不同的表示式 .(3)在什么条件下 ,η 不能由 1ξ,2ξ,3ξ 线性表示 ?3.设自动生产线加工的某种零件的内径 ξ ~ )1,(μN ;内径小于 10 或者大于12 的为不合格品 ,其余为合格品 ,销售每件合格品可获利 20 元 ,销售每件不合格品要亏损 ,其中内径小于 10 的亏 1 元 ,内径大于12 的亏 5 元 ,求平均内径 μ 取何值时 ,销售一个零件的平均利润最大 ?五.证明题: ( 8*7) 1. 证明: (1) 若级数)0()1(11>⋅-∑+∞=+n n n n a a 绝对收敛 ,则级数∑+∞=-112n n a是收敛级数 ;(2) 若级数)0()1(11>⋅-∑+∞=+n n n n a a 条件收敛 , 则级数∑+∞=-112n n a是发散级数 .2. 设向量 1ξ ,2ξ ,…… ,r ξ 是线性方程组 0=AX 的一个基础解系 ,向量 η 不是 0=AX 的解向量 证明向量组 η,1ξη+ ,2ξη+ ,…… ,r ξη+ 线性无关 .2006年浙江省普通高校“2 + 2”联考《 高等数学B 》试卷一、填空题:( 8*3,共24分) 1.函数 xx y 23)2(+=的渐近线有2.设 1)23()2)(2(lim )(22+++-+-=+∞→x x n x x n x f n ,则 )(x f 的第一类间断点是 .3 . 设 yxe x e y y x xy z ++⋅-++⋅=)21ln()1()tan()sin( , 则=∂∂)1,0(y z .4. 二阶常系数非齐次线性微分方程 xe xy y y =--2''' 特解猜想的试解形式是 5. 袋中有10个新球和2个旧球,每次取一个,取后不放回,则第二次取出的是旧球的概率 p = 。
高等数学(B)答案
目
CONTENCT
录
• 引言 • 第一章答案 • 第二章答案 • 第三章答案 • 第四章答案
01
引言
课程简介
高等数学(b)是大学数学的重要基础课程之一,主要 面向理工科专业的学生。
该课程涵盖了微积分、线性代数、微分方程等方面 的内容,旨在培养学生的数学思维和解决实际问题 的能力。
题目三答案
总结词:答案解析
详细描述:首先,我们需要找到函数的极值点,这可以通过求导 数并令其为零实现。然后,我们需要计算这些极值点的函数值, 以及函数在区间端点的函数值。最后,比较这些值的大小,找到 最大值和最小值。
03
第二章答案
题目一答案
01
总结词:正确
02
详细描述:该题目要求求出函数在某点的导数。通过使用导数的定义 和性质,我们可以正确地求出该点的导数值。
题目三答案
总结词
理解了定积分的几何意义,能够正确地求解出定积分 的值。
详细描述
题目要求求解定积分$int_{0}^{2} (x^2 + 1) dx$。首先, 根据定积分的几何意义,该定积分表示的是函数$y = x^2 + 1$与直线$x = 0$和$x = 2$所围成的区域的面积。 然后,将区间[0,2]等分成若干个小区间,每个小区间的 长度为$Delta x = frac{2 - 0}{n} = frac{2}{n}$,其中 $n$为小区间的个数。在每个小区间上取一个点$x_i$, 则小区间的长度$Delta x$上的面积近似为$Delta A_i = f(x_i) times Delta x = (x_i^2 + 1) times frac{2}{n}$。 最后,将所有小区间的面积加起来,得到定积分的值为 $int_{0}^{2} (x^2 + 1) dx = sum_{i=1}^{n} Delta A_i = sum_{i=1}^{n} (x_i^2 + 1) times frac{2}{n} = frac{n}{n} times (x_1^2 + x_2^2 + ... + x_n^2 + n) times frac{2}{n} = frac{2(x_1^2 + x_2^2 + ... + x_n^2 + n)}{n}$。当$n to infty$时,定积分的值即为
2009-2010学年第二学期高等数学B试卷
2 z 求 . x y
解:
z ( x, xy ) yg 2 ( x, xy ) ---4 分 2 f (2 x y ) g1 x
2 z ( x, xy) g 2 ( x, xy) xyg 21 ( x, xy) ----8 分 2 f (2 x y) xg12 xy
2
2 2 3 2
3 2m 时,水箱所用的材料最省. --8 分
1 展开成 x 的幂级数并求其收敛区间。 x x3 1 1 1 1 1 1 1 1 解: f ( x) ------------1 分 ( ) ( x 1)( x 2) 3 x 1 x 2 6 1 x 3 1 x 2
福建师范大学试卷纸
共 6 页,第 5 页
Y C1 cos x C2 sin x, ------2 分
* * 观察可得, y y x 的一个特解为 y1 x, y y e x 的一个特解为 y2 e x . -----6 分 * * 由非齐次线性微分方程的叠加原理知 y* y1 y2 x ex
D D1 D D1
C. xydxdy 4 xydxdy
D D1
D. x dxdy 4 x 2 dxdy
2 D D1
5、若级数 an 收敛,则下列级数不收敛的是( B )
n 1
福建师范大学试卷纸
共 6 页,第 1 页
A.
