2019年广东省中考数学试题分析和备考教学建议(1)

合集下载

2019年广东省中考数学试卷附分析答案

2019年广东省中考数学试卷附分析答案

∵S△AFN AN•FG
2×1=1,S△ADM AD•DM
∴S△AFN:S△ADM=1:4 故④正确, 故选:C.
4×2=4,
二.填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡 相应的位置上.
11.(4 分)计算:20190+( )﹣1= 4 .
【解答】解:原式=1+3=4.
其中点 A 的坐标为(﹣1,4),点 B 的坐标为(4,n). (1)根据图象,直接写出满足 kx+b> 的 x 的取值范围; (2)求这两个函数的表达式; (3)点 P 在线段 AB 上,且 S△AOP:S△BOP=1:2,求点 P 的坐标.
第 4页(共 21页)
24.(9 分)如图 1,在△ABC 中,AB=AC,⊙O 是△ABC 的外接圆,过点 C 作∠BCD=∠ ACB 交⊙O 于点 D,连接 AD 交 BC 于点 E,延长 DC 至点 F,使 CF=AC,连接 AF. (1)求证:ED=EC; (2)求证:AF 是⊙O 的切线; (3)如图 2,若点 G 是△ACD 的内心,BC•BE=25,求 BG 的长.
22.(7 分)在如图所示的网格中,每个小正方形的边长为 1,每个小正方形的顶点叫格点, △ABC 的三个顶点均在格点上,以点 A 为圆心的 与 BC 相切于点 D,分别交 AB、AC 于点 E、F. (1)求△ABC 三边的长; (2)求图中由线段 EB、BC、CF 及 所围成的阴影部分的面积.
五、解答题(三)(本大题 3 小题,每小题 9 分,共 27 分) 23.(9 分)如图,一次函数 y=kx+b 的图象与反比例函数 y 的图象相交于 A、B 两点,
育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.

广东中考数学科最新变动详细解读

广东中考数学科最新变动详细解读

2019年广东中考数学科最新变动详细解读
2019考纲前言
初中毕业生数学学科学业考试是义教阶段数学的终结考试.考试的结果是衡量达未达到毕业标准的主要依据,也是高中招生的重要依据之一.
三有利:有利于全面落实《标准》,有利于改善数学学习方式,有利于减负.
三注意:内容;试卷;题型。

一、2019广东中考数学科试题内容有“减”无“加”
删除以下内容,不列入考试范围
二、2019广东中考数学科试题试卷结构有较大变化
三、将重视经典数学题型
简单解答题示例
计算题示例
几何证明题示例
简单应用题示例
作图题示例
纯二次式题示例
代数几何综合题示例
2019中考备考建议
………………点击查看全部内容。

2019年广东省中考数学试卷和答案解析

2019年广东省中考数学试卷和答案解析

2019年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2019•广东)﹣2的绝对值是()A.2 B.﹣2 C.D.±22.(3分)(2019•广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106 3.(3分)(2019•广东)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.4.(3分)(2019•广东)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a65.(3分)(2019•广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.(3分)(2019•广东)数据3,3,5,8,11的中位数是()A.3 B.4 C.5 D.67.(3分)(2019•广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.<08.(3分)(2019•广东)化简的结果是()A.﹣4 B.4 C.±4 D.29.(3分)(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2 10.(3分)(2019•广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2019•广东)计算:20190+()﹣1=.12.(4分)(2019•广东)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2019•广东)解不等式组:18.(6分)(2019•广东)先化简,再求值:(﹣)÷,其中x=.19.(6分)(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2019•广东)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD 2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)(2019•广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)(2019•广东)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2019•广东)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)(2019•广东)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)(2019•广东)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD 交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2019•广东)﹣2的绝对值是()A.2 B.﹣2 C.D.±2【考点】绝对值.【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.2.(3分)(2019•广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106【考点】科学记数法—表示较大的数.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.3.(3分)(2019•广东)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.4.(3分)(2019•广东)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.5.(3分)(2019•广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.6.(3分)(2019•广东)数据3,3,5,8,11的中位数是()A.3 B.4 C.5 D.6【考点】中位数.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.7.(3分)(2019•广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.<0【考点】绝对值;实数与数轴.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.(3分)(2019•广东)化简的结果是()A.﹣4 B.4 C.±4 D.2【考点】算术平方根.【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.9.(3分)(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2【考点】根与系数的关系.【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.10.(3分)(2019•广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2019•广东)计算:20190+()﹣1= 4 .【考点】有理数的加法;零指数幂;负整数指数幂.【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.12.(4分)(2019•广东)如图,已知a∥b,∠1=75°,则∠2=105°.【考点】平行线的性质.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°13.(4分)(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是8 .【考点】多边形内角与外角.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.14.(4分)(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是21 .【考点】代数式求值;整式的加减.【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.15.(4分)(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.16.(4分)(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是a+8b(结果用含a,b代数式表示).【考点】利用轴对称设计图案.【分析】用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.【解答】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2019•广东)解不等式组:【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式组①,得x>3解不等式组②,得x>1则不等式组的解集为x>318.(6分)(2019•广东)先化简,再求值:(﹣)÷,其中x=.【考点】分式的化简求值.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==19.(6分)(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.【考点】作图—基本作图;相似三角形的判定与性质.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴==2.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2019•广东)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD 2合计y(1)x= 4 ,y=40 ,扇形图中表示C的圆心角的度数为36 度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)==.【解答】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生)==.21.(7分)(2019•广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.22.(7分)(2019•广东)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.【考点】勾股定理;切线的性质;扇形面积的计算.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC ﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2019•广东)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:kx+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=kx+b的图象过点A,点B∴,解得:k=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).24.(9分)(2019•广东)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.【考点】圆的综合题.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG=∠GDC+∠ACB 得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.25.(9分)(2019•广东)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD 交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?【考点】二次函数综合题.【分析】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD=3,∴D1F=2,∴=,∴OC=,∴CA=CF=FA=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△PAM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.。

