14.1.4整式的除法(2)除法法则

合集下载

《整式的除法》课件

《整式的除法》课件
整数加减法混淆的错误是指在进行整式除法时,错误地将整 数加减法与整式除法相混淆,导致计算不准确。
详细描述
例如,在进行整式除法时,误将整数3除以2算成3/2=1.5, 而正确的计算结果应为3/2=1.05。这种错误常常是由于计算 习惯引起的,需要学生在进行整式除法时特别注意计算方法 和计算细节。
括号与乘除混合运算混淆的错误
总结词
括号与乘除混合运算混淆的错误是指在运算中,括号与乘除符号的排列顺序 出现混淆,导致计算结果错误。
详细描述
例如,将4(a+b)÷(c+d)算成4(a+b)/(c+d),而正确的计算结果应为 (4(a+b))/(c+d)。这种错误需要学生在进行运算时注意符号的排列顺序和括号 的使用方法。
乘方与乘除混合运算混淆的错误
括号与乘除混合运算的性质
在进行乘除混合运算时,括号可以改变运算的顺序,例如 $(a + b) \div c = a \div c + b \div c$。
在进行乘除混合运算时,括号可以简化运算,例如$2 \times (a + b) \div c = (2a + 2b) \div c$。
乘方与乘除混合运算的性质
将整式除法转化为多个因式的乘法运算,简化计算过程
将复杂的多项式分解为简单的多项式组合,降低计算难度
几个典型的因式分解技巧
1 2
提取公因式法
将多项式中相同的因式提取出来,以便后续计 算
公式法
利用平方差公式、立方差公式等将多项式进行 分解
3
分组分解法
将多项式按照一定的规律分组,每组内进行因 式分解
因式分解在整式除法中的应用
1
在进行整式除法时,可以将被除式和除式同时 进行因式分解,使计算更加简便

整式的除法整式的除法运算与应用

整式的除法整式的除法运算与应用

整式的除法整式的除法运算与应用整式的除法是代数学中的一种运算,它涉及到多项式之间的除法。

在整式的除法运算中,我们需要掌握整式的基本概念和运算规则,并对其应用进行深入理解。

本文将介绍整式的除法运算及其应用,并探讨它们在实际问题中的作用。

1. 整式的基本概念和运算规则整式是由常数、变量和它们的乘积所组成的代数式,例如:3x²+2xy-5。

整式的除法运算是指将一个整式除以另一个整式,从而得到商式和余式。

在整式的除法运算中,我们要遵循以下运算规则: - 除法的被除式与除数都只能是整式。

- 除数不能为零。

- 除法的结果可以表示为商式和余式的形式。

- 余式的次数小于除数的次数。

2. 整式的除法运算步骤整式的除法运算通常需要通过长除法的方法进行计算,具体步骤如下:a) 将除数和被除式按照次数从高到低排列。

b) 将被除式的首项与除数的首项相除,得到商式的首项。

c) 将商式的首项与除数的各项相乘,然后将乘积与被除式相减,得到新的被除式。

d) 重复步骤b)和c),直到被除式的次数小于除数的次数为止。

最终,所得到的商式就是整式的商式,而新的被除式就是整式的余式。

3. 整式除法的应用整式的除法在实际问题中具有广泛的应用,主要体现在以下方面:a) 多项式因式分解:整式的除法可以用来进行多项式的因式分解,通过将多项式除以其中一个因式,得到另一个因式和余式的形式,从而简化多项式的表达和计算。

b) 方程求解:整式的除法可以用来解决一些方程问题,通过将方程两边进行整式的除法运算,得到方程的解。

c) 函数图像的研究:整式的除法可以用来研究函数的性质和图像,通过对函数的整式表达进行除法运算,得到函数的特征,例如函数的极限、零点等。

4. 整式除法运算的例子为了更好地理解整式的除法运算,我们来看一个例子:整式除法运算:(3x²+2xy-5) ÷ (x-1)a) 首先,将被除式和除数按照次数从高到低排列:3x²+2xy-5-----------x-1b) 将被除式的首项3x²与除数的首项x相除,得到商式的首项3x:3xc) 将商式的首项3x与除数x-1相乘,得到3x²-3x。