2 an
n 1
B.
(an 1)
五(10 分)求级数
福建师范大学试卷纸
共 6 页,第 4 页
1 1 1 x dt ln -----------------(8 分) 2 1 t 2 1 x 1 1 1 1 1 2 2 ln(1 2) --------(10 分) 2 s ( ) 2 ln 故 n 1 2 1 2 n 0 (2n 1)2 2
第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)lim cos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)x y x =-求: 1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积; 2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f bb ξξ'-=∈对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算30arctan lim ln(12)x x x x →-+2、计算120ln(1)d (2)x x x +-⎰ 3、计算积分:21arctanxd x x +∞⎰ 4、已知两曲线()y f x =与1x yxy e++=所确定,在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos t x t udu y t t ⎧=⎪⎨=-⎪⎩,试求:d d y x,22d |d t y x 的值。
高等数学B(下)期末复习题
高等数学B(下)复习试题一、填空题1. 已知},1,3,2{-=a}3,2,1{-=b,则与b a,都垂直的单位向量为__ ()1,5,7(153±) 2 设a 、b 、c 都是单位向量,且满足0 =++c b a ,则=⋅+⋅+⋅a c c b b a .23-3.设x yy x arctan ln22=+,则 =dxdy ___. (y x y x -+) 4. 设yx z =,则=∂∂∂yx z2___________()x y x y ln 11+- 5.求曲面3=+-xy z e z在点)0,1,2(处的法线方程2112zy x =-=- 6. 设直线⎩⎨⎧=--+=++030z ay x b y x 在平面π上,而平面π与曲面22y x z +=相切于点()521,,-P ,试求常数a = b = . (-5,2)7.求函数z y x u ++=在点)1,0,0(处沿球面1222=++z y x 在这点的外法线方向的方向导数= 。
18.已知场,),,(222222cz b y a x z y x u ++=沿则u 场的梯度方向的方向导数是____.gradu cz b y a x =++222222)2()2()2(9设xy z y xz y x f +++=22232),,(z y x 623--+, 则=)0,0,0(gradf ____)6,2,3(-10. 函数)4)(6(),(22y y x x y x f --=在______点取得极________值为______.36,),2,3(大 11.方程02642222=----++z y x z y x 所确定的函数),(y x f z =的极大值是___________,极小值是_____________.(7,-1) 12.微分方程0132=+'+x y e y y 的通解为 C e e xy +=-331 13. 交换积分顺序,有()=⎰⎰--221,y y ydx y x f dy__.()()⎰⎰⎰⎰----+11111012,,x xdy y x f dxdy y x f dx14. 设125:22≤+y x D 。
高等数学B试卷及答案
高等数学试卷一、 单项选择题(本题共5小题,每小题4分,满分20分)1. 由[,]a b 上连续曲线y = g (x ),直线x a =,x b =()a b <和x 轴围成图形的面积S =( ).(A)dx x g ba⎰)((B)dx x g ba⎰)((C) dx x g ba⎰)((D)2))](()([a b a g b g -+2.下列级数中,绝对收敛的是( )(A )()∑∞=--11321n nn n (B )()∑∞=-+-11)1ln(311n n n(C )()∑∞=-+-12191n n n n (D )3.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数.则=∂∂22y z( ).(A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂ (B)22y v v f ∂∂⋅∂∂(C)22222)(y v v f y v v f ∂∂⋅∂∂+∂∂∂∂ (D)2222yv v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂4.⎰-1121dx x ( )(A )2 (B )-2(C )0 (D )发散5. 求微分方程2x y =''的通解( )(A )21412c x c x y ++= (B)cx x y +=124 (C )c x y +=124 (D )221412c x c x y ++= 二、 填空(本题共5小题,每小题4分,满分20分)1. 若⎰=22sin 3)(x dt t x x f ,则()f x '=2. 设f (x ,y )是连续函数,交换积分次序:⎰⎰⎰⎰+212141410),(),(yy ydx y x f dy dx y x f dy =3.幂级数()()∑∞=--121!21n nn n x 的收敛半径是4. 已知5)2(,3)2(,1)0('===f f f ,则⎰=2'')(dx x xf通解为x ce y x+=的微分方程为三、 计算下列各题(本题共4小题,每小题5分,满分20分)1. x y z cos )(ln =,求。