广州中考数学真题点评平稳中见真章

广州中考数学真题点评平稳中见真章

2019广州中考数学真题点评平稳中见真章一、总述:俗话说得好:“得数学者得中考”!2019年中考重点考查学生对基础知识和基本技能的掌握程度,同时考查学生的数感、符号意识、空间观念、几何直观、数据分析能力、运算能力、建模思想、应用意识和创新意识。

今年是人教版新教材的第一年中考,与2019年中考试题相比,难度有所下降,但是灵活性要求更高。

卓越教育·考试研究院·初中团队徐树华主任指出:2019紧扣考纲,体现新课标的理念,突出素质立意,能力立意,关注学生情感、态度、价值观的同时,注重考查学生基础知识、基本技能,同时加大解决实际问题能力的考查力度。

二、试卷特点:试卷题型分为填空、选择、解答题,在分值分布、题型特征上跟往年相似,考点方面近几年解答题没有考的知识点,在今年都考到了。

例如:应用题的增长率问题、计算解答题的一元一次方程的求解,都是近几年没有考查到的,今年占21分。

2019年试题能够适应不同层次的学生,没有偏题、怪题,有利于学生展示真实的数学学习水平。

纵观今年试题,在方程与不等式、图形与证明、图形变换三大知识板块考查最多;而从各年级知识点的考查比例来看,九年级占73%,而七年级也占到26%。

(1)命题基调:立足双基注重能力卓越教育·考试研究院·初中团队关宇恒主任指出,从命题趋势与内容来看,初一是基础、初二是关键、初三是冲刺。

通过今年的试题可以看出,对学生动手能力有更高的要求。

试卷中对函数、方程与不等式、图形的变换、概念与统计等主干知识进行了重点考查。

例如:几何方面,考查的题目有:2、3、6、8、9、11、15、16、18、23、24,共计59分;重点突出了三角形、四边形,圆的知识的考查;学习不是一蹴而就的事情,需要厚积三年,才能决胜初中。

(2)命题背景:紧贴生活时事,提炼于生活试卷中21题考查一元二次方程实际应用问题,以国家对教育重视程度,加强教育经费投入;2019年最为吸引大家眼球柴静的《穹顶之下》,在试卷的12题以环境为背景来进行体现,让关注环境卫生从小做起。

2019年广州中考真题数学试题(解析版)(含考点分析)

2019年广州中考真题数学试题(解析版)(含考点分析)