人教版八年级数学上册第十四章 1 1.4 第3课时 整式的除法

人教版八年级数学上册第十四章 1 1.4 第3课时 整式的除法

2
3
4
5
).
关闭
B
答案
-5知识梳理

2.计算(a2b)3·
2
3
4
5
2

A.a5b5
1
预习自测
,结果是 (
).
B.a4b5 C.ab5 D.a5b6
关闭
A
答案
-6知识梳理
1
预习自测
2
3
4
5
3.若N表示一个单项式,且N·(-2x2y)=-3ax2y2,则N表示的单项式是
(
).
3
A. ay
2
3
C.- xy
7
2
(2)(36a4b3-24a3b2+6a2b)÷6a2b
=36a4b3÷6a2b-24a3b2÷6a2b+6a2b÷6a2b
=6a2b2-4ab+1.
点拨:在多项式除以单项式的运算过程中,既要注意各项的符号
和每个字母的指数运算,又要注意防止漏项的情况发生.
2
B.-3ay
1
D. axy
2
关闭
A
答案
-7知识梳b的结果是
2
3
4
5
.
关闭
3a+4
答案
-8知识梳理
预习自测
1
2
3
4
5
5.按程序x→平方→+x→÷x进行计算后,结果用x的式子表示

.(填入运算结果的最简形式)
关闭
1+x
答案
1
2
1.单项式除以单项式
【例1】 计算:9a5b3c÷(-6a4b).
1

人教版八年级数学上册教学设计:14.1.4整式的除法(多项式除以单项式)

人教版八年级数学上册教学设计:14.1.4整式的除法(多项式除以单项式)
4.培养学生的数学思维,让学生认识到数学知识在实际生活中的应用价值,培养学生的应用意识和创新意识。
二、学情分析
八年级学生已经在前期学习了整式的加减、乘法运算,对整式的概念和基本的运算规则有了一定的了解和掌握。在此基础上,本章节的整式除法运算对学生而言既是挑战也是提升。学生在此阶段正处于抽象逻辑思维逐渐形成的关键时期,他们对于运算规律的探究和总结能力有了明显提高,但仍然需要通过具体实例和操作来巩固理解。此外,学生在解决实际问题时,可能会对将问题转化为整式除法运算感到困难,需要教师在教学过程中给予适当的引导和帮助。因此,在教学过程中,应注重激发学生的学习兴趣,通过多样化的教学手段和实践活动,让学生在轻松愉快的氛围中掌握整式的除法运算,提高他们的数学素养。
人教版八年级数学上册教学设计:14.1.4整式的除法(多项式除以单项式)
一、教学目标
(一)知识与技能
1.理解并掌握整式的除法法则,特别是多项式除以单项式的运算法则。
2.能够运用整式的除法运算法则,正确地进行计算,并对计算结果进行简化。
3.能够解决实际问题时,将问题转化为整式的除法问题,并灵活运用所学的运算方法得出答案。
(二)讲授新知
在导入新课之后,我会正式进入整式的除法运算的学习。首先,我会通过具体的例子来解释什么是整式除法,以及为什么我们需要学习这个概念。接着,我会详细讲解整式除法的运算规则,特别是多项式除以单项式的步骤:
1.将多项式的每一项分别除以单项式。
2.合并同类项。
3.化简结果的系数。
在讲解过程中,我会用黑板上的板书和多媒体演示相结合的方式,确保学生能够清晰地看到每一步的操作,并理解其背后的原理。
4.通过整式的除法运算,提高学生的逻辑思维能力和数学运算能力,为后续学习更高层次的代数运算打下基础。

