三角函数辅助角公式定理化简

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,.

9.已知函数()2

23sin cos 2cos 1f x x x x =-+,

(I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]

0,π上的单调性。

10.已知函数

.

(1)求 的最小正周期;

(2)若关于 的方程在

上有两个不同的实根,求实数 的取值范围.

11.设()2

sin cos cos 4f x x x x π⎛⎫

=-+

⎪⎝

. (1)求()f x 的单调递增区间;

(2)锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若02A f ⎛⎫

= ⎪⎝⎭

, 1a =, 3bc =,求b c +的值.

12.已知函数.

(1)求函数

的单调增区间;

,.

(2)的内角,,所对的边分别是,,,若,,且的面积为,求的值.

13.设函数.

(1)求的最大值,并写出使

取最大值时的集合;

(2)已知中,角

的边分别为

,若

,求的最小值.

14.已知()(

)

1

3sin cos cos 2

f x x x x ωωω=

+-

,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间;

(2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围.

15.已知a r

=(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数

f (x )=a r •b r 且f (3

π

-x )=f (x ).

(Ⅰ)求f (x )的解析式及单调递增区间;

(Ⅱ)将f (x )的图象向右平移

3

π

单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4

π

]上恒成立,求实数a 的取值范围.

16.已知向量a v =(2cos 2x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2

x ω),(ω>0),设函数f (x )=a v •b v

且f (x )的最小正周期为π. (1)求函数f (x )的表达式;

(2)求f(x)的单调递增区间.

17.已知函数()()

sin(0,0,)

2

f x A x A

π

ωϕωϕ

=+>><的部分图象如图所示.

(1)求函数()

f x的解析式;

(2)如何由函数2sin

y x

=的通过适当图象的变换得到函数()

f x的图象,写出变换过程;

(3)若1

42

f

α

⎛⎫

=

⎝⎭

,求sin

6

π

α

⎛⎫

-

⎝⎭

的值.

18.已知函数

(1)求函数在上的单调递增区间;

(2)若且,求的值。

19.已知()2

2cos sin3sin cos sin

6

f x x x x x x

π

⎛⎫

=⋅++⋅-

⎝⎭

(1)求函数()

y f x

=的单调递增区间;

(2)设△ABC的内角A满足()2

f A=,而3

AB AC

⋅=

u u u v u u u v

,求边BC的最小值.

20.已知函数()cos3cos cos

2

f x x x x

π

⎡⎤

⎛⎫

=--

⎢⎥

⎝⎭

⎣⎦

(1)求()

f x的最小正周期和最大值;

(2)讨论()

f x在3,

44

ππ

⎡⎤

⎢⎥

⎣⎦

上的单调性.

21.已知()223cos sin231f x x x =+-+ ()x R ∈,求: (1)()f x 的单调增区间; (2)当,44x ππ⎡⎤

∈-⎢⎥⎣

⎦时,求()f x 的值域.

22.已知函数为偶函数,且函数

图象的两相邻对称轴间的距离为.

(1)求的值;

(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不

变,得到函数的图象,求

的单调递减区间.

23.已知函数()4

4

cos sin2sin f x x x x =--.

(1)求函数()f x 的递减区间; (2)当0,2x π⎡⎤

∈⎢⎥⎣⎦

时,求函数()f x 的最小值以及取最小值时x 的值.

24.已知函数()223sin cos 2sin 1f x x x x =+-. (1)求函数()f x 的对称中心和单调递减区间;

(2)若将函数()f x 图象上每一点的横坐标都缩短到原来的1

2(纵坐标不变),然后把所得图象向左平移6

π个单位长度,得到函数()g x 的图象,求函数()g x 的表达式.

相关文档
最新文档