{来源}2019年广东省广州市中考数学试卷{适用范围:3.九年级}{标题}2019年广东省广州市中考数学试卷考试时间:100分钟满分:120分{题型:1-选择题}一、选择题:本大题共10 小题,每小题 3 分,合计30分.{题目}1.(2019年广州)|-6|=()A.-6 B.6 C.16-D.16{答案}B{解析}本题考查了绝对值的定义. 负数的绝对值是它的相反数,-6的相反数是6. 因此本题选B.{分值}3{章节:[1-1-2-4]绝对值 }{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2.(2019年广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处. 到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3. 这组数据的众数是()A.5 B.5.2 C.6 D. 6.4{答案}A{解析}本题考查了众数的定义,众数是一组数据中次数出现最多的数据. 本题中建设长度出现最多的是5,因此本题选A.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}3.(2019年广州)如图1 ,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=25,则此斜坡的水平距离AC为()A.75 m B.50 m C.30 m D. 12 m {答案}A{解析}本题考查了解直角三角形,根据正切的定义,tan∠BAC=BCAC. 所以,tanBCACBAC=∠,代入数据解得,AC=75. 因此本题选A.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:正切}{考点:解直角三角形}{类别:常考题}{难度:2-简单} A图1{题目}4.(2019年广州)下列运算正确的是( )A .321--=-B .2113()33⨯-=- C .3515x x x ⋅= D .={答案}D{解析}本题考查了代数运算,根据有理数减法,325--=-,故A 不正确;根据有理数乘法和乘方运算,21113()3393⨯-=⨯=,故B 不正确;根据同底数幂乘法法则,358x x x ⋅=,故C 不正确;根据二次根式运算法则,D 正确. 因此本题选D . {分值}3{章节:[1-16-2]二次根式的乘除} {考点:两个有理数的减法} {考点:乘方运算法则} {考点:两个有理数相乘} {考点:同底数幂的乘法}{考点:二次根式的乘法法则} {类别:易错题} {难度:2-简单}{题目}5.(2019年广州)平面内,O 的半径为1,点P 到O 的距离为2,过点P 可作O 的切线的条数为( )A .0 条B .1 条C .2 条D . 无数条{答案}C{解析}本题考查了切线长定理. 因为点P 到O 的距离d =2,所以,d >r . 从而可知点P 在圆外. 由于圆外一点可引圆的两条切线,因此本题选C . {分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线长定理}{考点:点与圆的位置关系} {类别:易错题} {难度:2-简单}{题目}6.(2019年广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等. 设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x =- D . 1201508x x =+{答案}D{解析}本题考查了分式方程解应用题,甲每小时做x 个零件,则乙每小时做(x+8)个零件. 根据两人的工作时间相等以及工作时间等于工作总量除以工作效率,可列出正确的分式方程. 因此本题选D . {分值}3{章节:[1-15-3]分式方程}{考点:分式方程的应用(工程问题)} {类别:常考题} {难度:2-简单}{题目}7.(2019年广州)如图2,□ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点. 则下列说法正确的是()A.EH=HG B.四边形EFGH是平行四边形C.AC⊥BD D.△ABO的面积是△EFO的面积的2倍{答案}B{解析}本题考查了平行四边形的综合性质. 由E,F,G,H分别是AO,BO,CO,DO的中点可知,EF,FG,HG,EH分别是△ABO,△BCO,△CDO,△DAO的中位线,EH=2,HG=1. 故A不正确;由前面的中位线分析可知,EF//HG,EH//FG,故B正确;若AC⊥BD,则□ABCD为菱形. 但AB≠AD,可知C不正确;根据中位线的性质易知,△ABO的面积是△EFO的面积的4倍,故D不正确. 因此本题选.{分值}3{章节:[1-18-1-1]平行四边形的性质}{考点:三角形中位线}{考点:平行四边形边的性质}{考点:平行四边形对角线的性质}{考点:两组对边分别平行的四边形是平行四边形}{类别:易错题}{难度:3-中等难度}{题目}8.(2019年广州)若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数6yx=的图象上,则y1,y2,y3的大小关系是()A.y3 < y2 < y1 B.y2 < y1 < y3 C.y1 < y3 < y2D.y1 < y2 < y3 {答案}C{解析}本题考查了反比例函数的性质,当x=-1,2,3时,y1=-6,y2=3,y3=2. 故可判断出y1 < y3 < y2.本题也可以通过数形结合,在坐标轴上画出图象,标出具体的点的坐标的方法得出结论. 因此本题选C.{分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的性质}{类别:常考题}{难度:2-简单}{题目}9.(2019年广州)如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A. B.C.10D.8{答案}A{解析}本题考查了特殊平行四边形的性质和勾股定理. 如图,连接AE,根据已知条件,易证△AFO≌△CEO,从而CE=AF=5. 因为EF垂直平分AC,所以AE=CE=5. 由∠B=90°,根据勾股定理,可得AB=4. 因为BC=BE+EC=8,所以AC==除此以外,本题可以通过利用△COE∽△CBA求解. 因此本题选A.{分值}3图2B图3B{章节:[1-27-1-2]相似三角形的性质} {考点:勾股定理}{考点:垂直平分线的性质} {考点:矩形的性质}{考点:相似三角形的性质} {类别:常考题}{难度:3-中等难度}{题目}10.(2019年广州)关于x 的一元二次方程x 2-(k -1)x -k +2=0有两个实数根x 1,x 2,若(x 1-x 2+2)(x 1-x 2-2)+2x 1x 2=-3,则k 的值为( ) A .0或2 B .-2或2 C .-2 D . 2{答案}D{解析}本题考查了一元二次方程的相关性质. 根据题目可知,121x x k +=-,122x x k ⋅=-+.另21212121212(2)(2)2()42x x x x x x x x x x -+--+=--+ 21212()42x x x x =+--. 代入上面的根与系数的关系,可化简得2(1)42(2)3k k ----+=-,解得k =±2. 当k =-2时,△<0,方程没有实数根,舍去. 因此本题选D . {分值}3{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:灵活选用合适的方法解一元二次方程} {考点:根与系数关系} {考点:根的判别式} {类别:易错题}{难度:4-较高难度}题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}11.(2019年广州)如图4,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是 cm. {答案}5{解析}本题考查了垂线段最短这个公理,因此本题是5. {分值}3{章节: 第5章}{考点:垂线段最短}{类别:数学文化} {难度:1-简单}{题目}12.(2019有意义,应满足的条件是 . {答案}8x >{解析}本题考查了二次根式被开方数是非负数和分式分母不为0,因此本题是8x >. {分值}3{章节: 第15和16章}C A BP 图4{考点: 二次根式被开方数是非负数和分式分母不为0} {类别:易错题} {难度:2-简单}{题目}13.(2019年广州)分解因式:22x y xy y ++= .{答案} 2(1)y x +{解析}本题考查了提公因式法和完全平方公式分解因式,因此本题是2(1)y x +. {分值}3{章节: 第14章} {考点:因式分解} {类别:常考题} {难度:2-简单}{题目}14.(2019年广州)一副三角板如图5放置,将三角板ADE 绕点A 逆时针旋转α(090)o o α<<,使得三角板ADE 的一边的直线与BC 垂直,则α的度数为 .{答案}15°或60°{解析}本题考查了旋转、三角形内角和和分类讨论思想,因此本题是15°或60°. {分值}3{章节: 第23章}{考点: 旋转、三角形内角和和分类讨论思想} {类别:思想方法} {难度:3-中等难度}{题目}15.(2019年广州)如图6放置的一个圆锥,它的主视图是直角边为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为 .(结果保留π) {答案}{解析}本题考查了勾股定理、三视图和扇形的弧长,因此本题是. {分值}3{章节: 第24章}{考点: 扇形的弧长} {类别:常考题} {难度:2-简单}{题目}16.(2019年广州)如图7,正方形ABCD 的边长为2,点E 在边AB 上运动(不与A,B 重合),较∠DAM=450,点F 在射线AM 上,且AF=BE ,CF 与AD 相交于点G,连接EC,EF,EG.则下列结论:图5 图6ABCDM F GE 图7(1)045ECF =∠, (2)1+2AEG a △的周长为(,(3)222BE DG EG += (4)218EAF a △的面积的最大值是,其正确的结论是 .(填写所有正确结论的序号){答案}(1)和(4){解析}本题考查了正方形和勾股定理,因此本题是(1)和(4). {分值}34{章节: 第18章}{考点: 正方形和勾股定理} {类别:高度原创} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共3小题,合计18分.{题目}17.(2019年广州市第17题)解方程组1 39 x y x y -=⎧⎨+=⎩①②{解析}本题考查了二元一次方程组.{答案}解:由②-①得:48y =解得:2y =将2y =代入①得21x -=解得3x =∴原方程组的解为32x y =⎧⎨=⎩{分值9}{章节:[1-8-2]消元­--解二元一次方程组} {难度:2-简单} {类别:常考题}{考点:解二元一次方程组}{题目}18.(2019年广州市第18题)如图8,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC//AB求证:ADE ∆≌CFE ∆{解析}本题考查了全等三角形的判定方法,以及平行线的性质.{答案}解:∵ FC//AB∴A ACF ∠=∠,ADF F ∠=∠ 在ADE ∆和CFE ∆中A ACF ADF F DE FE∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴ADE ∆≌CFE ∆{分值9}{章节:[1-12-2]全等三角形的判定} {难度:2-简单}{类别:常考题}{类别:易错题}{考点:全等三角形的判定}{考点:全等三角形的判定SSS} {考点:全等三角形的判定SAS} {考点:全等三角形的判定ASA,AAS} {考点:平行线的性质与判定}{题目}19.(2019年广州第19题)已知)(1222b a ba b a a P ±≠+--=(1)化简p(2)若点),(b a 在一次函数2-=x y 的图象上,求p 的值.{解析}本题考查了因式分解、分式通分约分和分式运算、一次函数图象上点的坐标与解析式的关系、代数式的运算、分母有理化.(1)对第一个分式的分母因式分解后,确定两个分式的最简公分母,然后进行通分,把异分母分式化成同分母分式进行减法运算,最后把算得的结果进行约分.(2)将点的的坐标代入一次函数的解析式,得到一个关于字母b a ,的式子,把字母b 或者a 用含另一个字母的式子来表示后,代入第一问化简后的结果,就可以消去a 和b ,得到一个具体的数22,也可以把2-=a b 化成2=-b a ,整体代入第一问化简的结果. {答案}解: (1)))(())((2b a b a ba b a b a a p -+---+=()()()b a b a b a a -+--=2B()()b a b a ba -++=ba -=1(2)将点),(b a 代入2-=x y 得2-=a b 则()2221211==--=-=a ab a p {分值}10分{章节:[1-15-2-2]分式的加减} {难度:3-中等难度} {类别:常考题}{考点:因式分解-平方差} {考点:约分} {考点:通分}{考点:一次函数的图象}{题目}20.(2019年广州第20题)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.扇形统计图请根据图表中的信息解答下列问题: (1)求频数分布表中的m 的值;(2)求B 组,C 组在扇形统计图中分别对应扇形的圆心角的度数,并补全扇形统计图;(3)已知F 组的学生中,只有1名男生,其余都是女生.用列举法求以下事件的概率;从F 组中随机选取2名学生,恰好都是女生.{解析}本题第一问和第二问考查了统计常见的频数分布表和扇形统计图,第三问考查了“分两层”的“不放回”的概率,用列表法和树形图法都可以.(1)用总数减去已知的各组的频数就可以得出B 组的频数m 的值;(2)B 组人数占了总人数的81,所以对应的扇形的圆心角占360°的81;C 组的人数占总人数的41,所以对应的扇形的圆心角占360°的41;(3)用列表法或树形图法列出2名学生所以可能的组合情况,找出恰好都是女生的所有情况,()所有可能的情况数恰好都是女生的情况数恰好都是女生=P .{答案}解: (1)5471210240=-----=m(2)B 组:︒=︒⨯45360405;C 组:︒=︒⨯903604010(3)共有12种等可能的情况,其中恰好都是女生的共有6中,分别是女1 女2、女1 女3、女2 女1、女2女3、 女3 女1、女3 女2。