14.1.4整式的除法(第2课时)课件教案

14.1.4整式的除法(第2课时)课件教案

14.1.4 整式的除法(二)教学目标:1、知识点:①多项多除以多项式的运算法则及其应用;②多项式除以单项式的算理。

2、能力:理解多项式除以单项式的除法算理,发展有条理地思考及其表达能力。

3、情感与价值观:经历探索多项式除以单项式的过程,培养教学学习能力,获得成功的体验。

教学重点:多项式除以单项式的运算法则及其应用,探求多项式的算法,培养创新能力。

教学难点:对多项式除以单项式的算法的理解及其应用。

教学过程:一、创设情景,引入新课。

(电脑幻灯)任意给一个数,按下列程序计算下去,写出输出结果:输入x是多项式除以单项式。

二、计算下列各题,说说你的理由(课题:多项式除以单项式)1、(ad+bd )÷d2、(2a b+3ab) ÷a3、(x 3y -2xy) ÷(xy)解法1:多项式除以一个单项式,可以看成多项式乘以这个单项式的倒数,再用这个倒数去乘以多项式的各项,所得结果相加(1)(ad+bd )÷d=(ad+bd)×d 1=ad ·d 1+bd ·d 1=d bd dad +=a+b (2)(2a b+3ab)÷a=(2a b+3ab)×a 1=2ab ·a 1+3ab ·a 1=a ab a b a 32+=ab+3b (3)(x 3y -2xy )÷(xy)=(x 3y -2xy)×xy 1=(x 3y )·xy 1-(2xy)·xy1=2y -2 解法2:利用乘法和除法互为逆运算(1)中(ad+bd )÷d 是多少?试着想一下:( )×d=ad+bd ,反用乘法分配律可得出(a+b )×d=ad+bd ,所以(ad+bd )÷d=a+b ,同理(2)困(ab+3b )×a=2a b+3ab ,所以(2a b+3ab )+a=ab+3b ,(3)因(2y -2)·(xy )=x 3y -2xy ,所以(x 3y -2xy )÷(xy)= 2y -2 共同分析得出:(1)(ad+bd )÷d=a+b=(ab)÷d+(bd)÷d(2)(2a b+3ab )÷a=ab+3b=(2a b)÷a+(3ab)÷a(3)(x 3y -2xy )÷(xy)= 2y -2=(x 3y )÷(xy)-(2xy)÷(xy)2、法则:多项式除以多项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法 第4课时 整式的除法教学设计 (新版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法 第4课时 整式的除法教学设计 (新版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第4课时整式的除法教学设计(新版)新人教版一. 教材分析整式的乘除法是八年级数学上册第14.1节的内容,这一部分主要让学生掌握整式相乘和相除的法则,培养学生解决实际问题的能力。

教材通过实例引入整式的乘除法,让学生在具体的情境中探索和发现规律,进而掌握运算法则。

本节课的内容是整式除法,是整式乘除法的进一步延伸,对于学生来说,具有一定的挑战性。

二. 学情分析八年级的学生已经学习了整式的基本概念,具有一定的数学基础。

但是,对于整式的乘除法,他们可能还存在着一些模糊的认识,需要通过具体的实例和练习来进一步理解和掌握。

同时,学生可能对于如何将实际问题转化为数学问题还存在着一定的困难,因此,在教学过程中,需要教师引导学生将实际问题与数学知识相结合,提高他们解决问题的能力。

三. 教学目标1.理解整式除法的概念,掌握整式除法的运算法则。

2.能够运用整式除法解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和创新能力,提高学生的数学素养。

四. 教学重难点1.教学重点:整式除法的概念和运算法则。

2.教学难点:如何将实际问题转化为数学问题,运用整式除法解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、分组讨论法等多种教学方法,引导学生通过自主学习、合作学习,发现和总结整式除法的运算法则,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入整式除法概念。

例如,已知多项式f(x)=x^2+4x+4可以被多项式g(x)=x+2整除,让学生思考如何求出商和余数。

2.呈现(10分钟)通过PPT展示整式除法的定义和运算法则,引导学生理解和记忆。

3.操练(10分钟)让学生分组讨论,运用PPT中的例题,自己动手完成整式除法的运算,并互相检查。

初中数学《整式的除法》实用ppt北师大版1

初中数学《整式的除法》实用ppt北师大版1

自学指导二(2分钟)
探究二:多项式除以单项式(阅读教材103页)
(1)(ad+bd)÷d = ____a_+_b____
(2)(a2b+3ab)÷a = __a_b_+__3_b__
(3)(xy3–2xy)÷(xy) = ___y_2_–_2_
( ad+bd )÷d= ad bd ad bd
d
dd
=(ad )÷ d + (bd )÷d
逆用同分母的 加法、约分。
2、如何进行多项式除以单项式的运算?
多项式除以单项式先把这个多项式的每一项分别
除以单项式,再把所得的商相加。
自学检测二(8分钟)
1、计算:(1)(24m3n-16m2n2+mn3)÷(-8m).
(2)[(x+y)2-y(2x+y)-8x]÷2x
解:(1)原式=(24m3n)÷(-8m)+(-16m2n2)÷(-8m)+(mn3)÷(-
8m)
1
8
(=2)-3m原2n式+2=m(xn22+-2nx3y.+y2-2xy-y2-8x) ÷2x
=(x2-8x) ÷2x
=x2 ÷2x+(-8x) ÷2x =0.5x-4
课堂小结(3分钟)
单项式除 以单项式

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。

整式除法法则公式(二)

整式除法法则公式(二)

整式除法法则公式(二)整式除法法则公式1. 分配率法则分配率法则是整式除法中的一个重要法则,它的公式为:(a+b)×c=a×c+b×c这个公式表示,当一个整式乘以一个含有两项的整式时,我们可以先分别将这个整式的每一项和另一个整式相乘,再将相乘的结果相加。

