八年级下学期数学期中考试试题及答案
山东省枣庄市台儿庄区2023-2024学年八年级下学期期中考试数学试卷(含解析)
2023-2024学年度第二学期阶段性检测八年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内.1. 下列图形中,既是轴对称图形又是中心对称图形是()A. B. C. D.【答案】A解析:解:、既是轴对称图形,又是中心对称图形,符合题意;、既不是轴对称图形,也不是中心对称图形,不符合题意;、是轴对称图形,不是中心对称图形,不符合题意;、是中心对称图形,不是轴对称图形,不符合题意;故选:.2. 实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A. B. C. D.【答案】C解析:由数轴可知,∴,故A选项错误;∴,故B选项错误;∴,故C选项正确;∴,故D选项错误;故选:C.3. 如图,直线经过点,则关于x不等式的解集是()A. B. C. D.【答案】A解析:解:由函数图象可知,当直线的图象在直线上方时,,∴关于x的不等式的解集是,故选A.4. 将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是()A. B. C. 2 D.【答案】B解析:解:如图,在中,,∴,∴,在中,,∴,∴,∴,∴.故选:B.5. 在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A. B. C. D.【答案】D解析:解:将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是.故选:D.6. 如图,直线,直线与直线分别相交于点,点在直线上,且.若,则的度数为()A. B. C. D.【答案】C解析:解:∵,,∴,∵,∴,故选:C.7. 已知不等式组的解集是,则()A. B. C. D.【答案】C解析:解:,解得,,解得,,∴,∵,∴,,∴,,∴,故选:.8. 如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若,则旋转角的度数为()A. B. C. D.【答案】C解析:解:如图,,∵,∴,∵,∴,∵旋转,∴,,∴,∴,即旋转角的度数是.故选:C.9. 如图,在正方形网格内,线段的两个端点都在格点上,网格内另有四个格点,下面四个结论中,正确的是()A. 连接,则B. 连接,则C. 连接,则D. 连接,则【答案】B解析:解:如图,连接,取与格线的交点,则,而,∴四边形不是平行四边形,∴,不平行,故A不符合题意;如图,取格点,连接,由勾股定理可得:,∴四边形是平行四边形,∴,故B符合题意;如图,取格点,根据网格图的特点可得:,根据垂线的性质可得:,,都错误,故C,D不符合题意;故选B10. 如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A. B. C. D. 【答案】D解析:解:∵点P(m,1+2m)在第三象限内,∴,解不等式①得:,解不等式②得:,∴不等式组的解集为:,故选D.11. 如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于()A. B. C. 3 D. 2【答案】C解析:解:如图,过作于由,结合旋转:为等边三角形,∴A到的距离为3.故选C12. 如图,在平面直角坐标系中,已知点,点B在第一象限内,,,将绕点O逆时针旋转,每次旋转,则第2023次旋转后点B坐标为()A. B. C. D.【答案】C解析:解:过点B作轴于H,在中,,,,∴,∴,,由勾股定理得,∴B(,3),∵,,∴,∴逆时针旋转后,得,以此类推,,,,,...,6次一个循环,∵,∴第2023次旋转后,点B的坐标为,故选:C.二、填空题:每题4分,共24分,将答案填在答题纸的横线上.13. 等腰三角形的一个内角是,则它顶角的度数是_____.【答案】或解析:解:当度数为的内角是顶角时,则顶角的度数为;当度数为的内角为底角时,则顶角的度数为;综上所述,顶角的度数为或,故答案为:或.14. 如图,在中,以A为圆心,长为半径作弧,交于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线,交于点E,若,,则______.【答案】4解析:解:根据题意可知,以点C和点D为圆心,大于长为半径作弧,两弧交于点P,∴垂直平分,即,∴,又∵在中,以A为圆心,长为半径作弧,交于C,D两点,其中,∴,在中,,故答案为:4.15. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2解析】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为a≥2.16. 某种商品进价为700元,标价为1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于,则至多可以打_____折.【答案】7##七解析:解:设该商品打x折出售,由题意得,,解得,∴至多可以打7折,故答案为:7.17. 如图,点的坐标是(0,3),将沿轴向右平移至,点的对应点E恰好落在直线上,则点移动的距离是______.【答案】3解析:解:当时,,点的坐标为,沿轴向右平移个单位得到,点与其对应点间的距离为,即点移动的距离是3.故答案为:.18. 如图所示,在中,,,一动点从向以每秒的速度移动,当点移动______秒时,与腰垂直.【答案】或解析:解:如图,当时,则,∵,,∴,,∴,,∴,∵,∴,∴,∴,∴,∴点移动的时间为(秒);如图,当时,,∵,∴,∵,∴,∴,∴点移动的时间为(秒);综上,点移动的时间为或秒时,与腰垂直,故答案为:或.三、解答题:(满分60分)19. 解不等式组【答案】解析:解:,解不等式得,,解不等式得,,∴不等式组的解集为.20. 已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.【答案】(1)-2;(2).解析:(1)=;(2)依题意得<m解得m>-2∴负整数=-1.21. 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)平移,点A的对应点的坐标为,画出平移后对应的,并直接写出点的坐标;(2)绕点C逆时针方向旋转90°得到,按要求作出图形;(3)如果通过旋转可以得到,请直接写出旋转中心P的坐标.【答案】(1)见解析,坐标为(2,-2)(2)见解析(3)P【小问1解析】(1)如图所示,的对应点的坐标为,沿横轴正方向平移6上单位,沿纵轴负方向平移6个单位;△即为所求.点B的坐标,坐标为(2,-2)【小问2解析】如图所示,△即为所求【小问3解析】旋转中心P的坐标22. 某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元(1)求购进A,B两种礼品盒的单价分别是多少元;(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?【答案】(1)A礼品盒的单价是100元,B礼品盒的单价是120元;(2)至少购进A种礼品盒15盒.【小问1解析】解:设A礼品盒的单价是a元,B礼品盒的单价是b元,根据题意得:,解得:,答:A礼品盒的单价是100元,B礼品盒的单价是120元;【小问2解析】解:设购进A礼品盒x盒,则购进B礼品盒盒,根据题意得:,解得:,∵x为整数,∴x的最小整数解为15,∴至少购进A种礼品盒15盒.23. 如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【小问1解析】证明:∵为的角平分线,∴,由作图可得,在和中,,∴;【小问2解析】∵,为的角平分线,∴由作图可得,∴,∵,为的角平分线,∴,∴24. 在中,,交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE、DF 与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【答案】(1)证明见解析;(2)DE+DF=CG,证明见解析;(3)成立.解析:(1)∵,∴∠ABC=∠ACB,在△BFC和△CGB中,∴△BFC≌△CGB,∴(2)DE+DF=CG,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG,(3)成立,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,同(2)中的方法∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG.25. 如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.【答案】(1)100°(2)∠BAE=∠CEF,理由见解析(3)∠AEF与∠BAE的数量关系是互余或2∠AEF与∠BAE的数量关系是互余.【小问1解析】解:∵在△ABC中,∠ABC=∠ACB,∠ABC=40°,∴∠ACB=40°,∴∠BAC=180°﹣40°﹣40°=100°,故答案为:100°.【小问2解析】∠BAE=∠CEF;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠CEF;小问3解析】如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,∴2∠AEF+∠BAE=90°即2∠AEF与∠BAE的数量关系是互余.。
北京市丰台第二中学教育集团2023-2024学年八年级下学期期中数学试题(含答案)
丰台二中教育集团2023~2024学年度第二学期期中考试初二年级数学试题一、选择题(本题共24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的1)A.B .C .D .2.以下列长度的三条线段为边长,能组成直角三角形的是( )A .2、3、4B .3、4、6C .6、7、8D .6、8、103.如图,在△ABC 中,∠ACB =90°,点D 为AB 的中点,若AB =4,则CD 的长为()第3题图A .2B .3C .4D .54.如图,在菱形ABCD 中,AB =4,∠ABC =60°,则菱形的面积为()第4题图A .16B .C .D .85.正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是()A .B .C .6D .86.矩形、菱形、正方形都具有的性质是()A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角7.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是( )第7题图ABCD .8.如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的大正方形,若小正方形的边长为3,大正方形边长为15,则一个直角三角形的周长是( )第8题图A .45B .36C .25D .18二、填空题(本题共24分,每小题3分)9______.10.在△ABC 中,D 、E 分别为AB 、AC 的中点,若BC =10,则DE 的长为______.11.如图,在平面直角坐标系xOy 中,若A 点的坐标为,则OA 的长为______.第11题图12.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =4,则菱形ABCD 的周长等于______.=(第12题图13.一帆船从某处出发时受风向影响,先向正西航行8千米,然后向正南航行15千米,这时它离出发点有______千米.14.若有一个三角形的三边长分别为2、5、n的结果为______.15.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x 尺,可列方程为______.16.如图,△ABC 中,线段AD是BC 边上的高,已知BD =1,AD =CD =2,BC 上方有一动点P ,且点P到A 、D 两点的距离相等,则△BCP周长的最小值为______.第16题图三、解答题(本题共36分,每小题6分)17.计算:1819.如图,中,E 、F 是直线BD 上两点,且BE =DF ,连接AF 、CE .求证:AF =CE .20.如图,中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠ABF 的角平分线,交AD 于n -))2221++ABCD ABCD点E ,连接EF .①依题意补全图形(尺规作图,保留作图痕迹);②求证:四边形ABFE 是菱形.21.如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .求证:OM =ON .22.如图,已知,延长AD 到C ,使得AD =DC ,若AB =BC ,连接BC 、CE ,BC 交DE 于点F .求证:①四边形BECD 是矩形;②连接AE ,若∠BAC =60°,AB =4,求AE 的长.四、解答题(本题共16分,第23题5分,第24题6分,第25题5分)23.如图,在5×4的方形网格中,每个小格的顶点叫做格点,设小正方形的边长为1,以格点为顶点按下列要求画图.ABED(1)在图①中画一条线段AB ,使,线段AB 的端点在格点上;(2)在图②中画一个斜边长为的等腰直角三角形DCE ,其中∠DCE =90°,三角形的顶点均在格点上.24.已知在等腰直角△ABC 中,∠BAC =90°,点D 是BC 的中点,作正方形DEFG .(1)若点A 、C 分别在DG 和DE 上,如图1,连接AE 、BG .试猜想线段BG 和AE 的数量关系是______;(不要求证明,直接写答案)(2)将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°)角度,①请判断(1)中的结论是否仍然成立?请利用图2证明你的结论.②若BC =DE =4,当AE 取到最大值时,求此时AF 的值.25.在平面直角坐标系xOy 中,A (0,2),B (4,2),C (4,0).若P 为矩形ABCO 内(不包括边界)一点,过点P 分别作x 轴和y 轴的平行线,这两条平行线分矩形ABCO 为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA 的长,则称P 点为矩形ABCO 的矩宽点.例如:下图中的点为矩形ABCO的一个矩宽点.AB=32,55P ⎛⎫ ⎪⎝⎭(1)在点,E (2,1),中,矩形ABCO 的矩宽点是______;(2)若点为矩形ABCO 的矩宽点,求m 的值.初二期中考试答案一、选择题BDACABCB二、填空题910.5 11.2 12.32 13.17 14.5 15. 16.三、解答题17.18.19.得到∠FDA =∠EBC得到全等再给3分,最后得出结论1分20.画出图形2分;证出ABFE 是平行四边形2分证出平行四边形ABFE 是菱形再给2分21.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠DAO =45°,∠OBA =45°,∴∠OAM =∠OBN =135°,∵∠EOF =90°,∠AOB =90°,∵∠AOM =∠BON ,11,22D ⎛⎫⎪⎝⎭137,44F ⎛⎫ ⎪⎝⎭2,3G m ⎛⎫ ⎪⎝⎭()22283x x +-=35-在△OAM 和△OBN 中,∴△OAM ≌△OBN (ASA ),∴OM =ON .22.四、解答题23.①②24.【解答】解:(1).理由:如图1,是等腰直角三角形,,.四边形DEFG 是正方形,.在和中,,.故答案为:;(2)①成立.理由:如图2,连接AD,OAM OBN OA OBAOM BON ∠=∠⎧⎪=⎨⎪∠=∠⎩BG AE =ABC △,AD BC BD CD ∴⊥=90ADB ADC ∴∠=∠=︒ DE DG ∴=BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)ADE BDG ∴≌△△BG AE ∴=BG AE =BG AE =在中,为斜边BC 中点,,.四边形EFGD 为正方形,,且,∴,∴.在和中,,;(2),当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为时,.,..在中,由勾股定理,得.25.(1),点是矩形ABCO 的矩宽点,,点是矩形ABCO的矩宽点.故答案为:和; Rt BAC △D ,AD BD AD BC ∴=⊥90ADG GDB ∴∠+∠=︒ DE DG ∴=90GDE ∠=︒90ADG ADE ∠+∠=︒BDG ADE ∠=∠BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)BDG ADE ∴≌△△BG AE ∴=BG AE = ∴270︒BG AE =4BC DE == 246BG ∴=+=6AE ∴=Rt AEF △AF ==AF ∴=11122+= ∴D 137314214444⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭ ∴F D F(2)若为矩形ABCO 的矩宽点,或或或,解得或或,因为为矩形内的点,和不合题意,舍去,的值为或.2,3G m ⎛⎫ ⎪⎝⎭22223m ∴+⨯=222223m ⎛⎫+⨯-= ⎪⎝⎭22(4)223m -+⨯=22(4)2223m ⎛⎫-+⨯-= ⎪⎝⎭13m =±113133G 13m ∴=-133m =m ∴13113。
山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题(解析版)
2023−2024学年第二学期期中考试初三数学试题一、选择题(每小题3分,共30分)1.是二次根式,则的值可以是( )A. B. C. 3 D. 【答案】C【解析】【分析】根据二次根式的被开方数为非负数可得出答案.则a 的值不能是负数,故C 符合题意;故选:C .【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.2. 如图,在中,,D 为中点,若,则的长是( )A. 6B. 5C. 4D. 3【答案】C【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,进而可得答案.【详解】解:∵,D 为边的中点,∴,∵,∴,故选C .【点睛】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.a 1-6-7-ABC 90ABC ∠=︒AC 2BD =AC 2AC BD =90ABC ∠=︒AC 2AC BD =2BD =224AC =⨯=3. 下列式子中,属于最简二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式,进行判断即可得.【详解】解:A不是最简二次根式,选项说法错误,不符合题意;B是最简二次根式,选项说法正确,符合题意;CD不是最简二次根式,选项说法错误,不符合题意;故选:B .【点睛】本题考查了最简二次根式.解题的关键是掌握最简二次根式必须满足两个条件.4. 如图,在菱形中,,,则( )A. B. C. D. 【答案】D【解析】【分析】本题考查了菱形的性质,三角形内角和定理,等腰三角形的性质,邻补角的性质,由菱形的性质得到,再根据三角形内角和定理及等腰三角形的性质得到,即可求出,掌握菱形的性质是解题的关键.3==ABCD 80ABC ∠= BA BE =AED =∠95o105 100 1101402ABD ABC ∠=∠=︒70BEA BAE ∠=∠=︒AED ∠【详解】解:∵四边形是菱形,∴平分,∴,∵,∴,∴,故选:.5. 下列计算正确的是( )A.B. =﹣2C.=﹣3 D. 【答案】B【解析】【分析】根据算术平方根的定义可判断A、D 两项、根据立方根的定义可判断B 项、根据平方根的定义可判断D 项,进而可得答案.【详解】解:A,所以本选项计算错误,不符合题意;B﹣2,所以本选项计算正确,符合题意;C=3≠﹣3,所以本选项计算错误,不符合题意;D 、,所以本选项计算错误,不符合题意.故选:B .【点睛】本题考查了平方根、算术平方根和立方根的定义,属于基础知识题型,熟练掌握三者的概念是解题的关键.6.用配方法解方程时,配方后正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查配方法,根据配方法的步骤进行求解即可.【详解】解:,ABCD BD ABC ∠11804022ABD ABC ∠=∠=⨯︒=︒BA BE =18040702BEA BAE ︒-︒∠=∠==︒18070110AED ∠=︒-︒=︒D 5==55=±≠2230x x --=()222x -=-()214x -=()212x -=-()224x +=2230x x --=∴,∴,∴;故选:B .7. 已知实数在数轴上的对应点位置如图所示,则化简的结果是( )A. B. C. 1 D. 【答案】D【解析】【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.【详解】解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-=a−1+(a−2)=2a−3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.8. 若是方程的根,则的值为( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元二次方程的解(使方程左右两边相等的未知数的值),根据题意可得,从而可得,然后代入式子中进行计算即可.掌握方程解的定义是解题的关键.也考查了求代数式的值.【详解】解:∵是方程的根,∴,∴,∴.故选:A .223x x -=2214x x -+=()214x -=a |1|a -32a-1-23a -2a -x m =240x x +-=22024m m ++2028202620242020240m m +-=24m m +=x m =240x x +-=240m m +-=24m m +=22024420242028m m ++=+=9. 如图,在矩形中,对角线交于点O ,过点O 作交于点E ,交于点F .已知,的面积为5,则的长为( )A. 2B. C. D. 3【答案】D【解析】【分析】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理以及三角形的面积问题.连接,由题意可得为对角线的垂直平分线,可得,,由三角形的面积则可求得的长,然后由勾股定理求得答案.【详解】解:连接,如图所示:由题意可得,为对角线的垂直平分线,,,.,,,,在中,由勾股定理得,故选:D .10. 如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中:①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF.其中正确的是( )ABCD AC BD ,EFAC ⊥AD BC 4AB =AOE △DECE OE AC AE CE =5AOE COE S S == AE CE OE AC AE CE ∴=5COE AOE S S == 210ACE AOE S S \== 1102AE CD \×=4AB CD == 5AE ∴=5CE ∴=Rt CDE△3DE ===A. ②③④B. ①②③C. ①②④D. ①③④【答案】B【解析】【分析】①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:根据正方形的性质得到∠BCD=90°,∠ECN=45°,推出四边形EMCN为正方形,由矩形的性质得到EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,根据全等三角形的性质得到ED=EF,故①正确;②利用已知条件可以推出矩形DEFG为正方形;根据正方形的性质得到AD=DC,∠ADE+∠EDC=90°,推出△ADE≌△CDG(SAS),故②正确;③根据②的结论可得∠ACG=90°,所以AC⊥CG,故③正确;④当DE⊥AC时,点C与点F重合,得到CE不一定等于CF,故④错误.