广州中考数学:从看数学试题

广州中考数学:从看数学试题

2019广州中考数学:从2019看2019数学试题作者:闻一小2019年的广州中考数学试题沿用了去年的模式,基本题型不变,各题的分值也没有变化、今年的试卷能够说是十分符合考生的"口味",比较重视学生对课本知识的理解和运用,对基本内容考得比较详细。

课后习题举一反三的例子也不少,基本上没有一些怪偏难的题目,试题解法一般都有几种解法,考生能够从不同的思维去分析试题。

因此,2019年广州中考数学也要回归课本,掌握好典型例题的解法和通则,注重课后习题的举一反三、从09年到12年的数学试卷中,我们能够看出,试卷满分都是150分,考试时间120分钟;题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分;试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);代数部分考查分数大概是90~100分,几何部分考查分数50~60分(37%);知识点的考查比较有规律,常规题型的变化不大、这些都是常规性的规律,下面我们从函数,不等式与方程,代数式,概率与统计和几何五大方面,完全分析今年中考数学试题。

一、函数部分函数部分是代数的重点难点内容,主要考察有:函数解析式的求法,三种函数图像的基本性质的应用,函数的实际应用、其中第一种的难度不高,要理解熟悉待定系数法解题即可,第二种难度适中,主要在于应用方面,第三种是难度较大的,常常出现在综合题型中,分值大概在25分。

二、不等式与方程主要考查方程和方程组的解法及一元二次方程的根的判断还有方程在应用题中的应用。

不等式主要考察解法和性质,难度适中,分值在大概15分。

三、代数式代数式部分考查的重点依然基础知识,基本计算,分值在20分左右。

这部分是所有学生都应该做对的。

统计与概率部分是必考部分,在复习的时候要有针对性。

知识点考查热点如下:扇形统计图、平均数、中位数、众数、极差、方差、标准差、概率的意义极其计算(列表法、树状图法)。

广东省中考数学科试题分析及教学建议

广东省中考数学科试题分析及教学建议

六、考试方式和试卷结构
考试时间为100分钟.全卷满分120分 (在120分中代数约占60分;几何约占50分;统计与概率约占
10分.)
选择题
10道
共30分
(四选一型 的单项选择
题)
填空题
6道
共24分
(只要求直 接填写结果)
解 (一)
3题