例子:将2x(x+3)展开。

首先,我们可以将2x(x+3)按照分配率法则展开:2x(x+3)=2x×x+2x×3=2x2+6x因此,2x(x+3)展开后的结果为2x2+6x。

2. 合并同类项法则合并同类项法则是整式除法中的另一个重要法则,它的公式为:a×b+a×c=a×(b+c)这个公式表示,当一个整式中含有多个项,且这些项中的字母部分相同,我们可以将这些项中的字母部分提取出来,并进行合并。

例子:将4x2+2x2合并。

首先,我们可以利用合并同类项法则将4x2+2x2合并:4x2+2x2=(4+2)x2=6x2因此,4x2+2x2合并后的结果为6x2。

3. 相反数法则相反数法则是整式除法中的一条基本法则,它的公式为:−a×b=−(a×b)这个公式表示,一个整式乘以一个负数时,可以将整式的符号和绝对值分别与负数的符号和绝对值相乘。

例子:将−3×(x+2)展开。

首先,我们可以利用分配率法则将−3×(x+2)展开:−3×(x+2)=−3×x−3×2=−3x−6因此,−3×(x+2)展开后的结果为−3x−6。

4. 平方差公式平方差公式是整式除法中的一个特殊公式,它的公式为:(a−b)×(a+b)=a2−b2这个公式表示,两个互为相反数的整式相乘,可以得到差的平方。

例子:将(2x−3)×(2x+3)展开。

首先,我们可以利用平方差公式将(2x−3)×(2x+3)展开:(2x−3)×(2x+3)=(2x)2−(3)2=4x2−9因此,(2x−3)×(2x+3)展开后的结果为4x2−9。

《整式的除法》课件

《整式的除法》课件

总结词
在整式除法中,利用代数公式可以简化 运算过程,提高计算的准确性。
VS
详细描述
在整式除法中,一些常用的代数公式如平 方差公式、完全平方公式等可以帮助我们 快速解决一些复杂的运算问题。例如,在 计算 (a+b)^2/(a-b) 时,可以利用平方 差公式进行化简,从而得到 (a+b)/(a-b) 的形式。
详细描述
设计一系列简单的整式除法题目,包 括单项式除以单项式、多项式除以单 项式等,旨在帮助学生熟悉整式除法 的基本概念和运算规则。
进阶练习题
总结词
提高运算能力和技巧
详细描述
设计一些稍具难度的整式除法题目,包括需要运用交换律、结合律、分配律等运算规则 的题目,旨在提高学生的运算能力和技巧。
综合练习题
04
整式除法的实际应用
在数学问题中的应用
代数方程求解
整式除法在代数方程求解中有着 广泛的应用,如一元二次方程、 一元高次方程等。通过整式除法 ,可以将方程化简,便于求解。
函数图像绘制
在数学函数图像绘制中,整式除法 可以用于计算函数值,从而绘制出 精确的函数图像。
数学分析
在数学分析中,整式除法可以用于 极限、导数和积分的计算,是数学 分析中重要的运算技巧之一。
整式除法运算
在数学中,整式除法运算是一种基本 的代数运算,用于简化代数表达式和 解决代数问题。
整式除法的运算顺序
01
02
03
04
先进行括号内的运算;
然后进行乘除运算,最后进行 加减运算;
同级运算按照从左到右的顺序 进行;
先进行乘方运算,再进行乘除 运算,最后进行加减运算。
整式除法的应用场景
01
02

2018中考数学知识点:整式的除法法则

2018中考数学知识点:整式的除法法则

2018中考数学知识点:整式的除法法则新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!
整式的除法法则:
1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。

数学符号表示:(a0,m、n为正整数,并且mn)
2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;。