【详解】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴NE=NC,∵∠EMC=∠ENC=∠BCD=90°,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN ≌△FEM (ASA ),∴ED =EF ,故①正确;②∵矩形DEFG 为正方形;∴DE =DG ,∠EDC +∠CDG =90°,∵四边形ABCD 是正方形,∵AD =DC ,∠ADE +∠EDC =90°,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,,∴△ADE ≌△CDG (SAS ),故②正确;③根据②得∠DAE =∠DCG =45°,∴∠ACG =90°,∴AC ⊥CG ,故③正确;④当DE ⊥AC 时,点C 与点F 重合,∴CE 不一定等于CF ,故④错误,综上所述:①②③正确.故选:B .【点睛】本题考查了正方形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解(1)的关键.二、填空题(每小题3分,共15分)11.______.【答案】【解析】【分析】本题考查二次根式有意义的条件,注意被开方数大于等于0即可.,所以解得.DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩3a ≥-30a +≥3a ≥-故答案为:.12. 如图,的对角线相交于点O ,请你添加一个条件使成为矩形,这个条件可以是______.【答案】(答案不唯一)【解析】【分析】依据矩形的判定定理进行判断即可.【详解】解:∵四边形为平行四边形,∴当时,四边形为矩形.故答案为(答案不唯一).【点睛】本题主要考查矩形判定,熟悉掌握矩形判定条件是关键.13. 若关于的一元二次方程有实数根,则的取值范围是_______.【答案】且【解析】【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴ ∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.14. 如图,在平面直角坐标系中,正方形的边长为2,,则点的坐标为______.的3a ≥-ABCD Y AC BD ,ABCD Y AC BD =ABCD AC BD =ABCD AC BD =x 2(2)210k x x --+=k 3k ≤2k ≠x 2(2)210k x x --+=()()2202420k k -≠⎧⎪⎨---≥⎪⎩23k k ≠⎧⎨≤⎩3k ≤2k ≠ABCD 60DAO ∠=︒C【答案】##【解析】【分析】本题考查了正方形的性质、三角形全等的判定与性质、坐标与图形,勾股定理的应用,含30度角的直角三角形的性质,由题意可得,,作轴于,证明得到,,即可得解,熟练掌握以上知识点并灵活应用是解此题的关键.【详解】解:∵正方形的边长为2,,,∴,,,,如图,作轴于,则,四边形是正方形,∴,,,在和中,+)11OA=OB =CE y ⊥E ADO DCE≌CE DO ==1DE AO ==ABCD 60DAO ∠=︒90AOD ∠=︒30ADO ∠=︒2AD CD ==1OA ∴=OD ==CE y ⊥E 90CED AOD ∠=∠=︒ ABCD 90ADC ∠=︒90ADO CDE ADO DAO ∴∠+∠=︒=∠+∠CDE DAO ∴∠=∠ADO △DCE △,,,,,点在第一象限,,故答案为:.15. 如图,矩形中,,,点、分别是对角线和边上的动点,且,则的最小值是____________.【答案】【解析】【分析】过点作,使,过点作,交的延长线于点,连接、、,交于点,根据矩形的性质及勾股定理得,,继而得到是等边三角形,证明,得到,继而得到,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,然后在中,根据角的直角三角形的性质及勾股定理得到,,最后再根据勾股定理计算即可.【详解】解:过点作,使,过点作,交的延长线于点,连接、、,交于点,∴,∵矩形中,,,CDE DAO AOD DEC AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADO DCE ∴≌CE DO ∴==1DE AO ==1OE OD DE ∴=+= C C ∴++ABCD 3AB =AD =E F AC CD AE CF =BE BF +A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 6AC ==3BO AO AB ===ABO ()SAS AGE CBF ≌GE BF =BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △30︒12MG AG ==92AM ==BG =A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 90GAE ∠=︒ABCD 3AB =AD =∴,,,∴,∴,∴等边三角形,∴,∴,在和中,∴,∴,∵点、分别是对角线和边上的动点,∴,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,在中,,,,∴,∴,∴,在中,,∴的最小值是,故答案为:是90ABC G B A F E C ∠=︒=∠∠=BC AD AG ===12BO AO AC ==6AC ===116322BO AO AC AB ===⨯==ABO 60BAO ∠=︒180180609030GAM BAO GAE ∠=︒-∠-∠=︒-︒-︒=︒AGE CBF V AG CBGAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩()SAS AGE CBF ≌GE BF =E F AC CD BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △90GMA ∠=︒30GAM ∠=︒AG =12MG AG ==92AM ===915322BM BA AM =+=+=Rt MBG △BG ===BE BF +【点睛】本题考查矩形的性质,勾股定理,等边三角形的判定和性质,全等三角形的判定和性质,角的直角三角形,三角形三边关系,两点之间线段最短等知识点,通过作辅助线构造全等三角形的是解题的关键.三、解答题(共55分)16. 计算(1(2)【答案】(1)1 (2)【解析】【分析】本题主要考查了二次根式混合运算,(1)根据二次根式乘除运算法则进行计算即可;(2)根据二次根式混合运算法则进行计算即可.【小问1详解】;【小问2详解】解:30︒((2222+-86⨯÷==÷1=((2222+--((((2222⎡⎤⎡⎤=++-+--⎣⎦⎣⎦.17. 解方程:(1)(2)【答案】(1) (2)【解析】【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用因式分解法解方程即可;(2)利用公式法解方程即可.【小问1详解】解:∵,∴,∴,∴或,解得;【小问2详解】解:∵,∴,∴,∴,解得(2222=-+-+4=⨯=()()242++=+x x x 2310x x --=1223x x =-=-,12x x ==()()242x x x ++=+()()()2420x x x ++-+=()()2410x x ++-=20x +=410x +-=1223x x =-=-,2310x x --=131a b c ==-=-,,()()2Δ3411130=--⨯⨯-=>x ==12x x ==18. 如图,在中,D 是的中点,E 是的中点,过点A 作交的延长线于点F .(1)求证:;(2)连接,若,求证:四边形矩形.【答案】(1)见解析; (2)见解析;【解析】【分析】(1)根据两直线平行,内错角相等求出,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【小问1详解】证明:∵,∴,∵点E 为的中点,∴,在和中,,∴;∴,∵,∴;【小问2详解】是ABC BC AD AF BC ∥CE AF BD =BF AB AC =ADBF AFE DCE ∠=∠AFBD AF BC ∥AFE DCE ∠=∠AD AE DE =AEF △EDC △AFE DCE AEF DEC AE DE ∠∠⎧⎪∠∠⎨⎪⎩===AAS EAF EDC ≌()AF CD =CD BD =AF BD =证明:,∴四边形是平行四边形,∵,∴,∴平行四边形是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.19. 阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以为例,花拉子米的几何解法步骤如下:① 如图1,在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;② 一方面大正方形的面积为(x +)2,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程的正数解的正确构图是 (填序号).【答案】(1)5,5,25,3 (2)①【解析】【分析】本题主要考查解一元二次方程−配方法,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据已知算式和图形可得答案.的AF BD AF BD = ∥,AFBD AB AC BD CD ==,90ADB ∠=︒AFBD 21039x x +=x 21039x x +=()239x +=+x =267x x -=(2)根据“在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形”,可得答案.【小问1详解】解:一方面大正方形的面积为,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.故答案为:5;5;25;3.【小问2详解】解:由题意可得,能够得到方程的正数解的正确构图:在边长为x 的正方形的两个相邻边上作边长分别为和3的矩形,再补上一个边长为3的小正方形,最终把图形补成一个大正方形∴①符合.故答案为:①.20. 如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF .猜想并证明:判断四边形AECF 的形状并加以证明.【答案】(1)作图见解析;(2)菱形,证明见解析【解析】【详解】解:(1)如图所示,(2)四边形AECF 的形状为菱形.理由如下:∵AB=AC , ∴∠ABC=∠ACB,x ()25x +21039x x +=()253925x +=+3x =267x x -=x∵AM 平分∠DAC ,∴∠DAM=∠CAM ,而∠DAC=∠ABC+∠ACB ,∴∠CAM=∠ACB ,∴EF 垂直平分AC ,∴OA=OC ,∠AOF=∠COE ,在△AOF 和△COE 中,,∴△AOF ≌△COE ,∴OF=OE ,即AC 和EF 互相垂直平分,∴四边形AECF 的形状为菱形.【点睛】本题考查①作图—复杂作图;②角平分线的性质;③线段垂直平分线的性质.21.的计算,将分母转化为有理数,这就是“分母有理化;.类似地,将分子转化为有理数,就称为“分子有理化;.FAO ECOOA OC AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩======+=======根据上述知识,请你解答下列问题:(1;(2的大小,并说明理由.【答案】(1)2 (2,理由见解析【解析】【分析】本题考查的是分母有理化:(1)根据分母有理化是要求把分子分母同时乘以,再计算即可得到答案;(2)根据分子有理化的要求把原式变形为同分子的分数 ,再比较大小即可.【小问1详解】;【小问2详解】,22. 在菱形中,,点E ,F 分别是边,上的点.【尝试初探】<)2+=2=+2=====<<ABCD 60A ∠=︒AB BC(1)如图1,若,求证:;【深入探究】(2)如图2,点G ,H 分别是边,上的点,连接与相交于点O 且,求证:【拓展延伸】(3)如图3,若点E 为的中点,,,.①设,,请用关于x 的代数式表示y ;②若,求的长.【答案】(1)见解析;(2)见解析;(3)①;②.【解析】【分析】(1)连接,证明和都等边三角形,可得,证明,即可得出结论;(2)连接,过点D 作交于点P ,交于点Q ,可证,四边形和四边形都是平行四边形,得出,,由(1)可知,即可得证;(3)①过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,得出,,,,,由(1)可知,则,即可求解;②过点B 作于点N ,利用含的直角三角形的性质求出,利用勾股定理求出,根据可求,然后在中利用勾股定理求解即可.【详解】解:(1)如图1,连接,∵菱形、,是60EDF ∠=︒DE DF =CD AD EG FH 60EOF ∠=︒EG FH =AB 6AB =1BF =60EOF ∠=︒DH x =CG y =6CG DH +=EG 4y x =+BD ABD △BCD △ADE BDF ∠=∠ADE BDF ≌V V BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG =DQ FH =DP DQ =BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP =GM BE =EG BM =HD FQ x ==1BQ x =+ADP BDQ ≌△△1CM AP BQ x ===+BN CD ⊥30︒132CN BC ==BN =6CG DH +=1MN =Rt BMN △BD ABCD 60A ∠=︒,,,,和都是等边三角形,,,,,,;(2)如图2,连接,过点D 作交于点P ,交于点Q则,四边形和四边形都是平行四边形,,,由(1)可知,(3)①如图3,过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,,,,,∵点E 为的中点,,,,,,AB AD CB CD ∴===60C ∠=︒AD BC ∥AB CD ∥∴ABD △BCD △AD BD ∴=60ADB ∠=︒60DBF ∠=︒60EDF ∠=︒ ADE BDF ∴∠=∠ADE BDF ∴ ≌DE DF ∴=BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG ∴=DQ FH =DP DQ =EG FH∴=BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP ∴=GM BE =EG BM =HD FQ =AB 6AB =3BE ∴=3GM ∴=1BF = DH x =,,由(1)可知,,,,,,②过点B 作于点N ,,,,,,即,,,,,.【点睛】本题考查了菱形的性质,平行四边形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.FQ x ∴=1BQ x =+ADP BDQ ≌△△1AP BQ x ∴==+DM BP = AB CD =1CM AP x ∴==+4y CG CM GM x ∴==+=+BN CD ⊥60C ∠=︒ 30NBC ∴∠=︒132CN BC ∴==BN =6CG DH += 6y x +=46x x ∴++=1x ∴=12CM x =+=∴1MN ∴=EG BM ∴===。
山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)
绝密★启用前2023-2024学年度第二学期期中考试初三数学试题说明:1.考试时间120分钟,满分120分.2.考试过程允许学生进行剪、拼、折叠等实验.一.选择题(本大题共10个小题,每小题3分,满分30分)1. 下列关于x的方程是一元二次方程的是( )A. B.C. D.答案:B解析:解:、,含有两个未知数,故本选项不符合题意;、,可化为,满足一元二次方程的定义,故本选项符合题意;、不是整式方程,故本选项不符合题意;、最高次数3,故本选项不符合题意;故选:.2. 下列二次根式中,属于最简二次根式的是()A. B. C. D.答案:C解析:解:、,故本选项不符合题意;、,故本选项不符合题意;、是最简二次根式,故本选项符合题意;、,故本选项不符合题意;故选:.3. 如图,的对角线交于点O,下列条件不能判定是菱形的是()A. B.C. D.答案:D解析:解:A.由、,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;B.由可得,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.由,根据对角线垂直的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.是的对边,不能说明四边形是菱形,故该选项符合题意.故选:D.4. 若关于x的方程有两个不相等的实数根,则m的值可能是()A. B. C. D. 7答案:A解析:关于x的方程有两个不相等的实数根,,解得,,,故选:A.5. 若,,则的值为()A. 3B.C. 6D.答案:D解析:解:∵,,∴.故选:D.6. 如图,在正方形中,点,分别在和边上,,,则的面积为()A. 6B. 5C. 3D.答案:C解析:四边形是正方形,四边形平行四边形,的面积为,故选:C7. 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:B解析:解:如图,四边形中,于点,、、、分别是边、、、的中点,连接、、、,得到四边形,设交于点.,,、、、分别是边、、、的中点,∴,,,,,∴,,四边形是平行四边形,,,∴,,∵,平行四边形是矩形.故选:B.8. 对于实数定义新运算:,若关于的方程没有实数根,则的取值范围()A. B.C. 且D. 且答案:A解析:解:由题意可得方程:,即,∵该方程没有实数根,∴,解得:;故选:A.9. 当时,代数式的值是( )A. 19B. 21C. 27D. 29答案:B解析:解:,,故选:B10. 已知,如图,点为x轴上一点,它的坐标为,过点作x轴的垂线与直线:交于点,以线段为边作正方形;延长交直线于点,再以线段为边作正方形;延长交直线于点,再以线段为边作正方形….依此类推,的坐标为()A. B. C. D.答案:C解析:解:过点作x轴的垂线与直线交于点,,线段为边作正方形,,同理可得,,,故答案为:C;二.填空题(本大题共6个小题,每小题3分,满分18分)11. 若在实数范围内有意义,则的取值范围是_________ .答案:且解析:解:由题意得,且,解得且,故答案为:且;12. 关于x的一元二次方程有两个相等的实数根,则的值为__________ .答案:解析:关于x的一元二次方程有两个相等的实数根,,,,故答案为:13. 在矩形中,对角线、相交于点O,过点A作,交于点M,若,则的度数为______ .答案:##60度解析:四边形是矩形,,,,,,,,,,,,,,故答案为:.14. 已知a是方程的一个根,则的值为______.答案:2030解析:a是方程的一个根,,,故答案为:2030.15. 已知,则___________.答案:25解析:解:由题意知:,解得:,,,故答案为:25;16. 如图,正方形的边长,对角线、相交于点,将直角三角板的直角顶点放在点处,三角板两边足够长,与、交于、两点,当三角板绕点旋转时,线段的最小值为________ .答案:解析:解:四边形是正方形,,,,,,,,,,,故要使有最小值,即求的最小值,当时,有最小值,,,,,线段的最小值为.故答案为:.三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)17. 计算:(1);(2).答案:(1)(2)【小问1解析:】解:,【小问2解析:】解:原式.18. 用合适的方法解方程:(1);(2).答案:(1)(2)【小问1解析:】解:移项得,配方得,∴.【小问2解析:】,整理得:,∵,∴,∴,∴,.19. 如图,有一张矩形的纸片,将矩形纸片折叠,使点A与点C重合.(1)请用尺规在图中画出折痕,其中,点M在边上,点N在边上;(不写作法,保留痕迹),并说明折痕所在的直线与对角线有怎样的位置关系?(2)在(1)的条件下,直接写出折痕的长度.答案:(1)见解析,折痕所在的直线是对角线的垂直平分线(2)【小问1解析:】线段就是所要求作的折痕;折痕所在的直线是对角线的垂直平分线;【小问2解析:】连接,设,则,四边形是矩形,,,,在中,,是对角线的垂直平分线,在中,,,解得,,在中,,,,,,,折痕的长度为.20. 关于的一元二次方程有实数根.(1)求的取值范围;(2)若为正整数,请用配方法求出此时方程的解.答案:(1)且(2),【小问1解析:】解:∵关于的一元二次方程有实数根,∴且,解得:且,∴的取值范围为且;【小问2解析:】∵且,且m为正整数,∴,∴原方程为,∴,∴,∴,∴,∴此时方程的解为:,.21. 如图,在菱形中,,点E,F分别在上,且.(1)求证:;(2)若,试求出线段的长,并说明理由.答案:(1)证明见解析(2)10,理由见解析【小问1解析:】证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴,,∴是等边三角形,∴,∴,∵,∴,∴,和中,,∴.【小问2解析:】解:∵,∴,∵,∴是等边三角形.∴,∵,∴.22. 已知,.(1)分别求,的值;(2)利用(1)的结果求下列代数式的值:①;②.答案:(1),(2)①;②【小问1解析:】解:,,,;【小问2解析:】由(1)知,,①;②.23. 如图,菱形的对角线,相交于点O,过点D作,且,连接.(1)求证:四边形为矩形.(2)若菱形的面积是10,请求出矩形的面积.答案:(1)证明见解析(2)5【小问1解析:】证明:∵四边形是菱形,∴,,∵,∴,又∵,∴四边形为平行四边形,∵,∴四边形为矩形;【小问2解析:】∵菱形的面积是10,∴,∴,∵四边形是菱形,∴,∴,∴矩形的面积为5.24. 阅读理解:我们解决某些数学题的时候,经常会遇到题目中的条件比较含糊,它们常常巧妙地隐蔽在题设的背后,不易被发现和运用,导致我们解题受阻,因此,挖掘题设中的隐含条件,应该成为我们必备的一种能力.请阅读下面的解题过程,体会如何发现隐含条件,并依次解决所给的问题.化简:解:由题意可知隐含条件解得:,∴,∴.启发应用:(1)按照上面的解法,化简:;类比迁移:(2)已知的三边长分别为,,,请求出的周长.(用含有的代数式表示,结果要求化简)拓展延伸:(3)若,请直接写出的取值范围.答案:(1)2;(2);(3)解析:解:(1)由题意可知隐含条件解得:,∴,∴,(2)由题意可知隐含条件解得:,∴,∴,∴,∴的周长为;(3)由题意可知隐含条件,解得:,当时,,则,符合题意,当时,,则,不符合题意,综上所述,的取值范围为.25. 在学习了“特殊的平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有_______(把所有正确的序号都填上);①“双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,线段、于点O,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上,且,在第一象限内,是否存在点,使得四边形为“双直四边形”,若存在;请直接写出所有点的坐标,若不存在,请说明理由.答案:(1)②③(2)证明见解析(3)存在,点的坐标或小问1解析:】解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”面积等于对角线乘积的一半.故②正确.∵中心对称的四边形是平行四边形,对角线互相垂直且有一个角是直角的的平行四边形是正方形.∴若一个“双直四边形”是中心对称图形,则其一定是正方形.故③正确.故答案为:②③;【小问2解析:】证明:如图,设与的交点为,∵四边形是正方形,,又,,,,,,,,,∴四边形为“双直四边形”.【小问3解析:】解:假设存在点在第一象限,使得四边形为“双直四边形”.如图,设的交点为∵,,,即,,解得,,是的中点,,设直线的解析式为则解得∴直线的解析式为设,①当时,则,,则;②当时,,是的垂直平分线,,,,,此时点坐标还是;③当时,,是等腰直角三角形,,,,∵,,∴,∴,整理得,,当时,,此时在第四象限,不符合题意.当时,,此时在第一象限,符合题意.综上,或.。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)