题 (二)
3题
每题6分,共18分 每题7分,共21分
(三)
3题
4. 思想方法 (2)数形结合思想 第22题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (3)整体思想 第14题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (4)函数与方程思想 第21题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (5)化归与转化思想 第21题:转化为方程和不等式 第22题: 转化图形求面积 第23题:转化为方程求表达式和点的坐标 第24题: AB=BG 第25题:转化为方程求点的坐标
五、考试内容 第一部分 数与代数

1. 数与式
与 代 2. 方程与不等式

3. 函数
有理数 实数 代数式 整式与分式 方程与方程组 不等式与不等式组
函数 一次函数 反比例函数 二次函数
五、考试内容 第二部分 空间与图形
点、线、面、角
空 间
1. 图形的性质

相交线与平行线 三角形 四边形 圆 尺规作图
1. 全面 考查内容涉及代数、几何、统计与
概率;
其分值分布代数约占60分;几何 约占50分;统计与概率约占10分.
(二) 2019年省中考题试题分析

2019年广东省中考数学试题分析和备考教学建议

2019年广东省中考数学试题分析和备考教学建议

2019年广东省中考数学试题分析和备考教学建议2019年广东省初中学业水平考试数学科试题符合《课程标准》(2011)的要求,试卷以《2019年广东省初中学业水平考试数学科目考试大纲》为依据,传承了往年广东省初中学业考试数学试题的特点,在知识内容、题型、题量等方面总体保持稳定,在稳定基础上保持适度的变化。

试卷既考查了四基:基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,注重联系社会实际与学生生活实际,考查学生的运算能力、推理能力、应用意识,重视数学思想和数学方法的考查,有力地彰显了《考试大纲》的权威性。

全卷基础题和综合题的区分度比较明显,很好的体现了中考作为升学考试和选拔性考试的双重功能,比较符合初中数学教学实际,对初中数学教学有良好的导向作用。

一、题型、题量与结构表二、试题考点分布表三、内容、分值、板块和难度四、近四年省题考点分布表五、2019年广东中考试题特点5.1立足基础,稳中小变2019年选择题整体水平与去年持平,试题结构保持稳定,难度系数不大,考点均与往年试题相似,考生都有似曾相识的感觉,平均分较去年有提高。

选择题第10题没有延续2018年的动点与函数图形的综合题,而是以正方形为背景,结合正方形的性质、中点、全等、相似、面积等设置综合题,这与2017年有点类似,该题有一定的难度,对学生灵活应用能力提出更高要求。

填空题与以往相比有较大变化,感觉眼前一亮,但整体难度不大,每年必考的因式分解今年没有考查,而是用数的简单运算代替,2018年填空题求阴影部分面积今年在解答题中体现;第15题考查解直角三角形的应用,此知识点近年来在选择填空单独考查没有出现过;第16题是考查代数式与图形规律探索,关键在于通过图形分段、找到规律,再用代数式表示出来,较往年16题难度降低了不少。

今年最大不同的是选择填空压轴题均考查几何图形及性质,去年2018年选择填空压轴题均设置以几何图形为背景的函数题,知识考点轮换意图明显。

2017--2019近几年广州中考数学情考点分析及建议

2017--2019近几年广州中考数学情考点分析及建议

2017--2019近几年广州中考数学情考点分析及建议近几年考情分析引言2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。

选择填空题考法常规,考查范围以基础知识为主。

解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。

24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。

本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生研究的结果,也重视研究的过程。

2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。

本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。

一、整体评价试卷难度稳定,整体布局与往年的广州中考类似。

选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识接洽,请求学生具备计算本领、多个知识点灵活运用本领、作图本领等数学基本头脑和本领。

二、试卷特点试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。

今年函数部分分值降低,压轴题与以往同等,考查一题函数、一题几何的模式。

函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。

今年的试题主要特点:①重视基础,考查灵活运用知识点的本领;②突显学生作图本领,加强着手本领;③注重知识点交汇;④常规但不俗套;⑤注重学生计算本领的考查;⑥相比往年,今年减少了分类讨论头脑的考查。

今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。

第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在研究过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。

广东省2019年中考数学试卷分析报告

广东省2019年中考数学试卷分析报告

广东省2019年中考数学试卷分析
一、试卷基本概况
1、试卷简要说明
题型、题量、考试时间与近几年保持一致。

本次考试试卷分值120分,考试时间为100分钟,共25题,题型分为选择题、填空题、解答题(一)(二)(三)。

全卷的考查知识点覆盖面广,整体难易程度适中,侧重基础知识、基本技能与灵活运用,卷面比较传统,但也有一定的创新。

学生能解决大部分的题目,部分题目对于学生计算能力和思维能力的考查较高,如10,16,22,23,24,25。

全卷基础题和综合题的区分比较明显,很好地体现了中考作为升学和选拔的双重功能。

2、题型所占分值
选择题:30分;填空题:24分;解答题:66分
3、各知识板块所占分值
数与代数:62分;空间与图形:48分;统计与概率:10分
二、试卷整体特点分析
试卷基础知识考点分布广,综合题包含的知识点多,各部分的分布基本符合最新课程标准大致要求,命题合理、谨慎,考查得当。

三、中考备考建议
1、回归教材,夯实基础
中档题是我们今年考试的主题,而中档题中对于基本概念、基本原理、基本数学思想、基本活动经验等作为主导考察,课本中的定义、公式、定理要在理解的基础上熟记于心,并弄清其来龙去脉。