高等数学b期末考试试题及答案
高等数学b期末考试试题及答案一、选择题(每题5分,共30分)1. 函数f(x)=x^2-4x+3的最小值是:A. 0B. 1C. 2D. 3答案:B2. 极限lim(x→0)(sinx/x)的值是:A. 0B. 1C. 2D. 3答案:B3. 函数y=x^3-3x+1的导数是:A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. x^2-3答案:A4. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. 3答案:C5. 定积分∫(0到1)x^2dx的值是:A. 1/3B. 1/2C. 1D. 2答案:B6. 函数y=e^x的不定积分是:A. e^xB. e^x + CC. ln(x) + CD. x^2 + C答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。
答案:x=1, x=22. 函数f(x)=ln(x)的导数是______。
答案:1/x3. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程是______。
答案:y=2x-14. 定积分∫(0到2)x^2dx的值是______。
答案:4/3三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2在区间[0,2]上的最大值和最小值。
答案:函数f(x)=x^3-3x^2+2的导数为f'(x)=3x^2-6x。
令f'(x)=0,解得x=0或x=2。
计算f(0)=2,f(2)=-2,f(1)=0。
因此,在区间[0,2]上,函数的最大值为2,最小值为-2。
2. 求极限lim(x→∞)(1/x^2)。
答案:lim(x→∞)(1/x^2)=0。
3. 求函数y=x^3-6x^2+11x-6的单调区间。
答案:函数y=x^3-6x^2+11x-6的导数为y'=3x^2-12x+11。
令y'>0,解得x>3或x<11/3;令y'<0,解得11/3<x<3。
高等数学b第一章试题及答案
高等数学b第一章试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = \sin(x) \)C. \( f(x) = x^3 \)D. \( f(x) = \cos(x) \)答案:B2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. 2答案:B3. 函数 \( f(x) = x^2 \) 的导数是:A. \( 2x \)B. \( x^2 \)C. \( \frac{1}{x} \)D. \( 2x^3 \)答案:A4. 积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A二、填空题(每题5分,共20分)1. 如果 \( \lim_{x \to 2} f(x) = 3 \),那么 \( \lim_{x \to 2} (2f(x) - 1) \) 的值是 ________。
答案:52. 函数 \( f(x) = x^3 - 3x \) 的导数是 ________。
答案:\( 3x^2 - 3 \)3. 函数 \( f(x) = e^x \) 的不定积分是 ________。
答案:\( e^x + C \)4. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 是一个________。
答案:收敛三、解答题(每题10分,共20分)1. 求函数 \( f(x) = \ln(x) \) 在 \( x = 1 \) 处的切线方程。
答案:切线方程为 \( y = x - 1 \)。
2. 计算定积分 \( \int_{0}^{1} e^x dx \)。
高等数学b试题及答案
高等数学b试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2-3B. 3x^2+3C. x^3-3D. x^3+3答案:A2. 计算定积分∫(0,1) (2x+1)dx的值。
A. 3/2B. 5/2C. 2D. 1答案:B3. 求极限lim(x→0) [sin(x)/x]。
A. 1B. 0C. -1D. 2答案:A4. 判断级数∑(n=1,∞) (1/n^2)的收敛性。
A. 收敛B. 发散C. 条件收敛D. 交错收敛答案:A5. 设矩阵A=(aij)为3阶方阵,且|A|=-2,求A的行列式。
A. -2B. 2C. 4D. -4答案:A6. 判断函数y=x^2-6x+8在区间[2,4]上的单调性。
A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(x)在x=2处取得最小值,则c的值为________。
答案:42. 设函数f(x)=ln(x),求f'(x)的值。