2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。
北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
人教版八年级下册数学期中考试试题及答案
人教版八年级下册数学期中考试试卷一、单选题1.下列式子中,属于最简二次根式的是()AB CD 2.下列运算正确的是()A .=B=C2=-D 2÷=3)A .﹣3B C .﹣3D 4.如图,将长方形纸片折叠,使A 点落在边BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分展开是一个正方形,其数学原理是()A .有一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.如图,在Rt ABC △中,1AB BC ==,90ABC ∠=︒,点A ,B 在数轴上对应的数分别为1,2,以点A 为圆心,AC 长为半径画弧,交数轴负半轴于点D ,则与点D 对应的数是()A 1B .1C D .6.有下列四个命题:其中正确的为()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是菱形;C .两条对角线互相垂直的四边形是正方形;D .两条对角线相等且互相垂直的四边形是正方形.7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .928.已知四个三角形分别满足下列条件:①三角形的三边之比为1:12;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个A .4B .3C .2D .19.如图是一圆柱形玻璃杯,从内部测得底面直径为12cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .25273cm-10.如图,在矩形ABCD 中,5AB =,3AD =,动点Р满足3PAB ABCD S S = 矩形,则点Р到A 、B 两点距离之和PA PB +的最小值为()A 29B 34C .52D 41二、填空题11在实数范围内有意义,则x的取值范围是_________12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.13.如图,M 是ABC 的边BC 的中点,AN 平分BAC ∠,BN AN ⊥于点N ,延长BN 交AC 于点D ,已知10AB =,15BC =,3MN =,则ABC 的周长为______.14.勾股定理a 2+b 2=c 2本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,c )通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____.15.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE 沿DE 所在直线翻折得到DC E ' ,当点C '恰好落在直线MN 上时,CE 的长为______.三、解答题16.计算:(1)23-(2)22111244a a a a a ---÷+++其中1a =17.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD 是矩形.18.如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若菱形BNDM 的周长为52,10MN =,求菱形BNDM 的面积.19.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B 处,在沿海城市A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A 城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20.如图,已知正方形ABCD连接AC ,BD 交于点O ,CE 平分ACD ∠交BD 于点E .(1)求DE 的长;(2)过点E 作EF CE ⊥,交AB 于点F ,求证:BF DE =.21.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM △≌△;(2)四边形MENF 是__________;(3)当:AB AD =______时,四边形MENF 是正方形.22.在菱形ABCD 中,60ABC ∠=︒,点P 是射线DB 上一动点,以CP 为边向左侧作等边CPE △.点E 的位置随着点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接AE ,则DP 与AE 的数量关系是______,AE 与CB 的位置关系是______;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否成立?若成立,请选择图2或图3中的一种情况予以证明;若不成立,请说明理由.(3)如图4,当点P 在线段DB 的延长线上时,连接DE ,若AB =DE =出四边形CBPE 的面积.23.阅读材料,回答问题:1()中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt ABC 中,如果C 90∠=︒,BC a =,AC b =,AB c =,那么a ,b ,c 三者之间的数量关系是:______.2()对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:ABC 1S ab 2= ,2ABCD S c =正方形,MNPQ S =正方形______.又 ______=______,221(a b)4ab c 2∴+=⨯+,整理得222a 2ab b 2ab c ++=+,∴______.3()如图3,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB 4=,BC 8=,求BE 的长.参考答案1.A【解析】最简二次根式要满足两个条件:被平方数中不含有开得尽方的因数或因式;被开方数中不含分母.依据这两条判断即可.【详解】A 、是最简二次根式,故符合题意;B 、8中有因数4可以开方,故不符合题意;C 、被开方数中含有分母,故不符合题意;D 、被开方数中有开得尽方的因式,故不符合题意;故选:A .【点睛】本题考查了最简二次根式的含义,关键把握最简二次根式的两个条件.2.D【解析】根据二次根式的运算及性质即可完成.【详解】A、被平方数不相同的两个最简二次根式不能相加,故错误;B≠C2=,故错误;D÷===,故正确;2故选:D.【点睛】本题考查了二次根式的加法和除法运算、二次根式的性质,掌握运算法则及性质是关键,同时在二次根式的学习中避免犯类似错误.3.C【解析】【详解】试题解析:原式=.故选C.考点:二次根式的乘除法.4.A【解析】【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.【详解】解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选;A.【点睛】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.5.B【解析】【分析】由勾股定理可得AC的长,从而得AD=AC,则由点A表示的数示得点D表示的数.【详解】在Rt△ABC中,AB=BC=1,则由勾股定理得:AC==∵以点A为圆心,AC长为半径画弧,交数轴负半轴于点D∴∴D点表示的实数为:1故选:B.【点睛】本题考查了实数与数轴、勾股定理等知识,熟知实数与数轴上的点一一对应关系是解答此题的关键.6.A【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A.两条对角线互相平分的四边形是平行四边形,正确;B.两条对角线互相垂直平分的四边形是菱形,故错误;C.两条对角线互相垂直平分且相等的四边形是正方形,故错误;D.两条对角线相等且互相垂直平分的四边形是正方形,故错误.故选:A.【点睛】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.7.B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠=== ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠= ,DBC BDF ADB 20∠∠∠∴=== ,又ABD 48∠= ,ABD ∴ 中,A 1802048112∠=--= ,E A 112∠∠∴== ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.8.A【解析】【详解】①设三角形三边分别为x 、x ,则x 2+x 2=x )2,∴此三角形是直角三角形;②92+402=412,∴此三角形是直角三角形;③设三角形三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30,3x=90,所以此三角形是直角三角形;④如图,∵CD=AD=BD ,∴∠A=∠ACD ,∠B=∠BCD ,∴∠ACD+∠BCD=90°,∴△ABC 是直角三角形.故选A.9.B【解析】【分析】吸管露出杯口外的长度最小,则在杯内的长度最长,此时若沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,然后用勾股定理即可解决.【详解】如图,沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,22121620+=(cm)所以吸管露出杯口外的长度最少为25-20=5(cm)故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,关键是构造直角三角形,利用勾股定理解答.10.D【解析】【分析】由3PAB ABCD S S = 矩形,可得△PAB 的AB 边上的高h=2,表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2;延长FC 到G ,使FC=CG ,连接AG 交EF 于点H ,则点P 与H 重合时,PA+PB 最小,在Rt △GBA 中,由勾股定理即可求得AG 的长,从而求得PA+PB 的最小值.【详解】设△PAB 的AB 边上的高为h∵3PAB ABCDS S = 矩形∴132AB h AB AD ⨯= ∴h=2表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD 为矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延长FC 到G ,使CG=FC=1,连接AG 交EF 于点H∴BF=FG=2∵EF ∥AB∴∠EFG=∠ABC=90゜∴EF 是线段BG 的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P 与点H 重合时,PA+PB 取得最小值AG在Rt △GBA 中,AB=5,BG=2BF=4,由勾股定理得:AG ===即PA+PB 故选:D .【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P 运动的路径,路径确定后就是典型的将军饮马问题.11.x≤5.【解析】【详解】解:由题意得:50x -≥,解得5x ≤,故答案为5x ≤.考点:二次根式有意义的条件.12.70°【解析】【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD ,求出∠BCD=∠B 即可.【详解】解:在Rt △ABC 中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD 是斜边AB 上的中线,∴BD=CD ,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD 和∠B 的度数是解此题的关键.13.41【解析】【分析】证明△ABN ≌△ADN ,得到AD =AB =10,BN =DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ∠,∴∠BAN=∠DAN在△ABN 和△ADN 中,BAN DAN AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN ,∴AD =AB =10,BN =DN ,∵M 是△ABC 的边BC 的中点,BN =DN ,∴CD =2MN =6,∴△ABC 的周长=AB+BC+CA =41,故答案为:41.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(11,60,61)【解析】【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第5组勾股数中间的数为:5×(11+1)=60,进而得出(11,60,61).【详解】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61).故答案为(11,60,61).【点睛】本题主要考查了勾股数,关键是找出数据之间的关系,掌握勾股定理.15.52或10【解析】【分析】分两种情况:E 点在BC 上;点E 在CB 的延长线上.分别由折叠性质勾股定理,矩形的性质进行解答.【详解】解:设CE=x,则C′E=x,当E点在线段BC上时,如图1,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,3BN=BC,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,===,∴MC′3∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′N2,∴x2﹣(4﹣x)2=22,解得,x=2.5,即CE=2.5;当E点在CB的延长线上时,如图2,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD ∥BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,3BN =BC ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′2222'543C D MD =-=-=,∴C′N =5+3=8,∵EN =CE ﹣CN =x ﹣4,C′E 2﹣NE 2=C′N 2,∴x 2﹣(x ﹣4)2=82,解得,x =10,即CE =10;综上,CE =2.5或10.故答案为:2.5或10.【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,关键是分情况讨论.16.(1)1132;(2)11a -+,22.【解析】【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】(1)原式==(2)原式21(1)(1)12(2)a a a a a -+-=-÷++21(2)12(1)(1)a a a a a -+=-⋅+-+211a a +=-+1211a a a a ++=-++11a =-+当1a =时,原式2=-.【点睛】本题考查了二次根式的加减混合运算以及分式的化简求值,熟知运算的法则是解答此题的关键.17.证明见解析【解析】【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等腰△ABC“三线合一”的性质证得BD ⊥AC ,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【详解】证明:∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD=CD .∵四边形ABED 是平行四边形,∴BE ∥AD ,BE=AD ,∴四边形BECD 是平行四边形.∵BD ⊥AC ,∴∠BDC=90°,∴▱BECD 是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.18.(1)见解析;(2)120【解析】【分析】(1)证△MOD ≌△NOB (AAS ),得出OM=ON ,由OB=OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的周长得到菱形的边长BM=13,由菱形的性质及MN=10得到OM=5,在Rt BOM △中由勾股定理得到OB 的长,进而得到BD 的长,利用菱形的面积公式即可求得BNDM 的面积【详解】(1)证明:∵//AD BC ,∴DMO BNO ∠=∠.∵直线MN 是对角线BD 的垂直平分线,∴OB OD =,MN BD ⊥.在MOD 和NOB 中,DMO BNO MOD NOB OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)MOD NOB ≌△△,∴OM ON =,∵OB OD =,∴四边形BNDM 是平行四边形,∵MN BD ⊥,∴四边形BNDM 是菱形;(2)∵菱形BNDM 的周长为52,∴13BN ND DM MB ====,∴12OM ON MN ==,又10MN =,∴5OM =在Rt BOM △中,由勾股定理得12OB ===,故24BD =,故菱形BNDM 面积11202MN BD =⨯⨯=.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.19.(1)该城市会受到这次台风的影响;(2)16;(3)7.2.【解析】【详解】试题分析:(1)过A 作AD ⊥BC 于D ,利用30°角所对边是斜边一半,求得AD,与200比较.(2)以A 为圆心,200为半径作⊙A 交BC 于E 、F,勾股定理计算弦长EF.(3)AD 距台风中心最近,计算风力级别.试题解析:(1)该城市会受到这次台风的影响.理由是:如图,过A 作AD ⊥BC 于D .在Rt △ABD 中,∵∠ABD=30°,AB=240,∴AD=12AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200,∵120<200,∴该城市会受到这次台风的影响.(2)如图以A 为圆心,200为半径作⊙A 交BC 于E 、F,则AE=AF=200,∴台风影响该市持续的路程为:EF=2DE=2∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).20.(1)22(2)见解析【解析】【分析】(1)根据正方形的性质,CE 平分ACD ∠,可得122.52ACE DCE ACD ∠=∠=∠=︒,从而67.5∠=︒BCE ,根据三角形的内角和定理可得BEC BCE ∠=∠,从而2BE BC =利用勾股定理求出2BD =,即可求解;(2)根据EF CE ⊥,可得∠=∠FEB DCE ,又有45FBE CDE ∠=∠=︒,BE BC CD ==,可证≌FEB ECD △△,即可求证.【详解】解:(1)∵四边形ABCD 是正方形,∴90ABC ADC BCD ∠=∠=∠=︒,45DBC BCA ACD ABD CDB ∠=∠=∠=∠=∠=︒.∵CE 平分DCA ∠,∴122.52ACE DCE ACD ∠=∠=∠=︒,∴4522.567.5BCE BCA ACE ∠=∠+∠=︒+︒=︒,∵45DBC ∠=︒,∴18067.54567.5BEC BCE ∠=︒-︒-︒=︒=∠,∴2BE BC ==在Rt BCD 中,由勾股定理得()()22222BD =+=,∴22DE BD BE =-=(2)∵EF CE ⊥,∴90CEF ∠=︒,∴9067.522.5FEB CEF CEB DCE ∠=∠-∠=︒-︒=︒=∠,∵45FBE CDE ∠=∠=︒,BE BC CD ==,∴(ASA)FEB ECD ≌△△,∴BF DE =.【点睛】本题主要考查了正方形的性质,三角全等的判定和性质,等腰三角形的判定,三角形内角定理,勾股定理等知识,证明三角形全等是解题的关键.21.(1)见解析;(2)菱形;(3)当:1:2AB AD =时,四边形MENF 是正方形.【解析】【分析】(1)在矩形ABCD 中,可得AB DC =,90A D ∠=∠=︒,再根据M 为AD 中点,得AM DM =,即可求证;(2)由(1)ABM DCM △≌△,得BM CM =,再由E ,F 分别是线段BM ,CM 的中点,可得EM FM =,然后N 分别是边BC 的中点,根据三角形中位线定理可得EN MF =,FN EM =,得到四边形MENF 是平行四边形,即证;(3)当:1:2AB AD =时,有12AB AD =,可得45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,可得90EMF ︒∠=,即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB DC =,90A D ∠=∠=︒,∵M 为AD 中点,∴AM DM =,在ABM 和DCM △,AM DM =,A D ∠=∠,AB CD =,∴()SAS ABM DCM ≌△△;(2)由(1)ABM DCM △≌△,∴BM CM =,∵E ,F 分别是线段BM ,CM 的中点,∴12BE EM BM ==,12CF MF MC ==,∴EM FM =,∵N 分别是边BC 的中点,∴12EN MC =,12FN BM =,∴EN MF =,FN EM =,∴四边形MENF 是平行四边形,∵EM FM =,∴四边形MENF 是菱形;(3)解:当:1:2AB AD =时,四边形MENF 是正方形;理由如下:当:1:2AB AD =时,有12AB AD =,∵M 为AD 中点,∴AB AM =,∴ABM AMB ∠=∠,∵90A ︒∠=,∴45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,∴180180454590EMF AMB DMC ︒︒︒︒︒∠=-∠-∠=--=,由(2)四边形MENF 是菱形,∴四边形MENF 是正方形,∴当:1:2AB AD =时,四边形MENF 是正方形.【点睛】本题主要考查了矩形的性质,三角形全等的判定和性质,菱形的判定,正方形的判定,三角形的中位线定理,熟练掌握相关性质定理,判定定理是解题的关键.22.