人教版数学八年级上册14.1.4.4整式的除法教学设计

人教版数学八年级上册14.1.4.4整式的除法教学设计
2.培养学生运用整式除法解决实际问题的能力,提高学生的数学思维品质。
-能够将实际问题转化为整式除法问题,运用所学知识解决问题。
-学会分析问题,选择合适的整式除法方法解决问题,培养思维的灵活性和敏捷性。
(二)过程与方法
1.引导学生通过自主探究、合作交流的方式,掌握整式除法的方法。
-创设情境,激发学生自主探究的兴趣,引导学生主动发现整式除法的规律。
-提问:“如果我们有多个相同的物品要平均分给几个人,或者我们要把一个多项式平均分成几个相同的部分,我们应该怎么计算呢?”
-通过这个问题的引导,自然过渡到整式的除法运算。
2.知识回顾:简要回顾整式的加减和乘法运算,强调整式除法与它们的联系与区别。
-提问:“我们在学习整式加减和乘法时,遇到了哪些运算规则?整式除法又会有什么不同呢?”
4.小组讨论题:布置一道具有挑战性的整式除法题目,要求学生在课后小组内进行讨论,共同解决问题。鼓励学生分享解题思路,提高学生的合作能力和沟通能力。
5.总结反思:要求学生撰写一篇关于整式除法学习的心得体会,内容包括学习过程中的困难、收获以及对本节课知识的理解。通过反思,促使学生形成良好的学习习惯,提高自我评价和自我调整的能力。
-强调同类项的概念,并说明在除法运算中的重要性。
-演示整式除法的竖式计算过程,并解释每一步的操作意义。
3.特殊情况说明:讨论当被除式或除式中含有未知数的特殊情况,如何进行整式除法运算。
-通过具体的例题,讲解含未知数的整式除法的运算技巧。
(三)学生小组讨论
1.分组讨论:将学生分成小组,每组选择一个或几个具有代表性的整式除法题目进行讨论。
人教版数学八年级上册14.1.4.4整式的除法教学设计
一、教学目标
(一)知识与技能

人教版数学八年级上册14.1.4第3课时整式的除法优秀教学案例

人教版数学八年级上册14.1.4第3课时整式的除法优秀教学案例
2.培养学生与他人合作、交流的能力,提高学生的团队合作意识和沟通能力。
3.培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
在教学过程中,我采用问题驱动的教学方法,引导学生主动探究、发现和解决问题。同时,我注重运用小组合作、讨论等教学方法,鼓励学生发表自己的观点,培养学生的团队合作意识和沟通能力。此外,我还结合生活实际,设计具有针对性的案例,让学生在解决问题的过程中,运用数学知识,提高学生的数学素养。
在教学过程中,我注重启发引导,让学生在探究中发现问题、分析问题、解决问题,从而提高学生的思维能力和创新能力。同时,我关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼和发展。
二、教学目标
(一)知识与技能
1.让学生掌握整式除法的基本概念,理解整式除法的运算规则和方法。
2.培养学生运用整式除法解决实际问题的能力,提高学生的数学应用意识。
(二)讲授新知
在导入新课后,我会开始讲解整式除法的基本概念和运算规则。我会用简单的语言解释什么是整式除法,并通过具体的例子来说明整式除法的运算过程。我会强调整式除法与单项式乘法和多项式乘法的关系,并引导学生通过观察和分析例子来发现整式除法的运算规律。
(三)学生小组讨论
在讲授新知后,我会将学生分成小组,让他们合作解决一些与整式除法相关的实际问题。我会提供一些问题或案例,让学生们讨论并找出解决方法。这样的活动可以培养学生的团队合作能力和沟通能力,同时也可以让他们在实际问题中应用所学的整式除法知识。
本节课的教学目标有三个:一是使学生掌握整式除法的基本概念和运算方法;二是培养学生运用整式除法解决实际问题的能力;三是通过合作交流,培养学生的团队合作意识和沟通能力。
为了达到以上教学目标,我设计了以下教学过程:首先,通过复习相关知识,为新课的学习做好铺垫;其次,通过自主学习,让学生掌握整式除法的基本运算方法;然后,通过合作交流,让学生进一步理解整式除法的意义和应用;最后,通过练习巩固,提高学生的应用能力。

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)
在实践活动环节,我鼓励学生们分组讨论并解决实际问题。这个过程中,我观察到学生们积极参与,互相交流想法,这有助于他们更好地将理论知识应用到实际情境中。然而,我也注意到,在小组讨论中,有些学生较为内向,参与度不高。为了提高他们的参与度,我计划在未来的课程中更加注重个体差异,鼓励每个学生都能发表自己的观点。
在学生小组讨论环节,我尝试作为一个引导者,提出开放性的问题来启发学生的思考。我发现这种方法很有效,学生们能够从不同角度思考问题,并提出创造性的解决方案。但同时,我也意识到需要更多的时间来让学生们充分讨论和分享,以便他们能够更深入地理解整式除法的应用。
此外,我也在思考如何在课堂上更好地处理教学难点。在今天的课程中,长除法的步骤和余数的处理是学生们普遍感到困难的地方。为了克服这个难点,我计划在下一节课中使用更多的可视化工具和实物操作,让学生们能够直观地看到每一步的操作,从而加深理解。
最后,我认识到教学反思的重要性。通过今天的课堂实践,我了解到需要不断调整教学方法和策略,以满足不同学生的学习需求。我将在未来的教学中,更加注重课堂互动,提高学生的参与度,并及时收集学生的反馈,以便更好地调整教学进度和内容。
针对以上难点与重点,教师应通过以下方法帮助学生理解:
-使用具体例题,逐步演示整式除法的步骤,强调每一项的处理方法。
-利用图示和动画,帮助学生形象理解长除法的每一步操作。
-通过变式练习,让学生在不同类型的题目中应用整式除法,加强余数处理的能力。
-创设真实情境,引导学生将实际问题转化为整式除法问题,提高建模能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式除法的基本概念。整式除法是指将一个多项式除以另一个多项式的运算。它是代数运算中的基础,可以帮助我们解决许多实际问题。