答案:1/x3. 计算二重积分∬(D) xy dxdy,其中D为区域x^2+y^2≤4。
答案:8/34. 设数列{an}满足a1=1,an+1=2an+1,求数列的通项公式。
答案:an=2^(n-1)三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x+1的极值点。
解:首先求导f'(x)=3x^2-3,令f'(x)=0,解得x=±1。
经检验,x=1为极小值点,x=-1为极大值点。
2. 计算定积分∫(0,2) (3x^2-2x+1)dx。
解:∫(0,2) (3x^2-2x+1)dx = [x^3-x^2+x](0,2) = (8-4+2) - (0-0+0) = 6。
3. 求极限lim(x→∞) [(x^2+3x+2)/(x^2-x+1)]。
高数B(上)试题及答案
高等数学B (上)试题1答案一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”) ( × )1. 两个无穷大量之和必定是无穷大量. ( × )2. 闭区间上的间断函数必无界.( √ )3. 若)(x f 在某点处连续,则)(x f 在该点处必有极限. ( × )4. 单调函数的导函数也是单调函数.( √ )5. 无穷小量与有界变量之积为无穷小量.( × )6. ()y f x =在点0x 连续,则()y f x =在点0x 必定可导. ( × )7. 若0x 点为()y f x =的极值点,则必有0()0f x '=. ( × )8. 若()()f x g x ''≡,则()()f x g x ≡.二、填空题(每题3分,共24分) 1. 设2)1(x x f =-,则(3)f =16. 2.1lim sinx x x→∞=1。
3.112lim sin sin xx x x x x x x →∞⎡⎤+⎛⎫++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21e +.4. 曲线326y y x -=在(2,2)-点切线的斜率为23.5.设0()f x A '=,则000(2)(3)limh f x h f x h h→+--=5A.6. 设1()sin cos,(0)f x x x x=≠,当(0)f =0时,)(x f 在0=x 点连续.7. 函数33y x x =-在x =1-处有极大值.8. 设)(x f 为可导函数,(1)1f '=,21()()F x f f x x ⎛⎫=+ ⎪⎝⎭,则=')1(F 1.三、计算题(每题6分,共42分)1.求极限 3(2)(3)(4)lim5n n n n n→+∞+++ . 解: 3(2)(3)(4)lim 5n n n n n →+∞+++234lim 111n n n n →+∞⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(3分)1= (3分)2. 求极限 0cos lim sin x x x xx x →--.解:0cos lim sin x x x xx x→--01cos sin lim1cos x x x xx →-+=- (2分) 02sin cos limsin x x x xx→+= (2分) 3= (2分)3. 求23(1)(2)(3)y x x x =+++在(0,)+∞内的导数.解:ln ln(1)2ln(2)3ln(3)y x x x =+++++, (2分)123123y y x x x '=+++++, (2分) 故23123(1)(2)(3)123y x x x x x x ⎛⎫'=+++++ ⎪+++⎝⎭(2分) 4. 求不定积分221d 1x x x ++⎰.解:221d 1x x x ++⎰22211d(1)d 11x x x x=++++⎰⎰ (3分) 2ln(1)arctan x x C =+++ (3分)5. 求不定积分2sin d x x x ⎰.解:2sin d x x x ⎰()221sin d 2x x =⎰ (3分) 21cos 2x C =-+ (3分)6.求不定积分sin 2d x x x ⎰. 解:sin 2d x x x ⎰11sin 2d(2)dcos222x x x x x ==-⎰⎰ (2分) ()1cos 2cos2d 2x x x x =--⎰ (2分)11cos 2sin 224x x x C =-++ (2分)7. 求函数()cos sin xy x =的导数.解:ln cos ln sin y x x = (3分)()()cos 12sin cotlnsin x y x x x +'=- (3分)四、解答题(共9分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.解:设垂直于墙壁的边为x ,所以平行于墙壁的边为202x -,所以,面积为2(202)220S x x x x =-=-+, (3分)由4200S x '=-+=,知 (3分) 当宽5x =时,长20210y x =-=, (3分) 面积最大51050S =⨯=(平方米)。
高等数学b答案(含综合练习)
高等数学(B )(1)作业答案高等数学(B )(1)作业1初等数学知识一、名词解释:邻域——设δ和a 是两个实数,且0>δ,满足不等式δ<-a x 的实数x 的全体,称为点a 的δ邻域。
绝对值——数轴上表示数a 的点到原点之间的距离称为数a 的绝对值。
记为a 。
区间——数轴上的一段实数。