(1)①DP AE =,②AE CB ⊥;(2)(1)中的结论仍然成立,理由见解析;(3)四边形CBPE 【解析】【分析】(1)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(2)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(3)连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,利用菱形的性质和勾股定理可求得7==DP AE ,3BO =,从而1PB PD BD =-=,4PO =,利用勾股定理求得PE PC ==EM =,即可得到四边形CBPE 的面积等于CPE PBC S S + ,即可求解.【详解】(1)①DP AE =②AE CB ⊥理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,1302CDP ADC ︒∠=∠=,∴ADC 、ABC 是等边三角形,∴AC CD =,60ACD ∠=︒,60BAC ︒∠=.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴∠-∠=∠-∠ACD ACP PCE ACP ,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,30︒∠=∠=CAE CDP ,∴30BAE CAE ︒∠=∠=,即AE 平分BAC ∠,∴AE CB ⊥;(2)(1)中的结论仍然成立,理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,∴ADC 是等边三角形,∴AC CD =,60ACD ∠=︒.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴ACD ACP PCE ACP ∠+∠=∠+∠,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,CAE CDP ∠=∠.∵在菱形ABCD 中,1302CDP ADC ∠=∠=︒,60ACB ∠=︒,∴30CAE CDP ∠=∠=︒,∴90DAE ∠=︒,即AE AD ⊥,∵//AD BC ,∴AE CB ⊥.(3)如图,连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,在菱形ABCD 中,AC BD ⊥,23AB BC AD ===,12AO CO AC ==,12BO BD =,∵DE =,∴7AE ===,∴7==DP AE ,∵60ABC ∠=︒,∴ABC 是等边三角形,∴1302ABO ABC ︒∠=∠=,AC AB ==,∴12AO CO AC ===3BO ==,∴6BD =,∴1PB PD BD =-=,4PO =,∴PC ===,∴2PM =,PE PC ==∴2EM ==,∴四边形CBPE 的面积是11111222224CPE PBC S S PC EM PB CO +=⋅+⋅=⨯⨯+⨯⨯= .【点睛】本题主要考查了菱形的性质,等边三角形的性质和判定,全等三角形的判定与性质,勾股定理,解题的关键是找到全等三角形,利用全等三角形的性质解答问题.23.(1)222+=a b c ;(2)()2a b +,正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,222+=a b c ;(3)3.【解析】【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(3)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222+=a b c ,故答案为:222+=a b c ;(2)12ABC S ab ∆= ,2ABCD S c =正方形,2()MNPQ S a b =+正方形;又 正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,221()42a b ab c ∴+=⨯+,整理得,22222a ab b ab c ++=+,222a b c ∴+=,故答案为:2()a b +;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;222+=a b c ;(3)设BE x =,则8EC x =-,由折叠的性质可知,8AE EC x ==-,在Rt ABE △中,222AE AB BE =+,则222(8)4x x -=+,解得,3x =,则BE 的长为3.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.。
浙江省宁波市第七中学2023-2024学年八年级下学期期中考试数学试题(解析版)
宁波七中教育集团2023学年第二学期初二数学期中质量评估试题(2024.4)本试题卷分选择题和非选择题两部分,共6页,满分为110分,考试时间为90分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色笔迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
选择题部分一、选择题(本题共10小题,每小题3分,共30分)1. 下列无理数中,大小在3与4之间的是().A. B. C. D.【答案】C【解析】【分析】根据无理数的估算可得答案,熟练掌握无理数的估算方法是解题的关键【详解】解:∵,,∴大小在3与4,故选:C.2. 下列图案是一些国产新能源车的车标,其中既是轴对称图形又是中心对称图形的是()A. B. C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念,对选项逐个判断即可.【详解】解:A、该图形既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B、该图形不是中心对称图形,是轴对称图形,故此选项不合题意;C、该图形既是中心对称图形,也是轴对称图形,故此选项符合题意;3=4==91316<<D 、该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形的概念,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,是解答本题的关键.3. 正九边形的每一个外角的度数是( )A. B. C. D. 【答案】B【解析】【分析】根据正n 多边形的每一个外角的度数为,进行求解即可.【详解】解:正九边形的每一个外角的度数是,故选:B .4. 用反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A. 每一个内角都大于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 有一个内角小于60°【答案】A【解析】【分析】本题考查的是反证法的运用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判定.【详解】解:反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中每一个内角都大于60°.故选:A .5. 2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为,则可列方程为( )A. B. C. D. 180︒30︒40︒60︒135︒360n ︒360409︒=︒x 600(12)2850x +=2600(1)2850x +=2600600(1)600(1)2850x x ++++=22850(1)600x -=【答案】C【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6. 八年级某班甲、乙、丙、丁四位同学准备选一人参加学校“跳绳”比赛.经过三轮测试,他们的平均成绩都是每分钟个,方差分别是,你认为派哪一个同学去参赛更合适( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差越小,成绩越稳定,进行判断即可.【详解】∵甲、乙、丙、丁四位同学的平均成绩相同,方差分别是,∴方差最小的为丁,∴派丁同学去参赛更合适.故选:D .【点睛】本题考查利用方差作决策.熟练掌握方差越小,成绩越稳定是解题的关键.7. 如图,在四边形中,,添加下列条件,不能判定四边形是平行四边形的是( )A. B. C. D. 【答案】A【解析】2600600(1)600(1)2850x x ++++=180222265,56.5,53,50.5S S S S ====甲乙丁丙222265,56.5,53,50.5S S S S ====甲乙丁丙ABCD BC AD ∥ABCD AB CD=AB CD A C ∠=∠BC AD=【分析】本题主要考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键.【详解】解;添加条件,再由,不能根据一组对边相等,另一组对边平行证明四边形是平行四边形,故A 符合题意;添加条件,再由,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故B 不符合题意;添加条件,由得到,进而得到,则,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故C 不符合题意;添加条件,再由不能根据一组对边平行且相等的四边形是平行四边形,证明四边形是平行四边形,故D 不符合题意;故选;A .8. 已知关于的方程,下列说法正确的是( )A. 当时,方程无解B. 当时,方程有一个实数解C. 当时,方程有两个相等实数解D. 当时,方程总有两个不相等的实数解【答案】C【解析】【分析】根据一元二次方程根的判别式求解即可.【详解】解:当时,方程为一元一次方程有唯一解,.当时,方程为一元二次方程,解的情况由根的判别式确定:∵,∴当时,方程有两个相等实数解,当且时,方程有两个不相等的实数解.综上所述,说法C 正确.故选:C .【点睛】此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.的的AB CD =BC AD ∥ABCD AB CD BC AD ∥ABCD A C ∠=∠BC AD ∥180A B ∠+∠=︒180C B ∠+∠=︒AB CD ABCD BC AD =BC AD ∥ABCD x ()2110kx k x +--=0k =1k =1k =-0k ≠()()()221411k k k ∆=--⋅⋅-=+0k =10x -=1x =0k ≠()()()221411k k k ∆=--⋅⋅-=+1k =-0k ≠1k ≠-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-9. 如图,平行四边形的对角线相交于点的平分线与边相交于点是中点,若,则的长为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查了平行四边形的性质,三角形中位线定理,根据平行四边形的性质可得,再根据平分,可得,从而可得,可得,进一步可得,再根据三角形中位线定理可得,即可求出的长.【详解】解:在平行四边形中,,∴,∵平分,∴,∴,∴,∵,∴,∵E 是中点,∴.故选:B .10. 如图,在中,,斜边,分别以的三边长为边任上方作正方形,分别表示对应阴影部分的面积,则()ABCD AC BD 、,O ADC ∠AB ,P E PD 12,16AD CD ==EO CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==4BP =EO ,,AB DC AB CD OD OB ==∥CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==16AB CD ==4BP =PD 122OE BP ==Rt ABC △60CBA ∠=︒2AB =ABC AB 12345,,,,S S S S S 12345S S S S S ++++=A. 2B. C. 4 D. 【答案】B【解析】【分析】本题考查勾股定理的应用和全等三角形的判定,根据题意过作于,连接,进而结合全等三角形的判定与性质得出进行分析计算即可.【详解】解:在中,,斜边,,,过作于,连接,在和中,,,同理,,,,,,,四边形是平行四边形,D DN BF ⊥N DI 123454ABC S S S S S S ++++= Rt ABC △60CBA ∠=︒2AB =BC ∴=121AB =AC==D DN BF ⊥N DI ACB BND 90ACB BND CAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS ACB BND ∴ ≌Rt MND Rt OCB ≌MD OB ∴=DMN BOC ∠=∠EM DO ∴=DN BC CI ∴== DN CI ∥∴DNCI,四边形是矩形,,、、三点共线,,,,图中,,在和中,,,同理,,.故选:B .非选择题部分二、填空题(本题共8小题,每小题3分,共24分)11.的取值范围是________.【答案】##【解析】【分析】本题考查二次根式有意义的条件,根据题中二次根式列出不等式求解即可得到答案,熟记二次根式有意义的条件是解决问题的关键.【详解】解:有意义,90NCI ∠=︒ ∴DNCI 90DIC ∴∠=︒D ∴I H 90F DIO ∠=∠=︒ EMF DMN BOC DOI ∠=∠=∠=∠()AAS FME DOI ∴ ≌ 2Rt DOI BOC MND S S S S ==, ∴243ABC ABC S S S S S +==. Rt AGE Rt ABC AE AB AG AC =⎧⎨=⎩()Rt Rt HL AGE ACB ∴ ≌Rt Rt DNB BHD ≌∴12345S S S S S ++++13245()S S S S S =++++4ABCS = 1412=⨯⨯=x 3x ≥-3x-≤,解得,故答案为:.12. 若一组数据,,,,的众数是,则这组数据的方差是______.【答案】####【解析】【分析】首先根据众数的定义求出的值,进而利用方差公式得出答案.【详解】解:,,,,的众数是,,,,故答案为.【点睛】此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.13. 若a 是一元二次方程的一个根,则的值是______.【答案】8【解析】【分析】本题考查了一元二次方程的根的定义,整体思想的应用是本题的关键.根据一元二次方程解的定义可得,再整体代入求代数式即可.【详解】解:∵a 是一元二次方程的一个根,把代入得,,即,∴,故答案为:8.14. 已知菱形的周长为,其相邻两内角的度数比为,此菱形的面积为______.【答案】【解析】【分析】本题考查菱形性质,含度角的直角三角形的性质;根据相邻两内角的度数比为:,可求出一个角,根据周长为,求出菱形的边长,根据直角三角形里角的性质求出高,从而求出面积.【详解】解:作于点,的∴30x +≥3x ≥-3x ≥-02-81x 2-13.63135685x 02-81x 2-2x ∴=-1(02812)15x =-++-=2222221[(01)(21)(81)(11)(21)]13.65S =-+--+-+-+--=13.62240x x +-=224a a +224a a +=2240x x +-=x a =2240a a +-=224a a +=()222422248a a a a +=+=⨯=ABCD 241:518301530︒2430︒AE BC ⊥E其相邻两内角的度数比为:,,菱形的周长为,..菱形的面积为:.故答案为:.15. 如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.【答案】105°【解析】【分析】根据四边形ABCD 是正方形,可得AB =AD ,∠BAD =90°,△ABE 为等边三角形,可得AE =BE =AB ,∠EAB =60°,从而AE =AD ,∠EAD =30°,进而求得∠AED 的度数,再根据平角定义即可求得∠DEF 的度数.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∵△ABE 为等边三角形,∴AE =BE =AB ,∠EAB =60°,∴AE =AD ,∠EAD =∠BAD ﹣∠BAE =30°,∴∠AED =∠ADE=(180°﹣30°)=75°,∴∠DEF =180°﹣∠AED =180°﹣75°=105°.故答案为105°. 15180B ∴∠=︒⨯115+30=︒ ABCD 24AB BC ∴==14246⨯=AE ∴=1263⨯=∴6318BC AE ⨯=⨯=1812【点睛】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.16. 如图,有5个形状大小完全相同的小矩形构造成一个大矩形(各小矩形之间不重叠且不留空隙),图中阴影部分的面积为16,且每个小矩形的宽为1,则每个小矩形的长为______.【解析】【分析】本题考查了一元二次方程的应用,结合图形建立方程是解题的关键.设小矩形的长为x ,根据“阴影部分的面积为16”列出方程求解.【详解】解:设小矩形的长为x ,根据题意,得,解得(负值舍去),故答案.17. 如图,点是平行四边形的对称中心,是边上的点,,是边上的点,且.若分别表示和的面积,则______.【答案】##【解析】【分析】本题考查了平行四边形的性质,连接,根据点是平行四边形的对称中心得到点是线段的中点,且,再由,进而可求解,熟练掌握平行四边形的性质是解题的关键.为(21)(2)516x x x ++-=x =O ABCD ,,AD AB E F >AB G H BC 42,79EF AB GH BC ==12,S S EOF GOH 12S S =18718:7,AC OB O ABCD O AC 14AOB BOC ABCD S S S ==平行四边形 47EF AB =29GH BC =【详解】解:如图,连接,点是平行四边形的对称中心,点是线段的中点,且,令 , ,,,故答案为:.18. 如图,在矩形中,,点是的中点,将沿折叠后得到延长交射线于点,若,则的值为______.或【解析】【分析】本题考查了全等三角形的判定及性质、折叠的性质、勾股定理,连接,由折叠和线段中点的性质可得,,利用可得,可得,分两种情况:当点在线段上时,当点在的延长线上时,利用勾股定理即可求解,找准点的位置是解题的关键.【详解】解:由矩形的性质可知,,则,,AC OB O ABCD ∴O AC 14AOB BOC ABCD S S S ==平行四边形 AOB BOC S S S == 47EF AB = 29GH BC =47EOF S S =∴ 29GOH S S = 124187279S S ∴==187ABCD ,2AB m BC ==E AD ABE BE GBE BG DC F 2CD CF =m EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒HL Rt Rt EGF EDF △≌△DF GF =①F CD ②F DC F AB CD m ==1122CF CD m ==连接,如图:由折叠和线段中点的性质可得 ,,,(公共边),,,分两种情况:如图(1),当点在线段上时,易知,,,在中,由勾股定理得,,解得:或(舍去),如图(2),当点在的延长线上时, 易知,,,在中,由勾股定理,得,EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒90EGF D ∴∠=∠=︒EF EF = ()Rt Rt HL EGF EDF ∴ ≌DF GF ∴=①F CD 12GF DF CF m ===1322BF BG GF m m m ∴=+=+=Rt BCF 22213222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭m=②F DC 12CF m =1322GF DF m m m ==+=3522BF BG GF m m m ∴=+=+=Rt BCF 22215222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭解得:或(舍去),综上所述,,.三、解答题(19、20、21每题6分,22题8分,23、24每题10分,共46分)19. 计算.(1;(2).【答案】(1)(2)1【解析】【分析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)先化简二次根式并合并同类二次根式,再按照二次根式的除法进行即可.【小问1详解】;【小问2详解】解:.【点睛】本题考查了二次根式的加减运算及混合运算,关键是化为最简二次根式.20.解方程:m=m+÷6=-+=÷=-÷=÷1=(1)(2)【答案】(1)(2)【解析】【分析】本题考查了解一元二次方程;(1)根据直接开平方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【小问1详解】解:∴∴解得:【小问2详解】解:∴∴解得:,21. 如图,在的正方形网格中,小正方形的顶点叫做格点已知两点是格点仅用无刻度的直尺分别按下列要求画图保留画图痕迹,不写画法(1)如图,以线段为边长作菱形;(2)如图,以线段为边作一个面积为的正方形.2280x -=()2240x x -+=122,2x x =-=124,2x x ==-2280x -=228x =24x =122,2x x =-=()2240x x -+=228=0x x --()()420x x -+=124,2x x ==-106⨯.A B ,.(.)1AB ABCD 2AB 10【答案】(1)见解析(2)见解析【解析】【分析】(1)作一个边长为的菱形即可;(2的正方形即可.【小问1详解】如图所示,菱形即为所求;或【小问2详解】如图所示,正方形即为所求.【点睛】本题考查作图应用与设计作图,勾股定理,菱形的判定以及正方形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.22. 每年的月日是我国全民国家安全教育日.某中学在全校七、八年级各名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分分,分及以上为合格)八年级抽取的学生的竞赛成绩:.七年级抽取的学生的竞赛成绩条形统计图七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级5ABCD ABC -415500201064466667778888889991010,,,,,,,,,,,,,,,,,,,平均数中位数众数合格率根据以上信息,解答下列问题:(1)填空:______;______;______.(2)估计该校八年级名学生中竞赛成绩不合格的人数;(3)在这次“国家安全法”知识竞赛中,你认为哪个年级的学生成绩更优异?请说明理由.【答案】(1),,(2)人(3)八年级的学生成绩更优异,理由见解析【解析】【分析】()根据平均数、中位数、众数的定义即可求解;()用乘以不合格率即可求解;()根据平均数、中位数、众数比较即可判断;本题考查了条形统计图和统计表,平均数、中位数、众数,看懂统计图表是解题的关键.【小问1详解】解:由题意可得,,,,故答案为:,,;【小问2详解】解:(人),答:估计该校八年级名学生中竞赛成绩不合格的人数为人;【小问3详解】解:八年级学生成绩更优异,理由:七、八年级的平均分一样,但是八年级的中位数,众数和合格率都的a7.4b 87c 85%90%=a b =c =5007.47.58501250034152617685941017.420a ⨯+⨯+⨯+⨯+⨯+⨯+⨯==787.52b +==8c =7.47.58()500190%50⨯-=50050高于七年级的,所以八年级“国家安全法”知识竞赛的学生成绩更优异.23. 