《整式的除法》课件

《整式的除法》课件

《整式的除法》课件汇报人:2023-11-26contents •整式除法基本概念•单项式除以单项式方法论述•多项式除以单项式技巧总结•多项式之间相除算法剖析•整式除法在实际问题中应用举例•总结回顾与拓展延伸目录01研究整式之间相除的运算规则和方法。

除式、被除式、除数和商的概念在整式除法中,除式表示相除的运算,被除式是被除数,除数是进行除法运算的整式,商是除法运算的结果。

整式除以自身的商为1任何非零整式除以自身的结果都是1。

把单项式的系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

单项式除以单项式的法则先把这个多项式的每一项分别除以单项式,再把所得的商相加。

多项式除以单项式的法则整式除法的运算法则02整式除法基本概念由常数、变量和代数运算(加、减、乘、乘方)构成的数学表达式。

整式定义包括整式的次数、系数、项等基本概念及其性质。

整式性质整式定义及性质回顾将多项式的每一项分别除以单项式,并将结果按降幂排列。

单项式除以多项式时,可将单项式拆分为多个多项式之和或差,再分别进行除法运算。

除法运算规则简介单项式除以多项式多项式除以单项式在进行整式除法时,需遵循先乘除后加减的原则,注意运算顺序。

忽视运算顺序系数处理不当未能合并同类项整式除法中,系数需要进行相应的运算,避免出现错误。

除法运算后,需对结果进行合并同类项,使表达式更简洁。

030201常见问题与误区提示03单项式除以单项式方法论述注意系数的符号当系数带有符号时,要注意符号的处理,遵循同号得正、异号得负的法则。

求解商的系数将系数的除法运算结果作为商的系数。

确定系数的除法运算在进行单项式除法时,首先要对两个单项式的系数进行除法运算。

系数之间相除步骤详解在进行单项式除法时,要比较两个单项式中相同字母的指数。

比较字母的指数将被除式中相同字母的指数减去除式中相同字母的指数。

减去指数将得到的指数作为商的字母部分的指数。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

乘法的结果称为“积”。

-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。

除法的结果称为“商”和“余数”。

-除法的除数不能为0,即被除式不能为0。

-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。

次数为0的项称为常数项,次数最高的项称为最高次项。

4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。

-除法规则:除法运算时,可以通过因式分解的方法进行计算。

5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。

-两个正整数相乘,结果为正数。

-两个负整数相乘,结果为正数。

-一个正整数与一个负整数相乘,结果为负数。

二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。

可以通过提取公因式、配方法等方式进行因式分解。

2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。

3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。

4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。

例如:a^2-b^2=(a+b)(a-b)。

5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。

例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。

7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。

14.1.4 课时3 整式的除法 初中数学人教版八年级上册课件

14.1.4 课时3 整式的除法 初中数学人教版八年级上册课件
(2)原式=81x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2) +9xy2÷(-9xy2)
=-9x2y2+4xy-1.
2、先化简,后求值:[2x(x2y-xy2)+xy(xy-x2)]÷x2y, 其中x=2020,y=2019.
解:原式=[2x3y-2x2y2+x2y2-x3y]÷x2y, =x-y.
同底数幂相除,底数 不变,指数相减
(3) 2m+n ÷2n=2m =2(m+n)-n
5. 试猜想:am ÷an=? (a≠ 0,m,n都是正整数,且m>n)
am ÷an=am,所以am ÷an=am-n.
同底数幂的除法:
一般地,我们有 am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
知识点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除 以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注 意符号问题.
1、 计算:(1)(8x3y4z-4x2y3z+2xy3)÷2xy3; (2)(81x3y4-36x2y3+9xy2)÷(-9xy2).
解:(1)原式=8x3y4z÷2xy3-4x2y3z÷2xy3+2xy3÷2xy3 =4x2yz-2xz+1;
想一想:12a3b2 x3 3ab2 的结果是多少呢? 12 3 4
单项式除以 单项式就如何 计算呢?
a3 a a2 b2 b2 1
12a3b2 x3 3ab2 4a2 x3
x3 x3
单项式除以单项式法则: 单项式相除,把系数与同底数幂分别相除作为商的因式;对于只
在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
即 同底数幂相除,底数不变,指数相减.
思考:am÷am=? (a≠0) 答:am÷am=1,根据同底数幂的除法法则可得am÷am=a0.