分为开区间、闭区间、半开半闭区间、无穷区间。
数轴——规定了原点、正方向和长度单位的直线。
实数——有理数和无理数统称为实数。
二、填空题1.绝对值的性质有0≥a 、b a ab =、)0(≠=b ba b a 、a a a ≤≤-、b a b a +≤+、b a b a -≥-。
2.开区间的表示有),(b a 、。
3.闭区间的表示有][b a ,、。
4.无穷大的记号为∞。
5.)(∞+-∞,表示全体实数,或记为+∞<<∞-x 。
6.)(b ,-∞b b x <<∞-。
7.)(∞+,a +∞<<x a 。
8.去心邻域是指)()(εε+-a a a a ,, 的全体。
用数轴表示即为9.MANZU9.满足不等式112-<≤-x 的数x 用区间可表示为]211(--,。
三、回答题 1.答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。
(2)培养严密的思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。
(4)树立发展变化意识,实现从常量数学到变量数学的转变。
2.答:包括整数与分数。
3.答:不对,可能有无理数。
4.答:等价于]51(,。
5.答:)2321(,。
四、计算题1.解:12020102010)2)(1(<>⇒⎩⎨⎧<-<-⎩⎨⎧>->-⇒>--x x x x x x x x 或或。
),2()1,(+∞-∞∴ 解集为。
2.解:⎩⎨⎧≤-≤-⎩⎨⎧≥-≥-⇒≥--⇒≥+-050105010)5)(1(0562x x x x x x x x 或 15≤≥⇒x x 或 )5[]1∞+∞-∴,,解集为( 。
《高等数学》期末考试B卷(附答案)
《高等数学》期末考试B卷(附答案)【编号】ZSWD2023B0089一、填空题 (每空2分,共20分) 1、]1sin sin 1[lim x x x x x 【答案】12、设)(x f 的定义域是]1,0[,那么函数)2(x f 的定义域是 【答案】]0,(3、设函数1,121,211)(1x x x x x x x f x a, 当 a ______________时使)(lim 1x f x 存在 【答案】2ln4、设42sin x y ,则dydx=__________________。
【答案】3448sin cos x x x5、已知成本函数为5002)(2 x x x C ,当产量为1000时,边际成本为______ _. 【答案】20026、若 C x dx xx f sin )(ln ',则 )(x f【答案】C e x )sin(7、已知2111x y dt t,求dy dx【答案】221xx8、函数21()(1)x e f x x x 的可去间断点是0x =__0___, 补充定义0()f x =_____ , 则函数()f x 在0x 处连续。
【答案】0,-2二、单项选择题(每小题2分,共10分)1、当0x 时,与31000x x 等价无穷小的是( )AB C x D 3x【答案】C2、以下结论正确的是( )A 函数)(x f 在),(b a 内单调增加且在),(b a 内可导,则必有0)(' x f ;B 函数)(x f 在),(b a 内的极大值必大于极小值;C 函数)(x f 极值点不一定是驻点;D 函数)(x f 在0x 的导数不存在,则0x 一定不是)(x f 的极值点.【答案】C3、设()x y f e , 则 dy ( ).A. '()x x f e deB. '()()x f e d xC. '()x x f e e dxD.'()x x f e de【答案】D4、设函数()f x 在区间(,)a b 内可导, 1x 和2x 是(,)a b 内的任意两点, 且 12x x , 则至少存在一点 , 使( )成立.A '()()()() (,)f b f a f b a a bB '212112 ()()()() (,)f x f x f x x x xC '111()()()() (,)f b f x f b x x bD '222 ()()()() (,)f x f a f x a a x 【答案】B5、在开区间),(b a 内,)(x f 和)(x g 满足)()(''x g x f ,则一定有( )A. )()(x g x fB. 1)()( x g x fC. ''[()][()]f x dx g x dxD. )()(x dg x df【答案】D【编号】ZSWD2023B0089三、计算题(每小题5分,共35分) 1、求极限20sin tan sin limxx xx x 2200222200sin tan tan (cos 1)limlimsin sin 10,sin ,cos 1,tan 21()sin tan 12 lim lim sin 2x x x x x x x x x x x x x x x x x x x x x x x x x x x Q :解2、已知)(u f 可导,))(1ln(2x e f y ,求'y .解: 令u ex2, ))(1ln())(1ln(2u f e f y x利用复合函数求导法得''')(1)(u u f u f y x)(1)(222'2x x x e f e f e .3、讨论函数221,0(), 0x e x f x x x的连续性和可导性;解:当0x 和0x 时,函数()f x 对应的都是定义区间内的初等函数,故均连续和可导。
大学课程《高等数学B》期末试卷及参考答案