根据以下销售情况,解决销售任务.销售情况分析总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,它们的销售情况如下:店面甲店乙店日销售情况每天可售出20件,每件盈利40元.每天可售出32件,每件盈利30元.市场调查经调查发现,每件衬衫每降价1元,甲、乙两家店一天都可多售出2件.情况设置设甲店每件衬衫降价元,乙店每件衬衫降价元.任务解决任务1甲店每天的销售量 (用含的代数式表示).乙店每天的销售量 (用含的代数式表示).任务2当,时,分别求出甲、乙店每天的盈利.任务3总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和为2244元.【答案】任务1:件,件;任务2:甲店每天的盈利为1050元,乙店每天的盈利为1040元;任务3:11元【解析】【分析】任务1,由题意即可得出结论;任务2,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【详解】解:任务1,根据题意得:甲店每天的销售量为件,乙店每天的销售量为件,故答案为:件,件;任务2,当时,甲店每天的盈利为(元);a b a b 5a =4b =()202a +()322b +m ()202a +()322b +()202a +()322b +5a =()()40520251050-⨯+⨯=当时,乙店每天的盈利为(元);任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,由题意得:,整理得:,解得:,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.【点睛】本题考查了一元二次方程的应用、列代数式、有理数的混合运算,找准等量关系,正确列出一元二次方程是解题的关键.24. 已知平行四边形为边上的中点,为边上的一点.(1)如图1,连接并延长交的延长线于点,求证:;(2)如图2,若,求;(3)如图3,若为的中点,为的中点,,求线段的长.【答案】(1)见解析(2) (3【解析】【分析】(1)证明,即可得证;(2)连接并延长交的延长线于点,易得,进而得到,利用,得到,即可得解;(3)连接并延长交的延长线于点,易得,进而得到,从而得到,再利用勾股定理进行求解即可.【小问1详解】证明:四边形是平行四边形,,4b =()()30432241040-⨯+⨯=m ()()()()40202303222244m m m m -++-+=2221210m m +=-1211m m ==,ABCD E BC F AB FE DC G =FE GE ,36FB AB DF EDC +=∠=︒AFD ∠,FE DE P =AF Q FD 4,AQ DP ==BE 72︒FEB GEC ≌△△FE DC G =FE GE EDC EDF ∠=∠AB DC 2AFD FDC EDC ∠=∠=∠FE DC M FE DE ME ==90FDM EDF EDM ∠=∠+∠=︒90AFD FDM ∠=∠=︒ ABCD AB DC ∴,为边上的中点,,;【小问2详解】解:四边形是平行四边形,,连接并延长交的延长线于点,由(1)可得,∴,,即,∴;【小问3详解】解:连接并延长交的延长线于点,由(1)可得,,EFB EGC B ECG ∴∠=∠∠=∠E BC ,BE CE ∴=()AAS FEB GEC ∴ ≌FE GE ∴= ABCD AB DC ∴=FE DC G FEB GEC ≌△△FB GC =,FB AB DF += GC DC BF AB ∴+=+DG DF=,FE GE = EDC EDF ∴∠=∠,36AB DC EDC ︒∠= ∥272AFD FDC EDC ∠︒=∠=∠=FE DC M FE ME =,,为直角三角形,为的中点,为的中点,设,,,【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理.熟练掌握平行四边形的性质,通过添加辅助线,证明三角形全等,是解题的关键.附加题部分25. 若,则的值为_______.【答案】【解析】【分析】根据换元法以及一元二次方程的解法即可求出答案.【详解】,,FE DE = ,FE DE ME ∴==,EFD EDF EDM EMD ∴∠=∠∠=∠180,EFD EDF EDM EMD ∠+∠+∠+∠=︒ 90FDM EDF EDM ︒∴∠=∠+∠=,AB DC 90,AFD FDM ∠=∠=︒∴,DF AB AFD ∴⊥△P AF Q FD ∴,AP FP x FQ DQ y ====222222,,4,PF DF DP AF FQ AQ AQ DP +=+=== ()()22222224,2x y x y ∴+=+=2210x y ∴+=222224440AD AF FD x y ∴=+=+=AD ∴=22BC AD BE ∴===2250a ab b +-=a b 52-±2250a ab b +-=.令,,,,.故答案为:【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟练应用一元二次方程的解法,本题属于中等题型.26. 实数满足,且则______.【答案】##0.5【解析】【分析】本题考查了因式分解的应用,根据和可整理得,再进行因式分解得,进而可求得a 、b 、c 的值,则可求解,熟练掌握因式分解的方法是解题的关键.【详解】解:,,,,,22510a a b b∴+-=a tb =2510t t ∴+-=22529544t t ∴++=252924t ⎛⎫∴+= ⎪⎝⎭52t ∴=-52-±,,a b c 2a b =+25204ab c c +++=bc a =122a b =+25204ab c c +++=(()2122104b b c c ++++=()221102c ⎫+++=⎪⎭2a b =+ 25204ab c c +++=(()2122104b bc c ∴+++++=()2212104b c ⎛⎫∴+++= ⎪⎝⎭()221102c ⎫∴+++=⎪⎭10,102c +=+=,,,故答案为:.27. 如果菱形有一条对角线等于它的边长,那么称此菱形为“完美菱形”.如图,已知“完美菱形”的边长为是它的较短对角线,点分别是边上的两个动点,且,点为的中点,点为边上的动点,则的最小值为______.【答案】##【解析】【分析】本题考查轴对称最短路线问题,菱形的性质,勾股定理,用一条线段的长表示两线段和的最小值是解题的关键.连接,,易知,因为,所以求的最小值只要求出的最小值,然后减去1即可,再利用将军饮马模型构造出的最小值时的线段,利用勾股定理求出即可.【详解】解:设与的交点为,连接,,四边形是菱形,,,1b c ∴==-2a ∴=+=12bc a ∴==12ABCD 8,BD ,E F ,AC BD 4EF =G EF P AB PD PG +2-2-+-OG OP 122OG EF ==OG PG OP +≥PD PG +PD PO +PD PO +BD AC O OG OP ABCD BD AC ∴⊥122OG EF ∴==,的最小值为,作点关于的对称点,延长交于点,连接,,,,,的最小值为,四边形是菱形,,,四边形是“完美菱形”,∴菱形的边只能和较短对角线相等,∵的边长为8,,,,,,,由对称性和菱形的性质,知,,OG PG OP +≥ PG ∴2OP -O AB O 'O O 'CD H OP O P 'O D 'PO PO ∴'=222PD PG PD PO PD PO O D ∴+≥+-=+'-≥'-PD PG ∴+2O D '- ABCD O O AB '⊥O H CD ∴'⊥ ABCD ABCD 8AD AB BD ∴===4OD =60ODH ABD ∴∠=∠=︒30DOH ∠=︒122DH OD ==OH ==3O H OH '==O D '===的最小值为,故答案为:.PD PG ∴+22-。
河南省洛阳市第二外国语学校2023-2024学年八年级下学期期中数学试题(解析版)
洛阳市第二外国语学校2023-2024学年第二学期八年级数学学科期中考试一、选择题(每题3分,共30分)1. 下列各式中,属于最简二次根式的是( )A. B. C. D. 【答案】A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式判断即可.【详解】解:AB不属于最简二次根式,故本选项不符合题意;C不属于最简二次根式,故本选项不符合题意;D故选:A【点睛】本题考查最简二次根式,掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式是解题的关键.2. 下列运算正确的是( )A. B.C. D. 【答案】D【解析】【分析】根据二次根式的性质对A 选项进行判断;根据二次根式的加法运算对B 选项和C 选项进行判断;根据二次根式的除法法则对D 选项进行判断.【详解】解:,所以A 选项不符合题意;B,所以B选项不符合题意;2===5=-=+==A 5=+=+=C .C 选项不符合题意;D,所以D 选项符合题意.故选:D .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的加减法则和除法法则是解决问题的关键.3.x 的取值范围是( )A. x ≥4B. x >4 C. x ≤4 D. x <4【答案】D【解析】【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4即x 的取值范围是:x <4故选D .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4. 已知的、和的对边分别是,和,下列给出了五组条件:①;② ;③;④;⑤,,是直角三角形的条件有( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断即可求出答案.【详解】解:①∵∠A:∠B:∠C=1: 2: 3,∴∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°, ∴∠C=90°, ∴ 是直角三角形;②∵a: b: c=3: 4: 5,∴ (3x) ²+(4x) ²=(5x) ²,∴是直角三角形;③∵∠A=∠B+∠C 是直角三角形,而2∠A=∠B+∠C 不是直角三角形;④∵a ²-c ²=b ²∴是c 为斜边的直角三角形;+=÷==ABC A ∠B ∠C ∠a b c 123A B C ∠∠∠=::::::3:4:5a b c =2A B C ∠=∠+∠222a c b -=1a =2b =c =ABC ABC ABC ABC⑤∵而1²2=2²∴此三角形是以b 为斜边的直角三角形.故选: C.【点睛】本题考查了直角三角形的判定,主要利用了三角形的内角和定理及勾股定理逆定理来判断.5. 如图,在中,.C 是上一点,已知,,,则的长是( )A. 5B. 9C. 6D. 15【答案】A【解析】【分析】本题考查勾股定理,利用勾股定理求出的长,用求出的长即可.【详解】解:∵,,,∴,∴;故选A .6. 如图,E 是平行四边形边上一点,且,连结,并延长与的延长线交于点F ,,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了平行四边形的性质、等边对等角、三角形内角和定理等知识,利用平行四边形的性质得到,,则,由等腰三角形的性质得出,再利用三角形的内角和定理得到,即可得到答案.【详解】解:如图所示,∵四边形是平行四边形,∴,,ABD △90D Ð=°BD 7CB =15AB =9AD =DC BD BD CB -DC 90D Ð=°15AB =9AD =12B D ==1275DC BD CB =-=-=ABCD BC AB BE =AE AE DC 70F ∠=︒D ∠30︒40︒50︒70︒AB DC B D ∠=∠70BAE F ∠=∠=︒70BAE AEB ∠=∠=︒40B ∠=︒ABCD AB DC B D ∠=∠∴.∵,∴,∴,∴故选:B .7. 如图,在中,为斜边上的中线,点是上方一点,且,连接,若,,则的长为( )A. B. C. 4 D. 【答案】B【解析】【分析】先利用直角三角形斜边上的中线性质可得,然后利用等腰三角形的三线合一性质可得,从而在中,利用勾股定理进行计算即可解答.【详解】解:在中,为斜边上的中线,,,,中,,故选:B .【点睛】本题考查了直角三角形斜边上的中线,等腰三角形的性质,熟练掌握直角三角形斜边上的中线等于斜边的一半,以及等腰三角形的性质是解题的关键.8. 如图,在平行四边形ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 的延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,若CF =2,则AB 的长是( )在70BAE F ∠=∠=︒AB BE =70BAE AEB ∠=∠=︒18040B BAE AEB ∠=︒-∠-∠=︒40D B ∠=∠=︒Rt ABC △CD AB E AB AE BE =DE 3CD =7AE =DE3CD AD BD ===ED AD ⊥Rt ADE △Rt ABC △CD AB 132CD AD BD AB ∴====7AE BE == ED AD ∴⊥Rt ADE△DE ===A. 4B. 2D. 【答案】B【解析】【分析】先根据平行四边形的性质可得,从而可得,再利用直角三角形的性质可得,然后根据平行四边形的判定与性质可得,最后根据线段的和差即可得.【详解】四边形ABCD 是平行四边形,在中,,,即又四边形ABDE 是平行四边形解得故选:B .【点睛】本题考查了平行四边形的判定与性质、直角三角形的性质、平行线的性质等知识点,熟练掌握平行四边形的判定与性质是解题关键.9. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(8,6),以A 为圆心,任意长为半径画弧,分别交AC 、AO 于点M 、N ,再分别以M 、N 为圆心,大于MN 长为半径画弧两弧交于点Q ,作射线AQ 交y 轴于点D ,则点D 的坐标为( ),//,60AB CD AB CD ABC =∠=︒60ECF ∠=︒24CE CF ==AB DE = 120BAD ∠=︒,//,18060AB CD AB CD AB BA C D ∴=∠=︒-=∠︒60ECF ABC ∴∠=∠=︒Rt CEF 2CF =9060CEF ECF ∠=︒-∠=︒24CE CF ∴==4CD DE +=//,//A D EE B A B D ∴AB DE∴=4AB AB ∴+=2AB =12A. B. C. D. 【答案】B【解析】【分析】过点D 作DE ⊥AC 于点E ,由勾股定理可求AC =10,由“AAS ”可证△ADO ≌△ADE ,可证AE =AO =8,OD =DE ,可得CE =2,由勾股定理可求OD 的长,即可求点D 坐标.【详解】解:如图,过点D 作DE ⊥AC 于点E ,∵四边形OABC 为矩形,点B 的坐标为(8,6),∴OA =8,OC =6∴AC10由题意可得AD 平分∠OAC∴∠DAE =∠DAO ,AD =AD ,∠AOD =∠AED =90°∴△ADO ≌△ADE (AAS )∴AE =AO =8,OD =DE∴CE =2,∵CD 2=DE 2+CE 2,∴(6-OD )2=4+OD 2,∴OD =∴点D (0,)()0,180,3⎛⎫ ⎪⎝⎭50,3⎛⎫ ⎪⎝⎭()0,28383故选B .【点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,全等三角形的判定和性质,证明△ADO ≌△ADE 是本题的关键.10. 如图,在正方形中,边长为2的等边三角形的顶点E 、F 分别在和上,下列结论:①;②;③;④,其中正确的个数是( )。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
河南省新乡市河南师范大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
2023—2024学年第二学期八年级《数学》期中考试试卷一、选择题(共10小题,每小题3分)1.在实数范围内有意义,则x 的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的性质,被开方数大于或等于0.解:依题意有,即时,二次根式有意义.故选:B .【点睛】本题主要考查了二次根式的意义和性质,二次根式中的被开方数必须是非负数,否则二次根式无意义,掌握二次根式的意义与性质是解题的关键.2. 下列各组线段,能组成直角三角形的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】根据勾股定理逆定理分别计算并判断.此题考查了勾股定理的逆定理的应用,正确掌握勾股定理逆定理判断直角三角形的方法是解题的关键.解:A 、∵,∴不能组成直角三角形;B 、∵,∴不能组成直角三角形;C 、∵,∴不能组成直角三角形;D 、,∴能组成直角三角形;故选:D .3. 若,则表示实数的点会落在数轴的( )3x ≠-3x ≥-3x ≥0x ≥30x +≥3x ≥-1a =2b =2c=2a =3b =5c =2a =4b =5c =3a =4b =5c =222122+≠222235+≠222245+≠222345+=a =aA. 段①上B. 段②上C. 段③上D. 段④上【答案】B【解析】【分析】此题主要考查了二次根式的化简,减法运算及估算,先化简二次根式,计算出a 的值,再估算出a 范围,再结合数轴即可得出结果.解:,即,,,,即,故实数的点会落在数轴的段②上,故选:B .4. 如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A. B. C. D. 【答案】A【解析】【分析】根据勾股定理计算出大正方形边长的平方,即大正方形的面积,再根据勾股定理可得两个小正方形的边长的平方和等于斜边的平方,即两个小正方形的面积和等于大正方形的面积,从而得出答案.由勾股定理得,大正方形边长的平方==25,即大正方形面积为25,∵两个小正方形的边长的平方和等于斜边的平方,∴两个小正方形的面积和为25,∴阴影部分的面积为:25+25=50.故选:A .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.5. 如图,中,平分交于E ,若,则度数为( )a +=a =-∴a ==-=<<12∴<<12a <<a 50162541221312-ABCD Y BE ABC ∠AD 56C ∠=︒BED ∠A. B. C. D. 【答案】B【解析】【分析】此题主要考查了平行四边形的性质以及角平分线的定义,关键是掌握平行四边形对边互相平行.首先根据平行四边形的性质可得,,根据平行线的性质可得,,先计算出,然后再计算出的度数,可得答案.解∶四边形是平行四边形.,,,,平分,,,,,故选∶B .6. 如图,长方形的边在数轴上,若点A 与数轴上表示数的点重合,点D 与数轴上表示数的点重合,,以点A 为圆心,对角线的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为()A. B. C. D. 1【答案】A【解析】【分析】本题考查勾股定理与无理数,实数与数轴.勾股定理求出的长,进而求出点E 表示的数即可.112︒118︒119︒120︒AD BC ∥AB CD 180ABC C ∠+∠=︒180EBC BED ∠+∠=︒62EBC ∠=︒BED ∠ ABCD ∴AD BC ∥AB CD ∴180ABC C ∠+∠=︒∴180********ABC C ∠=︒-∠=︒-︒=︒ BE ABC ∠∴124262EBC ∠=︒÷=︒ AD BC ∥∴180EBC BED ∠+∠=︒∴180********BED EBC ∠=︒-∠=︒-︒=︒ABCD AD 1-4-1AB =AC 1--1-AC解:由题意,得:,,,∴,∴点表示的数为;故选A .7. 如图,是中位线,点F 在上,且,若,,则()A. 4B. 3C. 2.5D. 1.5【答案】D【解析】【分析】本题主要考查三角形中位线定理,直角三角形斜边中线的性质,根据三角形中位线定理求出,根据直角三角形的性质求出,结合图形计算,得到答案.解:∵是的中位线,∴,在三角形中,是的中点,∴,∴故选:D.8. 如图,O 为菱形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,若AC =6,BD =8,则线段OE 的长为( )A. 3B. C. 5 D. 6【答案】C【解析】【分析】先证明四边形OCED 是平行四边形,再根据菱形的对角线互相垂直求出∠COD =90°,则四边形的90ADC ∠=︒()143AD =---=1CD AB ==AE AC ===E 1--DE ABC DE 90AFB ∠=︒7AB =10BC =EF =DE DF DE ABC 152DE BC ==AFB D AB 1 3.52DF AB == 1.5EF DE DF =-=OCED 为矩形,根据菱形的对角线互相平分求出OC 、OD ,再根据勾股定理求出CD ,然后根据矩形的对角线相等求解即可.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴∠COD =90°,∴四边形OCED 是矩形,又∵AC =6,BD =8,∴OC =3,OD =4,∴,在矩形OCED 中,OE =CD =5,故选:C .【点睛】本题考查了菱形的性质,矩形的判定和性质,勾股定理的应用,熟记矩形的判定方法和菱形的性质是解题的关键.9. 如图,中,,,,在上取一点(不与、点重合),连接,当的长度为整数值时,符合条件的值共有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】本题考查的是勾股定理的应用,化为最简二次根式,无理数的估算,如图,过作于,先求解,,从而可得答案.解:如图,过作于,∵,,,5CD ===ABC 90BAC ∠=︒2AC =6AB =BC M B C AM AM AM A AD BC ⊥D BC AD 6AM ≤<A AD BC ⊥D 90BAC ∠=︒2AC =6AB =∴∴,,而,∴的整数值为,,,,故选C10. 如图,线段上有一动点从右向左运动,和分别是以和为边的等边三角形,连接两个等边三角形的顶点,为线段的中点;、为线段上两点,且满足,当点从点运动到点时,设点到直线的距离为,点的运动时间为,则与之间函数关系的大致图象是( )A. B.C. D.【答案】D【解析】【分析】分别延长交于点,则可证得四边形为平行四边形,利用平行四边形的性质:对角线相互平分,可得为的中点,也是的中点,所以的运动轨迹是三角形的中位线,所以点到直线的距离为是一个定值, 问题得解.BC ===AD ==6AM ≤<925<<AM 2345AB P AEP △PFB △AP PB EF G EF C D AB AC BD =P D C G AB y P x y x AE BF ,H EPFH G EF PH G HCD G AB y如图, 分别延长交于点,,,,,∴四边形为平行四边形,∴与互相平分,∴为的中点,∵的中点为,∴从点运动到点时,始终为的中点,∴运动的轨迹是三角形的中位线,又∵,∴到直线的距离为一定值,∴与点移动的时间之间函数关系的大致图象是一平行于轴的射线,故选:D .【点睛】本题考查了动点问题的函数图象,利用到的是三角形的中位线定理:三角形的中位线平行且等于第三边的一半.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题(共5小题,每小题3分)11.同类二次根式,则_______.