14.1.4整式的除法--公开课.ppt

14.1.4整式的除法--公开课.ppt

(3)a3÷a=a3; a2 (4)(-c)4÷(-c)2=-c2. (-c)2=c2
备选提高练习题: (1)已知ax=2 ay=3 则a2x-y= (2)x4n+1÷x 2n-1·x2n+1= (3)已知ax=2 ay=3 则ax-y= (4)已知am=4 an=5 求a3m-2n的值。 (5)若10a=20 10b=1/5,试求9a÷32b的值。 (6)已知2x-5y-4=0,求4x÷32y的值。
同底数幂的 除法法则
am÷an= am–)
同底数幂相除,底数_不__变__, 指数_相__减___.
证明:
幂的定义:
m 个a
am÷an=
am an

a a
a a

a a
m–n 个a
n 个a

a

a
1
a
=
am–n
【例】计算: 例题解析
6x – 9 6x – 3
–6
商式为 x2 + 2x + 3
余式为–6
还可以写作 : 3x 2 4x 9 2x3 (2x 1)( x2 2x 3) 6
变式探究
().( x3 1) (x2 x 1)
(B).( x4 x3 x2 2x 6) (x2 2)
思维!
探究:下面填空题你会解吗?
8x3 ·5x2y=( 40x5y ) 40x5y÷5x2y=( 8x3 )
被除式÷除式=商式
4a2x3·3ab2=12a3b2x3 12a3b2x3÷3ab2=4a2x3
观察下列等式:
40x5y÷5x2y=8x3
12a3b2x3÷3ab2=4a2x3
想一想
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被除式÷除式=商式
4a2x3 ·3ab2=( 12a3b2x3 )
12a3b2x3÷3ab2=说单项式除以单项式的运 算法则吗?
观察下列等式:
被除式÷除式=商式
8a3÷2a=4a2
6x3y÷3xy=2x2
12a3b2x3÷3ab2=4a2x3
请你归纳一下单项式除法法则。
6
=(1÷ 5 )a2-1x4-1y3-2
6
= 6 ax3y
5
(4) (6x2y3 )2÷(3xy2)2
=36x4y6÷9 x2y4 = (36÷9)x4-2y6-2 =4x2y2
先确定商的符号.
注意运算顺序先乘方再除.
单项式除以单项式的法则:
单项式相除,把系数、同底数幂分别相除, 作为商的因式,对于只在被除式里含有的字母, 则连同它的指数作为商的一个因式.
2、能力挑战:
若 3x a n
3y b n
求 32xy 的值n
a2 b
小结
单项式相除
(一)
1、系数相除; 2、同底数幂相除; 3、只在被除式里的幂不变。
多项式除以单项式
(二)
先把这个多项式的每一
项分别除以单项式,再把 所得的商相加。
作业
作业
教材p.104 第1,2,3 题。
4x3y -12x4y3 -16x2yz
x2y
÷2x2y
2x -6x2y2 -8z
多项式除以单项式
m(a+b+c)= am+bm+cm
反之 (am+bm+cm)÷m =am÷m+bm÷m+cm÷m =a+b+c
请说出多项式除以单项式的运算法则
你能计算下列各题?说说你的理由。
(1)(ad+bd)÷d=_____a_+b____ (2)(a2b+3ab)÷a=___a_b_+_3_b__ (3)(xy3-2xy)÷(xy)=__y2_-_2___
例3 计算:
(2)(28a3b2c a2b3 14a2b2 ) (7a2b);
解:
原式=(28a3b2c) (7a2b)+(a2b3) (7a2b)+(14a2b2 ) (7a2b)
= (4abc) +( 1 b2 ) + (2b)