2、渗透思想,掌握方法
在学习过程中,应有意识地注意数学思想方法的总结,思考如何选择合理有效的数学思想方法来解决相关的数学问题
3、结合生活,灵活应用
中考数学题目与实际生活结合的非常紧密,许多题目来源于生活,学生要学会审题。

4、归纳总结,培养习惯
课上提高听课效率及听课质量,课后对于每一次作业、拓展练习、各类考试都要及时进行反思归纳。

养成归纳典型题、总结方法、整理易错题的好习惯。

数学中考复习:广州市中考数学试卷分析

数学中考复习:广州市中考数学试卷分析

2019 数学中考复习:2019 广州市中考数学试卷剖析一、立足基础,突出骨干知识的要点考察优秀教育 1 对 1 徐树华老师以为, 2019 年中考试题着重对数学基础知识的考察,能够反应出学生对观点、性质、公式、法例、运算等理解的程度。

试题的设计由易到难,以基础题为主,没有拼盘式的综合题,广大考生都感觉下手简单,以沉静的心态进入考生状态,让各个层次的学生能够考出自己的水平。

(1)试题覆盖了全部版块章节试题覆盖了数与式比如:1、4、13、20 题,方程与不等式比如:8、12、15、17;图形的认识比如: 3、11;函数比如: 2、10、24;图形与变换比如: 14、22;图形与证明比如: 5、7、9、14、16、18、25;统计与概率比如: 19、21;(2)试题突出对要点知识的考察数学证明反响学生的整体逻辑推理的能力,今年中考在几何证明占比重较大,对学生计算能力的考察也自始自终也是要点。

二、能力立意,突显对数学思想方法和能力的考察优秀教育 1 对 1 徐树华老师以为,在 2019 年中考试题中,没有一道试题要用特别的技巧来解答,整份试卷着重通法通解。

全面考察考生五种数学能力:空间想象能力 (比如: 3 题)、抽象归纳能力 (比如: 16 题)、推理论证能力 (比如: 14、18、25 题)、运算求解能力 (比如:17、20、23 题等 )、数据办理能力 (比如: 19、21 题)。

数学思想和方法是数学知识的更高层次上的抽象和归纳,它包含在数学知识发生、发展和应用的过程,本次波及到的数学思想和方法主要有:函数与方程、不等式的思想:比如:2、17、23、24 等;数形联合的思想:比如:10、24;分类议论思想:比如:24(3);整体代入思想:比如:20 题;“教书先生”唯恐是街市百姓最为熟习的一种称号,从最先的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人仰慕甚或敬畏的一种社会职业。

广东省2019年中考数学试卷分析报告

广东省2019年中考数学试卷分析报告

广东省2019年初中学业水平考试数学试卷分析纵观整份试卷,首先题型、题量、考试时间与近几年保持一致。

本次考试试卷分值120分,考试时间为100分钟,共25题,题型分为选择题、填空题、解答题(一)(二)(三)。

全卷的考查知识点覆盖面广,整体难易程度适中,侧重基础知识、基本技能与灵活运用,卷面比较传统,但也有一定的创新。

学生能解决大部分的题目,部分题目对于学生计算能力和思维能力的考查较高,如10,16,22,23,24,25。

全卷基础题和综合题的区分比较明显,很好地体现了中考作为升学和选拔的双重功能。

考查数与式的题目:每年相对固定,所占分值稳定在30分左右,属于基础知识,复习这一板块的时候需要重点掌握基础知识。

方程与不等式这一板块,大部分是小题,但每年会有一个解答题来考查方程与不等式,出现在18-20题范围内,2019年的分值比重有所增加。

而函数这一部分则相对稳定,一般在选择题和23题考查,复习这一部分内容时,要掌握好各个函数间的关联性及其交点问题。

几何这一板块,三角形一直是考查的重点,基础题和解答题都会有涉及,分值约占全卷23.3%,今年运用三角形的知识来解题的比重相当大。

这几年不再会单纯地考查特殊四边形,而是与图形的翻折、转换与函数等联系起来。

图形的认识与变换在2019年的比重相对比较稳定,求角度及线段长度问题分值占比较大。

圆的知识板块经常稳定在10%左右,压轴题会出一个关于圆的解答题,要求思维清晰、方法多样,并注重几何体系的知识网络。

一、2019广东中考数学试卷考点分析·试卷基础知识考点分布广,综合题包含的知识点多。

二、2019广东中考数学试卷考查模块知识分析·2019广东中考数学试卷各部分的分布基本符合最新考纲的大致要求,命题合理、谨慎,考查得当。

·三、2019广东中考数学试卷难度分析·易、中、难的比例基本符合往年4:5:1的命题标准。

·四、基础题分析··五、难题分析·六、从命题看趋势·1.考查稳重求变,命题有创新,题目位置可能有调整,基础题和难题保持较大的区分度。

2019年广州中考数学试卷解析(含答案)

2019年广州中考数学试卷解析(含答案)