【答案】是,AE BF H 60A FPB ∠=∠=︒ AH PF ∴ 60B EPA ∠=∠=︒ BH PE ∴ EPFH EF HP G HP EF G P C D G PH G HCD MN MN CD G AB y P x x ()0x ≥x =4【解析】【分析】本题考查最简二次根式,化为最简二次根式后,它们的被开方数相同,列出方程求解是解题的关键.,∴,解得:,故答案为:.12. 如图,平行四边形的活动框架,当时,面积为,将从扭动到,则四边形面积为_______.【答案】【解析】【分析】本题主要考查了矩形的性质,含有角的直角三角形的性质,根据题意可得,,作,交于点,则,从而即可得到.添加适当的辅助线构造直角三角形是解题的关键.解:当时,面积为,,将从扭动到,,作,交于点,如图所示,,,=13x -=4x =490ABC ∠=︒S ABC ∠90︒30︒D A BC ''12S 30︒S AB BC =⋅30A BC '∠=︒A E BC '⊥BC E 1122A E A B AB ''==111222A BCD S AE BC AB BC AB BC S '''=⋅=⋅=⋅=四边形 90ABC ∠=︒S S AB BC ∴=⋅ ABC ∠90︒30︒30A BC '∴∠=︒A E BC '⊥BC E ∴1122A E AB AB ''==111222A BCD S AE BC A B BC AB BC S '''∴=⋅=⋅=⋅=四边形故答案为:.13. 如图,网格中每个小正方形的边长均为1,以A 为圆心,为半径画弧,交最上方的网格线于点N ,则的长是______.【答案】【解析】【分析】连接,则,中,利用勾股定理求出即可得出答案.解:如图,连接,由题意知:,在中,由勾股定理得:,∴,故答案为:【点睛】本题主要考查了勾股定理,求出的长是解题的关键.14. 如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽,水槽内水面的高度与注水时间之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.在12S AB MN 4AN 4AN AB ==Rt ACN △CN AN 4AN AB ==Rt ACN △CN ==4MN CM CN =-=-4CN 28s ()y cm ()x s【答案】4【解析】【分析】根据函数图像可得正方体的棱长为10cm ,同时可得水面上升从10cm 到20cm,所用的时间为16秒,结合前12秒由于立方体的存在,导致水面上升速度加快了4秒可得答案.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内水面高度变化趋势改变,正方体的棱长为10cm ;没有立方体时,水面上升从10cm 到20cm,所用的时间为:28-12=16秒前12秒由于立方体的存在,导致水面上升速度加快了4秒将正方体铁块取出, 又经过4秒恰好将此水槽注满.故答案:4【点睛】本题主要考查一次函数的图像及应用,根据函数图像读懂信息是解题的关键.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.解:当点线段上时,如图,与关于直线对称,∴ ∴ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP P AD P AD P AD ABP MBP BP,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP三、解答题(共8小题,共75分)16. 计算(1.(2).【答案】(1)(2)【解析】【分析】本题主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.(1)先运算二次根式的乘除,然后合并解题;(2)先提取公因式,然后运算乘法解题即可.【小问1】【小问2】解:17. 某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角建造了一块绿化地(阴影部分).如图,已知,,,.技术人员通过测量确定了.2++36-3=-+3=-2-+=+-⨯=6=-9m AB =12m BC =17m CD =8m AD =90ABC ∠=︒(1)小区内部分居民每天必须从点A 经过点B 再到点C 位置,为了方便居民出入,技术人员打算在绿地中开辟一条从点A 直通点C 的小路,请问如果方案落实施工完成,居民从点A 到点C 将少走多少路程?(2)这片绿地的面积是多少?【答案】(1)(2)【解析】【分析】(1)连接,利用勾股定理求出,问题随之得解;(2)先利用勾股定理逆定理证明是直角三角形,,再根据三角形的面积公式即可求解.【小问1】如图,连接,∵,,,∴,∴,答:居民从点A 到点C 将少走路程.【小问2】∵,.,∴,∴是直角三角形,,∴,,∴,答:这片绿地的面积是.【点睛】本题主要考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解答本题的关键.18. 已知:如图,在中,点,分别在,上,且平分.若,连结.求证:四边形是菱形.6m2114mAC ()15m AC ===ADC △90DAC ∠=︒AC 90ABC ∠=︒9m AB =12m BC=()15m AC ===912156m AB BC AC +-=+-=()6m 17m CD =8m AD =15m AC =222AD AC DC +=ADC △90DAC ∠=︒2112281560m DAC S AD AC ⋅=⨯⨯== ()21191254m 22ACB S AB BC =⋅=⨯⨯= ()26054114m ABCD S =+=四边形()2114m ABCD Y E F AD BC BE ABC ∠DE CF =EF ABFE【答案】见解析【解析】【分析】本题考查了菱形的判定,平行四边形的判定和性质.先证明四边形平行四边形,再利用等角对等边证明,即可证明四边形是菱形.证明:∵四边形平行四边形,∴,,又,,四边形平行四边形,平分,∴,∵,,,,∴四边形是菱形.19. 如图,点A 在的边上,于于于C .(1)求证:四边形是矩形;(2)若,求的长.【答案】(1)见(2)5【解析】【分析】此题考查了矩形的判定与性质以及勾股定理.注意利用勾股定理求线段的长是关键.ABFE AB AE =ABFE ABCD AD BC ∥AD BC =DE CF = AE BF ∴=∴ABFE BE ABC ∠ABE FBE ∠=∠AD BC ∥AEB EBF ∴∠=∠ABE AEB ∴∠=∠AB AE =∴ABFE MON ∠ON AB OM ⊥,,B AE OB DE ON =⊥,,E AD AO DC OM =⊥ABCD 3,9DE OE ==AD AD(1)根据全等三角形的判定和性质以及矩形的判定解答即可;(2)根据全等三角形的性质和勾股定理解答即可.【小问1】证明:于,于,.在与中,∴,..又,,.四边形是平行四边形,,四边形是矩形;【小问2】解:由(1)知,,设,则,.在中,由得:,解得..20. 如图,在Rt △ABC 中,∠BAC=90°,E ,F 分别是BC ,AC 的中点,延长BA 到点D ,使2AD=AB ,连接DE ,DF .(1)求证:四边形ADFE 平行四边形;(2)求证:∠DFA=∠C为⊥ AB OM B DE ON ⊥E 90∴∠=∠=︒ABO DEA Rt ABO △Rt DEA V AO AD OB AE=⎧⎨=⎩()Rt Rt HL ABO DEA ≌∴∠=∠AOB DAE AD BC ∴∥⊥ AB OM DC OM ⊥AB DC ∴ ∴ABCD 90ABC ∠=︒ ∴ABCD Rt Rt ABO DEA ≌3AB DE ∴==AD x =OA x =9AE OE OA x =-=-Rt DEA V 222AE DE AD +=222(9)3x x -+=5x =5AD ∴=【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据点,分别为,的中点,可得,,根据 ,则有,可证四边形的平行四边形,(2)在中,根据为的中点,得,则有,再根据四边形是平行四边形 ,可得,即有.解(1)证明:点,分别为,的中点,,,四边形的平行四边形,(2)在中,为的中点,,四边形是平行四边形【点睛】本题考查了平行四边形的判定和性质,直角三角形的性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理是解题的关键.21. 一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF.E F BC AC //EF AD 2AB EF =2AB AD =EF AD =AEFD Rt ABC ∆E BC AE EC =EAF C ∠=∠AEFD DFA EAF ∠=∠DFA C Ð=Ð E F BC AC ∴//EF AD 2AB EF = 2AB AD=∴EF AD= //EF AD ∴AEFD Rt ABC ∆ E BC ∴12AE BC EC ==∴EAF C∠=∠ AEFD ∴//AE DF∴DFA EAF∠=∠∴DFA CÐ=Ð(1)求证:AF CE ;(2)当∠BAC = 度时,四边形AECF 是菱形?说明理由.【答案】(1)见解析;(2)30,理由见解析.【解析】【分析】(1)证出∠HAF =∠MCE ,即可得出AF CE ;(2)证出四边形AECF 是平行四边形,再证出AF =CF ,即可得出四边形AECF 是菱形.(1)证明:∵四边形ABCD 为矩形,∴AD BC ,∴∠DAC =∠BCA ,由翻折知,∠DAF =∠HAF=∠DAC ,∠BCE =∠MCE =∠BCA ,∴∠HAF =∠MCE ,∴AF CE ;(2)解:当∠BAC =30°时四边形AECF 为菱形,理由如下:∵四边形ABCD 是矩形,∴∠D =∠BAD =90°,AB CD ,由(1)得:AF CE ,∴四边形AECF 是平行四边形,∵∠BAC =30°,∴∠DAC =60°.∴∠ACD =30°,由折叠的性质得∠DAF =∠HAF =30°,∴∠HAF =∠ACD ,∴AF =CF ,∴四边形AECF 是菱形;故答案为:30.【点睛】本题考查矩形的性质、平行线的判定、平行四边形的判定与性质、菱形的判定等知识,是重要考//////1212//////点,难度较易,掌握相关知识是解题关键.22. 在中,,且.(1)当是锐角三角形时,小明猜想:.以下是他的证明过程:小明的证明过程如图①,过点作,垂足为.设.∵在中,,在中,①,∴①.化简得,.②.其中,①是______;②是______.(2)如图②,当是钝角三角形时,猜想与之间的关系并证明.【答案】(1),(2);证明见【解析】ABC ,,BC a AC b AB c ===c b a ≥≥ABC 222a b c +>A AD CB ⊥D CD x =Rt ADC 222AD b x =-Rt ADB 2AD =22b x -=2222a b c ax +-=0,0,a x >>∴ 0>2220.a b c ∴+->222.a b c ∴+>ABC 22a b +2c 22()c a x --2ax222a b c +<【分析】本题考查了勾股定理,熟练掌握勾股定理,正确添加辅助线是解题的关键.(1)在中根据勾股定理即可表示出,从而得出,然后进行判断即可;(2)过点作的延长线,垂足为,设,在和中分别根据勾股定理表示出,然后仿照(1)中的方法判断即可.【小问1】解:如图①,过点作,垂足为,设,在中,,在中,,,化简得,,,,,,.其中,①是;②是;故答案为:,;【小问2】;证明:如图,过点作的延长线,垂足为,设,在中,,在中,,Rt ADB 2AD 2222()b x c a x -=--A AD BC ⊥D CD x =Rt ADC Rt ADB 2AD A AD CB ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =--2222()b x c a x ∴-=--2222a b c ax +-=0a > 0x >20ax ∴>2220a b c ∴+->222a b c ∴+>22()c a x --2ax 22()c a x --2ax 222a b c +<A AD BC ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =-+,化简得,,,,,,.23. 如图,在正方形中,点在边上运动,连接,将绕点顺时针旋转得到.(1)如图1,作,垂足为,求证:;(2)如图2,点恰好落在边上,求的值;(3)若,,连接,求的面积.【答案】(1)见解析(2)(3)【解析】【分析】(1)由旋转的性质可知,,进而可得,证明,进而可证;(2)如图1,作于,由(1)可知,,则,证明,则,由,可得,由勾股定理得,,然后求解作答即可;(3)由勾股定理得,,2,作于2222()b x c a x ∴-=-+2222a b c ax +-=-0a > 0x >20ax ∴-<2220a b c ∴+-<222a b c ∴+<ABCD E CB AE AE A 45︒AF FM AC ⊥M AM AB =F CD CF DF4AB =5AE =CF ACF △CF DF=45AF AE EAF =∠=︒,MAF BAE ∠=∠()AAS AMF ABE ≌AM AB =FM AC ⊥M ()AAS AMF ABE ≌FM BE =()Rt Rt HL ADF ABE ≌DF BE FM ==45MFC MCF ∠=︒=∠CM FM DF ==CF ===3BE ==AC ==FM AC ⊥,连接,由(2)知,,根据,计算求解即可.【小问1】证明:∵正方形,∴,,由旋转的性质可知,,∴,即,∵,,,∴,∴;小问2】解:∵正方形,∴,如图1,作于,图1由(1)可知,,∴,∵,∴,∴,∵,∴,∴,由勾股定理得,,M CF 3FM BE ==12ACF S AC FM =⨯△ABCD 45BAC ∠=︒90B Ð=°45AF AE EAF =∠=︒,EAF EAC BAC EAC ∠-∠=∠-∠MAF BAE ∠=∠MAF BAE ∠=∠90AMF B ∠=︒=∠AF AE =()AAS AMF ABE ≌AM AB =ABCD 9045AD AB D B ACD =∠=∠=︒∠=︒,,FM AC ⊥M ()AAS AMF ABE ≌FM BE =AF AE AD AB ==,()Rt Rt HL ADF ABE ≌DF BE FM ==45ACD ∠=︒45MFC MCF ∠=︒=∠CM FM DF ==CF ===∴;【小问3】解:由勾股定理得,,如图2,作于,连接,图2由(2)知,,∴∴的面积为【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识.熟练掌握正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理是解题的关键.CF DF=3BE ==AC ==FM AC ⊥M CF 3FM BE ==11322ACF S AC FM =⨯=⨯=△ACF △。
山东省泰安市东平县2023-2024学年八年级下学期期中考试数学试卷(含答案)
八年级数学试题注意事项:1本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题56分,非选择题94分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡(纸)交回.第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1.关于四边形,下列说法正确的是()A.对角线相等的是矩形B.对角线互相垂直的是菱形C.对角线互相垂直且相等的是正方形D.对角线互相平分的是平行四边形2.在下列各式中,一定是二次根式的是()A. B. C. D.3.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形B.一定是菱形D.一定是矩形 C.一定是正方形4.若方程是关于x的一元二次方程,则a的值是()A.2B.-2C.-2或2D.05.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=cm,则OD=()A.1cmB.1.5cmC.2cmD.3cm6.计算的结果为()A.+1B.-1C.1-D.17.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB//DCB.AC=BDC.AC⊥BDD.AB=DC8.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.189.已知,则x+y的值为()A.1B.-1C.0D.310.如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.D.11.已知方程x2+px+q=0的两根分别为3和-4,则x2-px+q可分解为()A.(x-3)(x+4)B.(x+3)(x-4)C.(x+3)(x+4)D.(x-3)(x-4)12.如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线分别交AB、CD、BD 于E、F、K,连AK、MK.下列结论:①EF=AM;②AE=DF+BM;③BK=AK;④∠AKM=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分.只要求填写最后结果)13函数中自变量x的取值范围是.14.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为.15.若x2+6x+m2是一个完全平方式,则m=.16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于.17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为.18.有理数a、b、c在数轴上的位置如图所示,则的值为.三、解答题(本大题共7小题,共78分.写出必要的文字说明、证明过程或推演步骤)19.(每题3分,共12分)计算:(1)(2)(3)(4)20.(每题3分,共12分)用适当的方法解方程(1)81(x-2)2=16(2)y2-6y-6=0(3)-4x2-8x=-1(4)4x(x-1)=3(x-1)21.(本题8分)先化简,再求值:,其中.22.(本题8分)如图,在矩形ABCD是,对角线AC,BD相交于点O,点E、F分别是AO,AD的中点,连接EF,AB=4cm,BC=6cm,求EF的长.23.(本题10分)如图,在四边形ABCD中,AB//DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.24.(本题14分)配方法不仅可以用来解一元二次方程,还可以用来解决一些最值问题.例如:x2+2x+2=x2+2x+1-1+2=(x+1)2+1>1,所以x2+2x+2的最小值为1,此时x=-1.(1)尝试:①2x2-4x+5=2(x2-2x+1-1)+5=2(x-1)2+3,因此当x=时,代数式2x2-4x+5有最小值,最小值是;②-x2-2x=-x2-2x-1+1=-(x+1)2+1≤1,所以当x=时,代数式-x2-2x有最(填“大”或“小”)值.(2)应用:如图,矩形花圃一面靠墙(墙足够长)另外三面所围成的栅栏的总长是18m,栅栏如何围能使花圃面积最大?最大面积是多少?25.(本题14分)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.(1)经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请你帮小明写出具体的解题步骤.(2)在此基础上,同学们作了进一步的研究:小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.图1 图2 图3八年级数学参考答案一、选择(本大题共12个小题,每小题4分,共48分.)123456789101112D C D B C B C B A A B C二、填空(本大题共6小题,每小题4分,共24分)13.x≤2且x≠-314.45°15.±316.18cm217.2.418.b-a+2c 19.(每题3分,共12分)(1);(2)5;(3);(4)20.(每题3分,共12分)(1)(2)(3)(4)21.,当时,原式=22.(8分)解:∵四边形ABCD是矩形∴∠ABC=90°,BD=AC,BO=DO在Rt△ABC中,AC=,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF23.(8分)解:(1)∵AB∥CD∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴O B=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=224.(14分)(1)①1 3;②-1 大(2)设垂直一边AD,分隔成两个有一边相邻的矩形花圃,则这个矩形花圃分隔成两个有一边相邻的矩形花圃,则AB=x米,则BC=(18-2x)米,根据题意可得:,,,当x=时,S有最大值为米.25.(14分)(1)证明:如图1在AB上取AB的中点M,连接ME.则图1AM=BM AB BC=BE=EC∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确证明:如图2在AB上取一点M,使AM=EC,连接ME.图2∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF ASA),∴AE=EF.(3)正确.证明:如图3在BA的延长线上取一点N.使AN=CE,连接NE.图3∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF ASA)∴AE=EF.。
重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)
重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。
山东省泰安市肥城市(五四制)2023-2024学年八年级下学期期中考试数学试卷(含答案)