4abc

1
b2
7
2b
(3)(6 108 ) (3105 ) (6 3)1085 2103 (4)(2x2 y)2 (4xy2 ) 4x4 y2 4xy2
(4 4)x41 y22 x3
先确定商的符号.
注意运算顺序先乘方再除法.
2.把图中左边括号里的每一个式子分别除 以2x2y,然后把商式写在右边括号里.
14.1.4 整式的除法(2)
—单项式除以单项式 —多项式除以单项式
复习提问
1.用字母表示幂的运算性质:
(1)am·an=am+n (m、n均为正整数) (2)(am)n=amn (m、n均为正整数) (3) (ab)n= anbn (n为正整数) (4)am ÷ an= am-n (a≠0,m、n均为正整数,m>n) (5)a0 =1(a≠0)
7
在计算单项式除以单项式时,要注意什么?
先定商的符号(同号得正,异号得负);
注意添括号;
练习3 计算:
(1)(6ab 8b) (2b);(1) 3a+4
(2)(27a3 15a2 6a) (3a);
(2)9a2 5a 2
(3)(9x2 y 6xy2 ) (3xy)(;3)3x 2 y
2
◣综 合◢ 巩固练 习
1、计算填空: ⑴ (60x3y5) ÷(−12xy3) = −5x2y2 ;
(2) (8x6y4z) ÷( −2x4y2z ) =−4x2y2 ;
(3) (
3 2
x5
y6z
)÷(2x3y3
)
=
3 4
x
2
y
3z
;
(4) 若 (ax3my12)÷(3x3y2n)=4x6y8 , 则 a = 12 , m = 3 ,n = 2 ;
你找到了 多项式除以单项式的规律 吗?
多项式除以单项式,先把这个多 项式的每一项分别除以单项式,再 把所得的商相加。
例3 计算:
(1)(12a3-6a2+3a)÷3a
解: 原式=12a3 ÷3a+(-6a2 ÷ 3a)+3a ÷3a
=4a2+(-2a)+1 =4a2-2a+1
解:原式 12a3 3a 6a2 3a 3a 3a 4a2 2a 1
(1)商式的系数与被除式、除式的系数有什么关系?
(2)被除式、除式中相同字母及其指数在商式的变化规 律是什么? (3)被除式中含有的字母,除式中没有的字母及其指数 在商式中有没有变化?
单项式的除法 法则
如何进行单项式除以单项式的运算?
单项式相除, 把系数、同底数幂分别相除,作为 商的因式;对于只在被除式里含有的字母,则连它的 指数作为商的一个因式。
计算中要注意符号.
(2)-5a5 b3c ÷15a4b =-(5÷15)a5-4b3-1c
1
=- ab2c
3
例1 计算
(1) 28x4y2÷7x3y (3)-a2x4y3÷(- 5 axy2)
6
(2) -5a5 b3c÷15a4b (4) (6x2y3)2÷(3xy2)2
解:
(3)-a2x4y3÷(- 5 axy2)
单项式与单项式相乘,只要把它们的系数、 相同字母的幂分别相乘,对于只在一个单项式 里出现的字母,则连同它的指数一起作为积的 一个因式.
学以致用:
练习1
(1)10a2b3 (5ab) (10 5)a b 21 31 2ab2
(2) 21x2 y4 (3x2 y3 ) (21 3)x22 y43 7 y
理解 商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 除式的系数
底数不变, 指数相减。
保留在商里 作为因式。
例1 计算
(1) 28x4y2÷7x3y (3)-a2x4y3÷(- 5 axy2)
6
(2) -5a5 b3c÷15a4b (4) (6x2y3)2÷(3xy2)2
解:
(1)28x4y2÷7x3y =(28 ÷7)·x4-3y2-1 =4xy
2 .计算检测
(1)a20 ÷ a10 =a10 (2)(-c)4 ÷(-c) =(-c)3=-c3
(3)(ab)6÷(ab) =(ab)5=a5b5
(4)am+n ÷ am+n =a0=1
3.下面填空题你会解吗?
4a2 ·2a=( 8a3 ) 8a3÷2a=( 4a2 ) 2x2 ·3xy=(6x3y ) 6x3y÷3xy=( 2x2 )
(4)(3x2 y xy2 1 xy) ( 1 xy)。
2
2
(4) 6x 2y 1
计算
x(3x2 y 4x3 y2 ) (2x2 )
解:原式 (3x3 y 4x4 y2 ) (2x2 )
( 3x3 y 2x2 ) (4x4 y2 2x2 ) ( 3 2)x32 y (4 2)x42 y2 3 xy 2x2y2
相关文档
最新文档