共 8 页 第 1 页《高等数学B 》课程期末试卷一.填空题(本题共9小题,每小题4分,满分3 6分)1. 幂级数1(3)3nnn x n ∞=-⋅∑的收敛域为 ; 2. 设222()z y f x y =+-,其中()f u 可微, 则yzx x z y∂∂+∂∂= ; 3. 曲线224x y z z x y++=⎧⎨=+⎩在点(1,1,2)处的法平面方程是 ;4. 设C 为曲线22241x y z z z ⎧++=⎨=⎩,则曲线积分ds z y x c222++⎰= ;5. 交换二次积分的次序⎰⎰--xx x dy y x f 2222),(dx = ;6.三次积分12220d )d x y x y z z ++⎰⎰⎰的值是 ;7. 散度()3(2,0,)div cos(2)x y y z π+-+=i j k ;8. 已知第二型曲线积分4124(4)d (65)d Bn n Ax xy x x y y y -++-⎰与路径无关,则n = ;9.平面5431x y z ++=被椭圆柱面22491x y +=所截的有限部分的面积为 . 二. 计算下列各题(本题共4小题,每小题7分,满分28分)10.设(,)z z x y =是由方程1xy yz xz ++=所确定的隐函数,0x y +≠,试求2zx y∂∂∂.共 8 页 第 2 页11.计算二重积分2()d d Dx y x y +⎰⎰,其中区域{}22(,)24D x y y x y y =≤+≤.12.设立体Ω由曲面2221x y z +-=及平面0,z z ==围成,密度1ρ=,求它对z 轴的转动惯量.13. 计算曲面积分d S z ∑⎰⎰,∑为球面2222x y z R ++=上满足0h z R <≤≤的部分.共 8 页 第 3 页三(14).(本题满分8分)求函数22(,)f x y x x y =-- 在区域{}22(,)21D x y x y =+≤上的最大值和最小值.四(15)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业、班级:姓名:学号:
(2,+∞
)
佛山科学技术学院2010级毕业前补考 《高等数学B1》考试试题解答及评分标准
一、单项选择题(15分,每题3分) 1、A 2、A 3、C 4、C 5. D
二、填空题 (15分,每题3分) 1、4 2、10 3、2
4、2cos2xdx
5、0
三、计算下面各题(30分,每题5分)
24
65
24
6
(5)(3)1.16511
53(1)(1)311165156
lim lim x n x x x x x x x x
→+∞→+∞
++++++=++解:.分 =分
()14140
42.14(14)
35lim lim x x x
x
x x x x e --→→∞
--=-=解:分
分
20
1cos sin 32152
lim
lim
x x x
x x x →→-=3.解:=分分
4.解:
()()33323
3
'ln()sin '
ln()'sin ln()sin '....................31(13)sin ln()cos ..................5y x x x x x x x x x x x x x x x x
=+⎡⎤=+++⎣⎦
++++分=分
cos()(1')sin()(')'3sin()5sin()1
x y x y x y
x y
e xy y x e y xy y xy y y xy e y e x xy +++++=+-+=-'=--5、解:两边对求导
分分
6.解:两边同时取对数:ln ln ln .........2x y x x x ==分
两边再同时对x 求导:
'
1ln .............4y x y =+分
[]'1ln ...........5x dy
y x x dx ==+分
三、求积分(每题6分,共24分) 1.解
()22
222
22223(1)1(1)..............321(1)1.. (42)
(1)().........66x x dx x dx x d x x c c -=
-=++-=+⎰
⎰⎰分分为任意常数分
2. 解:
520
520
620
cos sin sin sin ..........3sin .. (56)
1
= (66)
x xd x
xd x x πππ==
⎰
⎰分分
分
3.解:
....2....4. (6x)
x x
x
x x xe dx
xde xe e dx xe e C =--+⎰⎰⎰分
=分
=分
1
2
122121
2224.ln 1ln 12
1
1ln ln 3122114221161244
e
e e e
x x d x
x d x e x x x d x
e x d x e x e e =
=-=
-+-=
⎰⎰⎰⎰分分分 =分
解:
四.解设AD=x ,DB=100-x ,
()10053y CD DB =⨯+⨯
=1003(100) (0100)x x ⎡⎤+-≤≤⎣⎦
------------------------------( 4
分)
1003)y k '=-------------------------------( 7分)
由0y '=得15x =------------------------------( 8分)
五:解
13
120
1
210(1)1322|433
(2)61|822
s x V xdx
x πππ
======⎰
⎰:作图
分
分
分
分
分。