2023-2024学年度下学期期中考试八年级数学试题2024.04注意事项:1.本试卷共8页,两个大题25个小题,考试时间120分钟.2.答题前请将答题纸上的考生信息项目填写清楚,然后将试题答案书写在答题纸的规定位置.3.请认真书写,规范答题;考试结束,只交答题纸.一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填在答题纸相应的位置)1.下列计算正确的是()A.B.C.D.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.若分式有意义,则的取值范围是()A.B.C.D.4.已知,则的值为()A.3B.8C.24D.115.关于侧一元二次方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.实数根的个数与实数的取值有关6.实数在数轴上的位置如图所示,则化简的结果正确的是()A.B.C.D.7.对于实数定义新运算:,若关于的方程有两个不相等的实数根,则的取值范围()A.B.C.且D.且8.电影《热辣滚烫》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作,则方程可以列为()A.B.C.D.9.如图,在矩形中,点的坐标是,则的长是()A.3B.C.D.410.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.C.4D.611.如图,四边形是菱形,于,则等于()A.B.C.5D.412.如图,正方形的边长为,动点从点出发,沿的路径以每秒的速度运动(点不与点、点重合),设点运动时间为秒,四边形的面积为,则下列图象能大致反映与的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,只要求填写结果)13.已知最简二次根式与二次根式是同类二次根式,则的值为______.14.若是关于的方程似一个根,则的值是______15.已知三角形的两边长分别是5和8,第三边的长是一元二次方程的一个实数根,则该三角形的周长是______.16.将一元二次方程配方成的形式,则的值为______.17.如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于______.18.已知,如图,,作正方形,周长记作;再作第二个正方形,周长记作,继续作第三个正方形,周长记作;点,在射线上,点在射线上,依此类推,则第个正方形似周长的大小为______.三、解答题(本大题共7个小题,要写出必要的计算、推理、解答过程)19.计算下列各题(1);(2);20.按要求解下列方程(1)(用配方法)(2)(用自己喜欢的方法)(3)(用自己喜欢的方法)21.已知关于的一元二次方程有两个实数根.(1)求的取值范围;(2)设方程的两个实数根为,且,求的值.22.泰安市公安交警部门提醒市民:“出门戴头盔,放心平安归”,某商店统计了某品牌头盔的销售量,2月份售出150个,4月份售出216个,且从2月份到4月份月增长率相同。
江西省吉安市十校联考2023-2024学年八年级下学期期中考试数学试卷(含答案)
江西省吉安市十校联盟2023-2024学年八年级下学期期中数学试题说明:满分120分、考试时间:120分钟一、选择题(本大题共6小题,每小题3分,共18分)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.若,则下列不等式一定成立的是( )A. B. C. D.3.等腰三角形的一个内角是,则这个等腰三角形的底角是( )A. B. C.或 D.或4.如图:中,AD平分于点,则( )A.4B.5C.3D.25.如图,在平面直角坐标系中第二象限内,顶点的坐标是,先把向右平移4个单位得到,再作关于轴对称图形,则顶点的坐标是( )A. B. C. D.6.如图,在平面直角坐标系中,将边长为的正方形OABC绕点O顺时针旋转后得到正方形.依此方式连续旋转2024次得到正方形,那么点的坐标是A. B. C. D.二、选择题(本大题共6小题,每小题3分,共18分)7.命题“若,则”的逆命题是___________命题(填“真”或“假”).8.一次函数的图象如图所示,当时,的取值范围是___________.9.如图,在三角形纸片ABC中,.沿过点的直线将纸片折叠,使点落在边BC上的点处;再将纸片折叠,使点与点重合,折痕与AC的交点为,则的长是___________.10.如图,在中,点在边BC上,于点,交AC于点.若,则___________.11.己知关于的不等式组只有三个整数解,则的取值范围是___________.12.如图,O是等边三角形ABC内一点,,将绕点按顺时针方向旋转得到,连接OD.若是等腰三角形,则的度数为___________.三、解答题(本大题共5个小题,每小题6分,共30分)13.解不等式组,并把解集表示在数轴上.14.如图所示,点,点的坐标分别为,将线段AB平移至CD,所得点,点坐标分别为.(1)求a,b的值;(2)求线段AB平移的距离.15.如图,函数和的图象交于点,求不等式组的解集.16.如图,已知在中,,将绕点顺时针旋转,得到.请仅用无刻度的直尺,按要求画图(保留画图痕迹,在图中标出字母,并在图下方表示出所画图形)。
广西壮族自治区北海市合浦县2023-2024学年八年级下学期期中数学试题(含答案)
2023-2024学年度第二学期期中教学质量检测八年级数学卷(考试时间:120分钟,满分:120分)2024年5月一、选择题(每小题3分,共36分)1.平行四边形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边相等2.在直角三角形中,若直角边为6和8,则斜边为()A .7B .8C .9D .103.已知直角三角形30°角所对的直角边长为5,则斜边的长为()A .5B .10C .8D .124.小明要判断一块平行四边形木板是否是矩形,以下测量方法正确的是( )A .测量两组对边是否相等B .测量一组邻边是否相等C .测量对角线是否相等D .测量对角线是否互相垂直5.一个三角形的三边长分别为9,12,15,则它的面积为()A .135B .90C .108D .546.在四边形ABCD 中,且,若,则的度数是()A .56°B .65°C .114°D .124°7.如图,中,,DE 为AB 的垂直平分线,,则()第7题图A .4B .8C .D .8.矩形具有而菱形不一定具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线相等且互相垂直9.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,使集贸市场到三条公路的距离相等,则这个集贸市场应建在()第9题图A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在、两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处10.等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60°,则等腰梯形的下底是()AB CD ∥AB CD =56B ∠=︒C ∠Rt ABC △90ACB ∠=︒2CD DE ==AB=A ∠B ∠A .5cmB .6cmC .7cmD .8cm11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,若,,则菱形ABCD 的边长为()第11题图A .B .C .8D .1012.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若,点P 移动的最短距离为5,则圆柱的底面周长为()第12题图A .4B .4πC .8D .10二、填空题(每小题2分,共12分)13.已知一个多边形的内角和是2340°,则这个多边形的边数是______.14.等腰梯形的上底是10cm ,下底是16cm ,高是4cm ,则等腰梯形的周长为______cm .15.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得m ,则AB 的长是______m .第15题图16.如图,在中,,D 是AC 的中点.若,则______.第16题图17.如图,中,AE 平分,若cm ,cm ,则的周长为______.16AC =8BD=6BC =50DE =Rt ABC △90ABC ∠=︒8BD =AD =ABCD BAD ∠3CE =4AB =ABCD第17题图18.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若,,,则矩形ABCD 的面积是______.第18题图三、解答题(共72分,解答应写出文字说明、证明过程或演算步骤)19.(6分)如图,在中,,,F 是AB 延长线上一点,点E 在BC 上,且.求证:.20.(6分)如图,在中,于点E ,于点F ,且,求证:是菱形.21.(10分)一个多边形的每一个内角都相等,且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的内角和.22.(10分)如图,已知在梯形ABCD 中,,,,E 是BC 边的中点,AE 、BD 相交于点F .(1)求证:四边形AECD 是平行四边形;(2)设边CD 的中点为G ,连接EG .求证:四边形FEGD 是矩形.23.(10分)如图,在平行四边形ABCD 中,过点D 作于点E ,点F 在CD 边上,,2AE =6DE =60EFB ∠=︒ABC △CB AB ⊥45BAC ∠=︒AE CF =ABE CBF ≌△△ABCD AE BC ⊥CF AB ⊥AE CF =ABCD AD BC ∥AD AB =2BC AD =DE AB ⊥CF AE =连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分,,,求四边形BFDE 的面积.24.(10分)如图,长方形ABCD 中,,,P 为AD 上一点,将沿BP 翻折至,BE 与CD 相交于点G ,PE 与CD 相交于点O ,且.(1)求证:;(2)求AP 的长.25.(10分)已知BD 垂直平分AC ,,.(1)求证:四边形ABDF 是平行四边形;(2)若,,,求AC 的长.26.(10分)【问题情境】已知在四边形ABCD 中,M 为边AD 上一点(不与点A ,D 重合),连接BM ,将沿BM 折叠得到,点A 的对应点为点N .【问题初探】(1)如图(1),若四边形ABCD 是正方形,点N 落在对角线BD 上,连接AN 并延长交CD 于点G ,写出与相等的角:______(写出一个即可):【拓展变式】(2)如图(2),若四边形ABCD 是矩形,点N 恰好落在AB 的垂直平分线EF 上,EF 与BM 交于点G .求证:是等边三角形;【问题解决】(3)如图(3),若四边形ABCD 是平行四边形,,,点N 落在线段BC 上,P 为AB 的中点,连接DP ,PN ,DN ,求的面积.2023—2024学年度第二学期期中教学质量检测DAB ∠3CF =5DF =4AB =3BC =ABP △EBP △OE OD =DP EG =BCD ADF ∠=∠AF AC ⊥14AF =13DF =15AD =ABM △NBM △DGA ∠GMN △24BC AB ==60ABC ∠=︒PND △八年级数学参考答案及评分标准一、选择题(每小题3分,共36分)BDBCDDDACBAC二、填空题(每小题2分,共12分)13.15 14.36 15.100 16.8 17.22 18.三、解答题(共72分,解答应写出文字说明、证明过程或演算步骤)19.证明:∵,∴…1分∵,∴,…2分∴为等腰直角三角形,∴……3分在和中,,…5分∴(HL )…………6分20.证明:∵于点E ,于点F ,∴…1分在与中,…4分∴(AAS ),∴…5分∵四边形ABCD 是平行四边形,∴是菱形.…6分21.解:(1)设多边形的每一个内角为x,则每一个外角为,…2分由题意得,解得,,,…4分这个多边形的边数为,…5分答:这个多边形是六边形……6分(2)由(1)知,该多边形是六边形,∴内角和…9分答:这个多边形的内角和为720°.…10分22.证明:(1)∵,∴…2分分∵,E 是BC 边的中点,即…4分∴四边形AECD 是平行四边形;…5分(2)如图,连接GE ,由(1)知…6分CB AB ⊥90ABC FBC ∠=∠=︒45BAC ∠=︒45BCA BAC ∠=︒=∠ABC △AB CB =Rt ABE △Rt CBF △AE CFAB CB =⎧⎨=⎩Rt Rt ABE CBF ≌△△AE BC ⊥CF AB ⊥90CFB AEB ∠=∠=︒ABE △CBF △B B CFB AEB AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE CBF ≌△△BC BA =ABCD 12x 11802x x +=︒120x =︒1602x =︒360660=()62180720=-⨯︒=︒AD BC ∥AD EC ∥2BC AD =AD EC =四边形AECD 是平行四边形,∴又∵点E 是BC 的中点,点G 是CD 的中点,∴,即∴四边形DFEG 是平行四边形…7分∵在梯形ABCD 中,,∴,又∵,∴,∴,即BF 是的平分线.…8分∵,E 是BC 边的中点,∴,∴,∴,即…9分∴平行四边形FEGD 是矩形.…10分23.(1)证明:∵四边形ABCD 是平行四边形,∴,,…1分又∵,∴,∴四边形BFDE 是平行四边形,…3分∵,∴,…4分∴四边形BFDE 是矩形.…5分(2)解:∵AF 平分,,∴,,∴,…6分∵,∴,…7分∵,,∴,…9分∴矩形BFDE 的面积是:.10分24.(1)证明:∵四边形ABCD 是长方形,∴,,…1分∵将沿BP 翻折至,BE 与CD 相交于点G ,PE 与CD 相交于点O ,∴…2分在和中,…4分∴(ASA ),∴,…5分(2)解:∵,,∴,即,∴…6分设,则,,……………7分∴,,在中,根据勾股定理得:…8分即,解得,∴…10分25.(1)证明:∵BD 垂直平分AC ,∴,, (1)分FE DG∥EG BD ∥EG FD ∥AD BC ∥12∠=∠AD AB =13∠=∠23∠=∠ABE ∠2BC AD =AD BE =AB BE =BF AE ⊥90DFE ∠=︒DF EB ∥AB CD =CF AE =DF BE =DE AB ⊥90DEB ∠=︒DAB ∠DC AB ∥DAF FAB ∠=∠DFA FAB ∠=∠DAF DFA ∠=∠5DF =5AD FD ==3AE CF ==DE AB⊥4DE ==5420DF DE ⋅=⨯=90A D ∠=∠=︒4AB CD ==3AD BC ==ABP △EBP △90A E D ∠=∠=∠=︒PDO △GEO △D EOD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩PDO GEO ≌△△OG OP =PD EG =OP OG =OD OE =OD OG OE OP +=+DG PE =DG PE PA ==AP x =3PD EG x ==-DG AP x ==()431BG BE EG x x =-=--=+4CG DC DG x =-=-Rt BCG △222BC CG BG +=()()222341x x +-=+ 2.4x = 2.4AP =AB BC =AD DC =在与中,…2分∴(SSS ),∴,…3分∵,∴,∴,∵,,∴,…4分∴四边形ABDF 是平行四边形;…5分(2)解:∵四边形ABDF 是平行四边形,∴,,…6分设,则,由勾股定理得,…8分即解得:,…9分即,∴,∴.…10分26.解:(1)∵四边形ABCD 是正方形,点N 落在对角线BD 上,∴,∴,∴(答案不唯一);...2分(2)∵EF 垂直平分线段AB ,∴,,,由折叠的性质可知,∴,∴,∴ (3)∵四边形ABCD 是矩形,EF 垂直平分线段AB ,∴,∴…4分由折叠的性质可知,∴…5分∴为等边三角形;…6分(3)连接AN ,由折叠的性质得AB =BN …7分∵,∴为等边三角形,∵,∴,∵P 为AB 的中点,∴,延长PN 至点G ,使得,连接CG ,在中,…8分∴,,∵四边形ABCD 是平行四边形,,,∴,∵,,∴,…9分∴,∴,∴D ,C ,G 三点共线,∴,ADB △CDB △AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩ADB CDB ≌△△BCD BAD ∠=∠BCD ADF ∠=∠BAD ADF ∠=∠AB FD ∥BD AC ⊥AF AC ⊥AF BD ∥14BD AF ==13AB DF ==BE x =14DE x =-2222AB BE AD DE -=-()2222131514x x -=--5x =5BE=12AE ===224AC AE ==90ADG DAB ∠=∠=︒90DGA DAG DAG BAG ∠+∠=∠+∠=︒DGA BAG ∠=∠12BE AE AB ==EF BC ∥90BEF ∠=︒AB BN =12BE BN =30BNE ∠=︒60MGN MBN BNE ∠=∠+∠=︒AD EF ∥60AMB MGN ∠=∠=︒60AMB GMN ∠=∠=︒60GMN MGN ∠=∠=︒GMN △60ABC ∠=︒ABN △24BC AB ==2BN AB ==NP AB ⊥PN GN =Rt BPN △60ABC ∠=︒112BP BN ==PN ==24BC AB ==AB BN =BN CN =PN GN =PNB GNC ∠=∠BNP CNG ≌△△90BPN CGN ∠=∠=︒CG BP ∥PN DG ⊥∴,∴,∴.…10分(其他解法参照给分)1CG BP ==3DG CD CG =+=11322PND S DG PN =⋅=⨯=△。
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试题(含解析)
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<06.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣38.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣110.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 .12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 道题.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 °.14.若不等式组的解集是x>3,则m的取值范围是 .15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 .16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 (只填写序号).三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可得到答案.【解答】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【分析】根据等腰三角形的性质解答即可.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,故工人师傅这种操作方法的依据是等腰三角形“三线合一”,故选:D.【点评】本题考查等腰三角形的性质,熟知等腰三角形“三线合一”性质是解答的关键.3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.【分析】利用已知图表直接得出该桥洞的车高x(m)的取值范围.【解答】解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:.故选:D.【点评】此题主要考查了在数轴上表示不等式的解集.根据图表理解题意是解题的关键.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:∵将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,∴点B的对应点B'的坐标是(﹣1﹣3,1+1),即(﹣4,2).故选:C.【点评】本题考查坐标与图形变化﹣平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<0【分析】根据不等式的性质分析判断.【解答】解:A、已知a<b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以a﹣6>b﹣6错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b错误;D、a﹣b<0即a<b两边同时减去b,不等号方向不变.不等式一定成立的是a﹣b<0.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣3【分析】根据题意列出不等式组,解之即可得出答案.【解答】解:由题意知,,解得﹣3<a<2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°【分析】根据旋转的性质可得∠ACA′=35,∠A=∠A′,结合∠A′DC=90°,可求得∠A′,即可获得答案.【解答】解:根据题意,把△ABC绕C点顺时针旋转35°,得到△A′B′C,由旋转的性质,可得∠ACA′=35,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣∠ADA′=55°,∴∠A=∠A′=55°.故选:C.【点评】本题主要考查旋转的性质、直角三角形两锐角互余等知识,熟练掌握旋转的性质是解题关键.9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣1【分析】根据不等式的解集,得到不等号方向改变,即a+1小于0,即可求出a的范围.【解答】解:∵不等式(a+1)x>(a+1)的解为x<1,∴a+1<0,解得:a<﹣1.故选:D.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.10.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.【分析】由角平分线的性质定理推出CD=MD,由勾股定理求出AC的长,由△ABC的面积=△ACD的面积+△ABD的面积,得到AC•BC=AC•CD+AB•MD,因此4×3=4CD+5CD,即可求出CD的长,得到DB的长.【解答】解:作DM⊥AB于M,由题意知AD平分∠BAC,∵DC⊥AC,∴CD=DM,∵∠C=90°,AB=5,BC=3,∴AC==4,∵△ABC的面积=△ACD的面积+△ABD的面积,∴AC•BC=AC•CD+AB•MD,∴4×3=4CD+5CD,∴CD=,∴BD=BC﹣CD=3﹣=.故选:D.【点评】本题考查勾股定理,角平分线的性质,作图—基本作图,三角形的面积,关键是由角平分线的性质得到CD=MD,由三角形面积公式得到AC•BC=AC•CD+AB•MD.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 120° .【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点评】本题考查了利用旋转设计图案,仔细观察图形求出旋转角是120°的整数倍是解题的关键.12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 12 道题.【分析】设这个队答对了x道题,则答错或放弃(20﹣x)道题,利用得分=10×答对题目数﹣4×答错或放弃题目数,结合得分不低于88分,可列出关于x的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:设这个队答对了x道题,则答错或放弃(20﹣x)道题,根据题意得:10x﹣4(20﹣x)≥88,解得:x≥12,∴x的最小值为12,即这个队至少答对12道题.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 12 °.【分析】根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理及角的和差求解即可.【解答】解:∵BP是∠ABC的平分线,∠ABC=62°,∴∠ABP=∠CBP=∠ABC=31°,∵P是线段BC的垂直平分线上一点,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB=31°,∵∠A=75°,∠ABC=62°,∠A+∠ABC+∠ACB=180°,∴∠ACP=∠ACB﹣∠PCB=12°,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.若不等式组的解集是x>3,则m的取值范围是 m≤3 .【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 21 .