2019年广州中考数学试卷解析(含答案)广东省广州市2019年中考数学试卷(解析版)一、选择题.(2019广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图所示的几何体左视图是()A.B.C.D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.据统计,2019年广州地铁日均客运量均为6590000人次,将6590000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6590000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为故选A..【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.下列计算正确的是()A.B.xy2÷D.(xy3)2=x2y6C.2【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、B、xy2÷C、2+3无法化简,故此选项错误;=2xy3,故此选项错误;,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320tB.v=C.v=20tD.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.△7.如图,已知ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC=故选:D.=5.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大C.图象的顶点坐标为(﹣2,﹣7)B.当x=2时,y有最大值﹣3D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣又∵a=﹣<0+x﹣4可化为y=﹣(x﹣2)2﹣3,∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0B.1C.2D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.ab=m.本题属于基础题,【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.分解因式:2a2+ab=a2a+b【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.代数式有意义时,实数x的取值范围是x9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB △F分别落在边AB,BC上,的方向平移7cm得到线段EF,点E,则△EBF的周长为13 cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.分式方程的解是x=1【分析】根据解分式方程的方法可以求得分式方程本题得以解决.【解答】解:的解,记住最后要进行检验,方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=∵∴∠AOP=60°,=,,==8π.,由锐角三角函∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=∴BE>AE,∴AE<,AE,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组甲乙丙研究报告918179小组展示807483答辩788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:(分),(分),丙组的平均成绩是:(分),(分),(分),(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.已知A=(1)化简A;(a,b≠0且a≠b)(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.如图,利用尺规,在ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取△AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30A′处,m到达(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;,CE=AA′=30(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论..【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,==.在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=∴DE=50AC=20,,∴tan∠AA′D=tan∠A′DC=答:从无人机A′上看目标D的俯角的正切值是【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到到结论.或,代入数据即可得【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴∴==或或,,,或CE=,∴BE=2,CE=∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);,因此(3)由|AB|=|xA﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠;=(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);=|AB|=|xA﹣x B|=(3)解:==||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,,|=,∴0<|﹣4|≤∴|AB|最大时,|解得:m=8,或m=(舍去),,∴当m=8时,|AB|有最大值此时△ABP的面积最大,没有最小值,则面积最大为:|AB|yP=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.上,且不与点B,D重合),25.如图,点C为△ABD的外接圆上的一动点(点C不在∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(△3)若ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM 2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴∴AC=CE,AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。

2019广东广州中考数学试题(解析版)

2019广东广州中考数学试题(解析版)

2019广东广州中考数学试题(解析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

【一】选择题〔本大题共10小题,每题3分,总分值30分、在每题给出的四个选项中只有一项为哪一项符合题目要求的〕1、〔2018•广州〕实数3的倒数是〔〕A、﹣B、C、﹣3D、3考点:实数的性质。

专题:常规题型。

分析:根据乘积是1的两个数互为倒数解答、解答:解:∵3×=1,∴3的倒数是、应选B、点评:此题考查了实数的性质,熟记倒数的定义是解题的关键、2、〔2018•广州〕将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为〔〕A、y=x2﹣1B、y=x2+1C、y=〔x﹣1〕2D、y=〔x+1〕2考点:二次函数图象与几何变换。

专题:探究型。

分析:直接根据上加下减的原那么进行解答即可、解答:解:由“上加下减”的原那么可知,将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为:y=x2﹣1、应选A、点评:此题考查的是二次函数的图象与几何变换,熟知函数图象平移的法那么是解答此题的关键、3、〔2018•广州〕一个几何体的三视图如下图,那么这个几何体是〔〕A、四棱锥B、四棱柱C、三棱锥D、三棱柱考点:由三视图判断几何体。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形、解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;应选D、点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力、4、〔2018•广州〕下面的计算正确的选项是〔〕A、6a﹣5a=1B、a+2a2=3a3C、﹣〔a﹣b〕=﹣a+bD、2〔a+b〕=2a+b考点:去括号与添括号;合并同类项。

2019广州中考数学复习策略和答题技巧分享精品教育.doc

2019广州中考数学复习策略和答题技巧分享精品教育.doc

广州中考数学复习策略和答题技巧分享面对中考,考生对待数学这一科目需保持平常心态,复习数学时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最佳的解题方法,进一步提高解题能力。

复习策略总结梳理,提炼方法。

复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。

对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。

如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。

总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。

梳理了题型就可以进一步探索解题规律。

同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。

做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。

反思错题,提升能力。

在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。

正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。

应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的原因,也就找到了解题的最佳途径。

事实上,如果考前及时发现问题,并且及时纠正,就会越快地提高数学能力。

对其中那些反复出错的问题可以考虑再做一遍,自己平时害怕的题、容易出错的题要精做,以绝后患。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省中考数学试题分析和备考教学建议2019年广东省初中学业水平考试数学科试题符合《课程标准》(2011)的要求,试卷以《2019
年广东省初中学业水平考试数学科目考试大纲》为依据,传承了往年广东省初中学业考试数学试题的特点,在知识内容、题型、题量等方面总体保持稳定,在稳定基础上保持适度的变化。

试卷既考查了四基:基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心
内容,注重联系社会实际与学生生活实际,考查学生的运算能力、推理能力、应用意识,重视数学思想和数学方法的考查,有力地彰显了《考试大纲》的权威性。

全卷基础题和综合题的区分度比较明显,很好的体现了中考作为升学考试和选拔性考试的双重
功能,比较符合初中数学教学实际,对初中数学教学有良好的导向作用。

一、题型、题量与结构表
二、试题考点分布表
三、内容、分值、板块和难度
四、近四年省题考点分布表
五、2019年广东中考试题特点
5.1立足基础,稳中小变
2019年选择题整体水平与去年持平,试题结构保持稳定,难度系数不大,考点均与往年试题相似,考生都有似曾相识的感觉,平均分较去年有提高。

选择题第10题没有延续2018年的动点与函数图形的综合题,而是以正方形为背景,结合正方形的性质、中点、全等、相似、面积等设置综合题,这与2017年有点类似,该题有一定的难度,对学生灵活应用能力提出更高要求。

填空题与以往相比有较大变化,感觉眼前一亮,但整体难度不大,每年必考的因式分解今年没有考查,而是用数的简单运算代替,2018年填空题求阴影部分面积今年在解答题中体现;第15题考查解直角三角形的应用,此知识点近年来在选择填空单独考查没有出现过;第16题是考查代数式与图形规律探索,关键在于通过图形分段、找到规律,再用代数式表示出来,较往年16题难度降低了不少。