【分析】过E作EG⊥AB于G,则EG=EF=3,即可求出△ABE的面积,证明BE是△ABM的中线,由三角形中线的性质即可得出答案.【解答】解:过E作EG⊥AB于G,如图:∵AM平分∠BAD,∴EG=EF=3,∠DAM=∠BAM,∴S△ABE=×7×3=,∵AD∥BC,∴∠BAM=∠AMB,∴AB=BM,∵BE⊥AM,∴BE是△ABM边AM上的中线,∴S△ABM=2S△ABE=2×=21.故答案为:21.【点评】本题考查了角平分线的性质,平行线的性质、等腰三角形的判定与性质、三角形中线的性质等知识;熟练掌握角平分线的性质是解题的关键.16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 ②④ (只填写序号).【分析】根据所给函数图象,利用数形结合的思想及一次函数与一元一次不等式的关系,对所给结论依次进行判断即可.【解答】解:由所给函数图象可知,A点的纵坐标为2,则2x=2,解得x=1,所以点A的横坐标为1.故①错误.因为点B坐标为(2,0),所以当x>2时,函数y=kx+b的图象在x轴下方,即kx+b<0,则不等式kx+b<0的解集为x>2.故②正确.因为函数y=2x和函数y=kx+b交点的横坐标为1,所以方程kx+b=2x的解为x=1.故③错误.由函数图象可知,当x>1时,函数y=kx+b的图象在函数y=2x图象的下方,即kx+b<2x,当x<2时,函数y=kx+b的图象在x轴上方,即kx+b>0,所以关于x的不等式组0<kx+b<2x的解集为1<x<2.故④正确.故答案为:②④.【点评】本题考查一次函数与一元一次不等式及一次函数与一元一次方程,数形结合思想的巧妙运用是解题的关键.三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.【分析】作∠BAD的角平分线,作CD的垂直平分线,两条线交于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握角平分线和线段垂直平分线的作法.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1,并把解集表示在数轴上即可;(3)先求出不等式的解集,再求出其非负整数解即可;(4)(5)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)移项得,x﹣2x≥1,合并同类项得,﹣x≥1,x的系数化为1得,x≤﹣1;(2)去分母得,4+3x≤2(1+2x),去括号得,4+3x≤2+4x,移项得,3x﹣4x≤2﹣4,合并同类项得,﹣x≤﹣2,x的系数化为1得,x≥2,在数轴上表示为:;(3)去括号得,3x﹣9﹣6<2x﹣10,移项得,3x﹣2x<﹣10+9+6,合并同类项得,x<5,故其非负整数解为:0,1,2,3,4;(4),由①得,x≤1,由②得,x<3,故不等式组的解集为:x≤1;(5),由①得,x<,由②得,x≥1.故不等式组的解集为:1≤x<.【点评】本题考查的是解一元一次不等式组,解一元一次不等式及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.【分析】(1)由“HL”可证Rt△CDB≌Rt△BEC,可得∠ABC=∠ACB,即可求解;(2)由直角三角形的性质可求AD的长,由勾股定理可求解.【解答】(1)证明:∵BD,CE是△ABC的高,∴∠ADB=∠AEC=90°,在Rt△CDB和Rt△BEC中,,∴Rt△CDB≌Rt△BEC(HL),∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:∵∠A=60°,∠BDA=90°,∴∠ABD=30°,∴AD=AB=1,∴BD===.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,证明三角形全等是解题的关键.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 2 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 5 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【分析】(1)利用网格根据勾股定理计算即可;(2)取点A关于y轴的对称点A′,连接A′C交y轴于点D,可得AD+CD的最小值即为A′C的长度;(3)根据旋转的性质即可作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【解答】解:(1)∵将△A1B1C1看成是由△ABC经过一次平移得到的,∴平移的距离是=2个单位长度;故答案为:2;(2)如图点D为所求,∴AD+CD的最小值为=5个单位长度;故答案为:5;(3)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换,平移变换,轴对称﹣最短路线问题,解决本题的关键是掌握旋转和平移的性质.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.【分析】(1)根据SAS证明三角形全等即可;(2)结论:BD=OA+OB+OC,理由全等三角形的性质证明.【解答】(1)证明:∵∠AOE=60°,AO=AE,∴△AOE是等边三角形,∴∠OAE=60°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°=∠OAE,∴∠OAC=∠EAD,在△OAC和△EAD中,,∴△AOC≌△AED(SAS);(2)解:结论:BD=OA+OB+OC.理由:∵△AOE是等边三角形,∴OA=OE,∵△AOC≌△AED,∴OC=DE,∴BD=OB+OE+ED=OB+OA+OC.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?【分析】(1)设成人票的单价是x元,儿童票的单价是y元,根据“小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为2400元,不购买团体票所需费用为(﹣50m+3000)元,分2400<﹣50m+3000,2400=﹣50m+3000及2400>﹣50m+3000三种情况,求出x的取值范围或x的值,再结合“估计儿童8至16人”,即可得出结论.【解答】解:(1)设成人票的单价是x元,儿童票的单价是y元,根据题意得:,解得:.答:成人票的单价是100元,儿童票的单价是50元;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为100×0.8×30=2400(元),不购买团体票所需费用为100(30﹣m)+50m=(﹣50m+3000)元,当2400<﹣50m+3000时,m<12,∴当8≤m<12时,购买团体票花费较少;当2400=﹣50m+3000时,m=12,∴当m=12时,两种购票方式花费一样多;当2400>﹣50m+3000时,m>12,∴当12<m≤16时,不购买团体票花费较少.答:当8≤m<12时,购买团体票花费较少;当m=12时,两种购票方式花费一样多;当12<m≤16时,不购买团体票花费较少.【点评】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.【分析】(1)先由角平分线定义得∠DBC=∠DBE,∠DCB=∠DCF,再由平行线的性质得∠BDE=∠DBC,∠CDF=∠DCB,则∠DBE=∠BDE,∠CDF=∠DCF,证出BE=DE,CF=DF,进而得出结论;(2)同(1)证出AE=AB,AF=AC,进而得出结论;(3)同(1)证出DE=BE,DF=CF,进而得出结论.【解答】解:(1)EF=BE+CF,理由如下:如图②,∵∠ABC和∠ACB的平分线相交于点D,∴∠DBC=∠DBE,∠DCB=∠DCF,∵EF∥BC,∴∠BDE=∠DBC,∠CDF=∠DCB,∴∠DBE=∠BDE,∠CDF=∠DCF,∴BE=DE,CF=DF,∴DE+DF=BE+CF,即EF=BE+CF;(2)EF=7;理由如下:如图③,∵∠ABC和∠ACB的平分线相交于点D,∴∠EBC=∠ABE,∠FCB=∠ACF,∵EF∥BC,∴∠AEB=∠EBC,∠FCB=∠AFC,∴∠ABE=∠AEB,∠ACF=∠AFC,∴AE=AB,AF=AC,∵AB=4,AC=3,∴EF=AE+AF=4+3=7;(3)EF=BE﹣CF,理由如下:如图④,∵∠ABC的平分线BD与∠ACG的平分线CD交于点D,∴∠DBC=∠ABD,∠ACD=∠DCG,∵DE∥BC,∴∠DBC=∠BDE,∠CDF=∠DCG,∴∠ABD=∠BDE,∠ACD=∠CDF,∴DE=BE,DF=CF,∵EF=DE﹣DF,∴EF=BE﹣CF.【点评】本题是三角形综合题,考查了等腰三角形的判定、角平分线定义、平行线的性质等知识;本题综合性强,熟练掌握平行线的性质和角平分线定义,证明三角形为等腰三角形是解题的关键,属于中考常考题型.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.【分析】(1)由题意得:AP=t cm,CQ=2t cm,利用平行线的性质,角平分线的定义和等腰三角形的判定定理解答即可;(2)利用分类讨论的思想方法解答,分三种情形,利用等腰三角形的性质列出关于t的方程,解方程即可求得结论;(3)利用t的代数式表示出线段PD,EQ,利用图形的面积公式解答即可得出y与t之间的关系式,再利用一次函数的性质解答即可得出结论.【解答】解:(1)由题意得:AP=t cm,CQ=2t cm.∵点Q在∠PDC的平分线上,∴∠ADQ=∠CDQ,∵四边形ABCD为矩形,∴AD∥BC,∴∠ADQ=∠CQD,∴∠CQD=∠CDQ,∴CQ=CD,∴2t=3,∴t=.∴当t为s时,使点Q在∠PDC的平分线上.(2)①当ED=EQ时,如图,∵DC=3cm,CE=4cm,DC⊥CE,∴DE==5(cm),∴EQ=ED=5cm∴CQ=1cm.∴2t=1,∴t=.②当ED=DQ时,如图,∵ED=DQ,DC⊥CE,∴CQ=CE=4 cm,∴2t=4,∴t=2.③由于点Q在线段BC上,不存在QD=QE的情形.综上,当t为s或2s时,△DQE为等腰三角形.(3)由题意得:AP=t cm,CQ=2t cm,∴PD=AD﹣AP=(6﹣t)cm,QE=CQ+CE=(4+2t)cm,∴y=(PD+QE)•CD=3(6﹣t+4+2t)=t+15.∵>0,∴y随t的增大而增大,∵0<t≤3,∴当t=3时,y的最大值=3+15=19.5(cm2).【点评】本题主要考查了矩形的性质,角平分线的定义,平行线的性质,等腰三角形的性质,分类讨论的思想方法,梯形的面积,熟练掌握矩形的性质和应用分类讨论的思想方法解得是解题的关键.。
江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(含答案)
2023~2024学年(下)初二期中学业水平质量监测数学试卷注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.已知中,,则的度数为()A .60°B .80°C .100°D .120°2.下列各点在函数图象上的是()A .B .C .D .3.如图,D ,E 分别是AC ,BC 的中点,测得,则池塘两端A ,B 的距离为()A .45m B .30m C .22.5m D .7.5m4.若直线(k 是常数,)经过第一、三象限,则k 的值可以是()A .B .C .D .25.如图,在中,对角线AC 与BD 交于点O ,则下列结论一定正确的是()A .B .C .D .6.如图,四边形ABCD 中,E ,F ,G ,H 分别是AD ,BC ,BD ,AC 的中点.若四边形EGFH 是菱形,则四边形ABCD 需满足的条件是()ABCD 60A ∠=︒C ∠21y x =-()0,1()1,1-()1,3--()2,515m DE =y kx =0k ≠2-1-12-ABCD AC BD =OA OC =AC BD⊥ADC BCD ∠=∠A .B .C .D .7.“漏壶”是一种古代计时器,在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度.不考虑水量变化对压力的影响,下列图象最适合表示y 与x 对应关系的是( )A .B .C .D .8.两张全等的矩形纸片ABCD ,AECF 按如图所示的方式交叉叠放,,AE 与BC 交于点G ,AD 与CF 交于点H .若,则四边形AGCH 的面积为()A .4B .C .8D .169.如图,中,以点B 为圆心,适当长为半径作弧,交BA ,BC 于F ,G ,分别以点F ,G 为圆心,大于长为半径作弧,两弧交于点H ,作射线BH 交AD 于点E ,连接CE .若,则AB 的长为()A.1.5B C.2D AB DC =AB DC ⊥AC BD =AC BD⊥,AB AF AE BC ==30,2AGB AB ∠=︒=ABCD 12FG ,3,CE AD AD BE ⊥==10.对于一次函数,其自变量和函数的两组对应值如表所示,则的值为()x4k y c A .B .C .2D .7二、填空题(本大题共8小题,第11~12小题每小题3分,第13~18小题每小题4分,共30分.不需要写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.函数中,自变量x 的取值范围是______.12.若正比例函数的图象经过点,则______.13.如图,平面直角坐标系xOy 中,四边形AOBC 是菱形.若点A 的坐标是,则菱形的周长为______.14.将函数的图象向下平移2个单位长度,所得图象对应的函数表达式是______.15.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s (单位:步)关于善行者的行走时间t 的函数图象,则两图象交点P 的纵坐标是______.16.如图,在中,于点D ,E 是斜边AB 的中点,则线段DE 的长为______.17.如图,直线分别交x 轴、y 轴于A,B 两点,C 是线段OA 上一点,,则点C 的坐标为______.y kx b =+b c -4c -8-2-y =y kx =()1,2-k =()6,823y x =+Rt ABC △90,67.5,8,ACB B AB CD AB ∠=︒∠=︒=⊥122y x =+45ABC ∠=︒18.如图,在矩形ABCD 中,,点E ,F 分别是边AD ,BC 上的动点,且,过点B 作直线EF 的垂线,垂足为H ,则线段BH 长的最大值为______.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19.(本小题满分10分)已知y 是x 的一次函数,且当时,;当时,.(1)求这个一次函数的解析式;(2)若点在该一次函数的图象上,求a 的值.20.(本小题满分8分)如图,在中,E 是BC 上一点,,点F 在DE 上,.求证:.21.(本小题满分10分)如图,在平面直角坐标系中,点在直线上,直线l 经过点A ,交y 轴于点.2,3AB BC ==AE CF =2x =4y =1x =-1y =(),1a a -ABCD DE DA =DAF EDC ∠=∠DF EC =()2,A m -22y x =--()0,4B(1)求m 的值和直线l 的函数表达式;(2)若点在直线l 上,点在直线上.若,求t 的取值范围.22.(本小题满分11分)如图,在菱形ABCD 中,过点A 作于点E ,延长BC 至点F ,使,连接DF .(1)求证:四边形AEFD 是矩形;(2)若,求AD 的长.23.(本小题满分12分)如图,有两个全等的直角三角形,直角边长分别为2和4,我们知道,用这样的两个直角三角形可以拼成平行四边形.(1)请画出所有可能拼成的平行四边形:(要求:用直尺画图,并在图上标出平行四边形每一条边的长度.)(2)在所有拼成的平行四边形中,求最长对角线的长度.24、(本小题满分12分)家电超市出售某品牌手机充电器,每个进价50元,了解到有A ,B 两个厂家可供选择,为了促销、两个厂家给出了不同的优惠方案:A 厂家:一律打8折出售;B 厂家:20个以内(含20个)不打折,超过20个后,超过的部分打7折。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期数学期中考试试题及答案work Information Technology Company.2020YEAR八年级数学期中教学质量检测试卷(含答案)一、选择题(共10小题,每小题3分,共30分)1.下列各式54-a ,x 19+,x 2,π5,m m 3-,)(3222y x -,2+x x中,分式有( ).A . 2个 B. 3个 C. 4个 D. 5个2、下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y = (C)x y 32= (D)xy -=323、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组A.2B.3C.4D.54.、.分式..6922---a a a 的值为...0.,则..a .的值为(.... ).A .3B .-3C .±3D .a ≠-25、下列各式中,正确的是 ( )A .c c a b a b =--++ B .c ca b b a =--+- C .c c a b a b -=-++ D .c c a b a b=--+- 6、有一块直角三角形纸片,两直角边分别为:AC=6c m ,BC=8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2c mB .3c mC .4c mD .5c m7、已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).CAE8、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ).(A)450a 元 (B)225a 元 (C)150a 元(D)300a 元9、已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >>2.某 10、如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
若梯形ODBC 的面积为3,则双曲线的解析式为( ).(A)x y 1= (B)x y 2=(C)xy 3=(D)xy 6=二、填空题(本大题共8小题, 每题3分, 共24分) 11、把0.00000000120用科学计数法表示为_______ .12、如图6是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .13、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm 2,则其中最大的正方形的边长为______cm .14、一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.ABC15、关于x的方程3232-+=--x mx x 无解,则m 的值是 16、 计算:322322343⎪⎭⎫⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛--b a a b =_____________17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.18、如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,且AB ∥x 轴,C 、D在x 轴上,若四边形ABCD 为矩形,则它的面积为 .三、解答题(共9小题,共66分)19、(6分)计算:222-⨯°.20、(8分)先化筒22()224x x xx x x -÷---,然后从介于-4和4之间的整数中,选取一个你认为合适的x 的值代入求值.21、解方程:(6分×2=12分)(1)23xx++1=726x+;(2)12xx--=12x--2.22、(8分)在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱还是由甲乙两队全程合作完成该工程省钱23、(8分)如图18-14,所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,•求该四边形的面积.A DB C24、(6分)如图,在一棵树的10米高B处有两只猴子,•其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?25、(8分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?.26、(10分)如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,A C ⊥x 轴于点C .若△OAC 的面积为1,且ACOC=2,.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值?西华县东王营中学2013年八年级数学(下)期中综合检测卷答案一、选择题:1.C2.C3.B .4.B5.D6.B7.D8.C9.B 10.B 二、填空题:11、1.20×10-9。
12、76 。
13、10 。
14x y 1-=、15、m=1 。
16、b6- 。
17、314。
18 、2。
三、解答题:19、 解:原式=2×﹣2﹣(2﹣)•(3﹣)=1﹣2﹣(6﹣5+3)=﹣1﹣9+5 =﹣8+5.20、解:原式=22x x⨯- 3分 =x+2 5分选取数学可以为-3,-1,1,3,不可为2,-2,0(答案不唯一) 8分21、(1)x =16;(2)x =2是增根,故原方程无解22、解:(1)设乙队单独完成需x 天.据题意,得:11120()2416060x ⨯++⨯= 解这个方程得:x=90 经检验,x = 90是原方程的解,乙队单独完成需90天.(2)设甲、乙合作完成需y 天,则有11()16090y +=. 解得:y=36 甲单独完成需付工程款为60×3.5 = 210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=l98(万元). 答:在不超过计划天数的前提下,由甲、乙合作完成最省钱23、B C A D解:在Rt △ABC 中,AB =4,BC =3,则有AC =22AB BC +=5,∴S △ABC =12AB ·BC =12×4×3=6. 在△ACD 中,AC =5,AD =13,CD =12.∵AC 2+CD 2=52+122=169,AD 2=132=169,∴AC 2+CD 2=AD 2,∴△ACD •为直角三角形,∴S △ACD =12AC ·CD =12×5×12=30, ∴S 四边形ABCD = S △ABC + S △ACD =6+30=36.24.树高15m . 提示:BD=x ,则(30-x )2-(x+10)2=20225、25.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时.26、【答案】解(1)在Rt△OAC 中,设OC =m . ∵AC OC=2, ∴AC =2×OC =2m .∵S △OAC =12×OC ×AC =12×m ×2m =1,∴m 2=1∴m =1(负值舍去).∴A 点的坐标为(1,2).把A 点的坐标代入11k y x =中,得 k 1=2.∴反比例函数的表达式为12y x=. 把A 点的坐标代入221y k x =+中,得 k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1). 当0<x <1和x <-2时,y 1>y 2.。