今年最大不同的是选择填空压轴题均考查几何图形及性质,去年2018年选择填空压轴题均设置以几何图形为背景的函数题,知识考点轮换意图明显。

今年选择填空文字阅读量较往年有所增加,对考生阅读能力提出更高要求。

5.2经典延续,配方微变
解答题(一)与解答题(二)基本都是历年常考题目,是比较典型的实数混合运算、代数式混合运算、尺规作图、生活实际应用题、统计及概率、等腰直角三角形的性质与求几何图形阴影部分的面积。

在题型和考点分布上,相比去年有调整。

2019年作图题考查平行线的作法,较往年考查垂直平分线和角平分线有明显变化,学生得分率有所降低;往年20题一般单独考查统计图,今年则将统计和概率相结合,难度有所提升,用列表法或画树状图法求概率近几年未曾考过,但属于热门常见考点,整体难度不大。

第22题变化较大,以往考查四边形综合题居多,今年重点考查不规则阴影面积及勾股定理的应用,这种考点轮换设置给人耳目一新的感觉,这种变化意在打破应试出题的固定模式,在灵活变通中,突出考查学生的数学能力。

5.3能力考查,思想不变
今年压轴题考查的模型与往年变化也明显:第23题在2017,2018考了两年的二次函数综合题后,今
前两问难度不大,第三问涉及解题方法较多,重点考查学生数学灵活思维能力。

第24题是圆与四边形的综合,问题设置套路不变仍是“两证一算”,考查知识老面孔:相似、相切、证明等考点,具有一定的区分度。

命题设置两个图,有意降低学生审图难度,第三问以三角形“内心”设置考点,题设具有新颖性,设问乘积式求长度,学生容易联想到相似求解,考题设计巧妙,解题思路环环相扣。

第25题在过往三年均以几何图形(特殊三角形或四边形)为命题背景、动点动线相结合,2019年则有三个变化:一是以二次函数图象为背景,将旋转变换、三角形、平行四边形等融入;二是没有考查二次函数最值;三是探索性动点,相似与分类讨论成为压轴的重中之中。

2019年压轴题在体现试题区分度的同时,注重对学生核心素养和数学能力的考查,知识点多,包容性强,考查分类讨论思想和数形结合思想的初衷一直不变。

5.4难度分散,多题把关
试题整体布局起点低,坡度平缓,依标靠本,基础性强,有利于中等及中等以上的学生发挥正常的水平,注意知识轮换考查,题目位置较往年顺序灵活多变,基础题和难题保持较大的区分度,尤其是解答题(三),双基的考查基本稳定,设置开放性问题的探讨,突出对以实际问题背景,更多地关注学生对知识本身意义的理解和在理解基础上的应用。

对学生而言,解答题(三)难度系数有突然瞬时拔高的感觉,解题思维过程容易形成障碍,学生在中考试卷想考取高分甚至满分不是件容易的事情。

5.5核心内容,凸显能力
初中数学核心内容是进一步学习高中数学的重要基础,初高中衔接的知识在广东省中考数学试卷中占有较大的比重,选择题、填空题、解答题题型中的大部分题目都立足于考查初中核心基础知识,压轴题考查更尤为体现。

试题数与代数部分中方程与不等式、函数占了54分左右,有关的试题有第1、2、4、7、8、9、11、14、17、18、21、23、25等题;空间与图形部分中图形的认识、图形与变换、图形与相似占了56分左右,有关的试题有第3、5、10、12、13、15、16、19、22、23、24、25等题。

试题对核心内容的考查形式多样,层次分明,既有考查“双基”的试题,又有综合运用数学知识与思想方法去分析问题、解决问题的试题。

六、2020中考数学备考建议
1、抓好“四项教学基础”,落实“四种数学能力”
(1)四项教学基础:基础知识、基本技能、基本思想、基本活动经验
(2)四种数学能力:发现和提出问题的能力、分析和解决问题的能力
体现在新授课时,要保证学习效果,提高学习效率;体现在复习课时,要努力做到分类整理,综合提高。

目标:使学生对所学教学知识重点掌握,难点突破。

使学生在学习和练习的过程中,获得“一题多解,多题一解,一题多变,老题新做”等方法和技巧,及时反思构建思维的常规模式。

2、优化教学学习过程,培养教学核心素养
数学学科核心素养包括:教学抽象、逻辑推理、数学建模、直观想象、数学运算和数学分析。

在教学过程中,让学生获得教学概念和法则,提出教学命题和模型,形成教学方法与思想,认识教学结构与体系的过程中,通过对数量关系与空间形式的抽象,得到教学研究对象,从而培养教学抽象素养等等。

使学生核心素养的培养贯穿在教学的全过程中。

特别是在初中数学的核心知识内容的学习中,如代数的方程与函数、几何的全等与相似以及代数与几何的数形结合等等,都是学生必须学好的重点与难点。

3、处理好全面掌握教学知识与突出重点的关系
初中数学知识三大块:“数与代数”、“图形与几何、“统计与概率”知识。

中考基本上考查到90%以上,因此初中的所学的知识必须掌握,但是初中的核心知识内容的考察形式是多样的。

因此,我们在教学过程中,必须引起高度的重视,从基础题(选择填空题)、中档题和难题等不同题型上,严格要求,规范训练。

特别是对变式题目的训练应引起高度重视,尤其是初中数学教材有些题目的变
式题目。

近年来,中档题难题考察内容基本上保持稳定,但考查的形式发生变化。

因此,抓好核心知识内容教学尤其重要,平时的严格要求,规范训练要抓紧落实。

七、2019广东省中考数学试题选解
命题细目表。

相关文档
最新文档