高教版中职数学(基础模块)上册4.1《实数指数幂》word教案

合集下载

语文版中职数学基础模块上册4.1《有理数指数幂》word教案

语文版中职数学基础模块上册4.1《有理数指数幂》word教案

有理数指数幂教案一、条件分析1.学情分析在上个单元中,学生学习了函数的概念、表示方法、单调性、奇偶性,对函数有了初步的认识,但是还远远不够,函数是个大家庭,需要我们继续深入学习已到达实际运用的目的。

对于这个章节的内容,学生在初中已经学过,加之初数内容的补充,学生对这方面的知识掌握起来比较容易,难点在于对八个公式的记忆可能混淆,因此在学习本章节的内容时应多做练习巩固所学知识。

2.教材分析本节内容由整数指数幂、n次根式、分数指数幂构成,这三个内容环环相扣,层层递进,所以,在学习这个章节的内容时,应注意知识的内在联系。

二、三维目标知识与技能目标A层:1. 理解有理数指数幂的概念;2. 识记正整数指数幂的运算法则;3. 识记分数指数幂的运算法则;4. 理解n次方根、n次算术根的概念。

B层:1. 理解有理数指数幂的概念;2. 识记正整数指数幂的运算法则;3. 识记分数指数幂的运算法则。

C层:1. 识记正整数指数幂的运算法则;2. 识记分数指数幂的运算法则。

过程与方法目标讲授法、练习法、游戏法。

在学习有理数指数运算时通过竞答游戏激发学生学习兴趣,通过练习加深学生对所学知识的巩固。

情感态度和价值观目标通过对有理数指数幂的探究,培养学生观察、归纳、抽象的能力和语言表达能力;通过学习有理数指数幂的知识,让学生明白,对于问题的解决,我们可以采用多种方法,其中有效的方法是转化,把不熟悉的问题转化成我们所熟悉的问题就能轻松解决。

三、教学重点有理数指数幂的运算法则四、教学难点n次方根与n次算术根的区别和联系五、主要参考资料:中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。

六、教学进程:故事导入:谣言的力量某人听到一则谣言后一小时内传给两人,以后他没有再传给别人.而那两人同样在一小时内每人又分别传给另外的两人。

如此下去,一昼夜能传遍一个千万人口的大城市吗?能?还是不能?请注意,一小时内,一个人只传给两个人,一昼夜只有24小时,一个千万人口的大城市能传遍吗?只凭直觉,是很难正确判断的。

高教版中职数学基础模块上册电子教案完整版(2024)

高教版中职数学基础模块上册电子教案完整版(2024)
概率论与数理统计基础
包括概率论的基本概念、随机变量及其分布、数理统计的基础知识 与方法等。
10
03
函数及其性质
2024/1/27
11
函数概念及表示方法
函数的表示方法
函数的表示方法有解析法、列表法和图象法 三种。
解析法
用数学表达式表示两个变量之间的对应关系 ,是函数的主要表示方法。
列表法
列出一些自变量的值及与之对应的函数值。
02
教材内容包括但不限于:代数基础、几何基础、三角函数、数
列与数学归纳法、概率与统计初步等。
每个章节后附有练习题和思考题,供学生巩固所学知识和提高
03
思维能力。
6
02
基础知识回顾与拓展
2024/1/27
7
初中数学知识点回顾
01
代数基础
包括有理数、无理数、实数、代 数式、方程和不等式等基本概念 和运算规则。
在平面上画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。水平 方向的数轴称为x轴或横轴,竖直方 向的数轴称为y轴或纵轴。
在平面直角坐标系中,任意一点P都 可以用一对有序实数(x, y)来表示,其 中x是点P到y轴的距离,称为点P的横 坐标;y是点P到x轴的距离,称为点P 的纵坐标。
在平面直角坐标系中,点的坐标具有 唯一性,即一个点对应一个坐标;反 之,一个坐标也对应一个点。
课程背景及意义
中职数学是中等职业教育的重要基础 课程,对于培养学生的数学素养和解 决实际问题的能力具有重要作用。
本课程旨在帮助学生掌握数学基础知 识,提高数学思维能力,为后续专业 课程学习和职业发展奠定基础。
2024/1/27
4
教学目标与要求
知识与技能目标

教案数学中职实数指数幂

教案数学中职实数指数幂

教案数学中职实数指数幂教案标题:数学中职实数指数幂教案目标:1. 了解实数的定义和性质;2. 掌握指数的定义和运算规则;3. 理解实数指数幂的概念和运算法则;4. 能够应用实数指数幂解决实际问题。

教案步骤:引入(5分钟):引导学生回顾实数的定义和性质,例如实数的分类、实数的运算法则等。

提醒学生实数的重要性和应用领域。

概念讲解(15分钟):1. 介绍指数的定义和运算规则,包括指数的基数、指数和幂的关系等。

通过示例和图表展示指数的计算过程和结果。

2. 引入实数指数幂的概念,解释实数指数幂的定义和特点。

通过示例和图表展示实数指数幂的计算过程和结果。

练习与讨论(20分钟):1. 分发练习题,让学生独立完成。

练习题涵盖指数的基本运算、实数指数幂的计算等。

2. 引导学生讨论解题思路和方法,解答他们在练习中遇到的问题。

鼓励学生积极参与讨论,互相学习和帮助。

应用与拓展(15分钟):1. 设计一些实际问题,让学生应用实数指数幂解决。

例如,计算物体的面积、体积等问题。

2. 引导学生思考实数指数幂在实际生活中的应用,如科学计数法、金融利息计算等。

鼓励学生分享自己的观点和经验。

总结与反思(5分钟):回顾本节课的重点内容和学习收获,引导学生总结实数指数幂的定义和运算法则。

鼓励学生提出问题和疑惑,解答他们的疑问。

作业布置:布置相关的作业,巩固学生对实数指数幂的理解和应用能力。

要求学生按时提交作业,并指导他们如何自主学习和提高。

教学资源:1. 教科书或教学参考书;2. 练习题和答案;3. 多媒体设备,如投影仪、电脑等。

教学评估:1. 观察学生在课堂上的参与度和学习态度;2. 检查学生在练习中的答题情况,评估他们对实数指数幂的理解和应用能力;3. 收集学生的作业,检查他们的独立思考和解题能力;4. 针对学生的表现,提供个别辅导和指导,帮助他们克服困难,提高学习效果。

高教版中职数学(基础模块)上册4.1《实数指数幂》word教案

高教版中职数学(基础模块)上册4.1《实数指数幂》word教案
课题名称
4.1实数指数幂
授课班级
授课时间
13机电1
课题序号
授课课时
第到
授课形式
启发、类比
使用教具
课件
教学目的
1.识记n次方根的概念,能区分奇次方根、偶次方根和n次根算式根。
2.能描述分数指数幂的定义,会进行根式与分数指数幂的互化。
3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。
教学重点
1.概念
一般地,如果 ,则称x为a的n次方根。
例如:
当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。这时,a的n次方根只有一个,记作 。
例如:
当n为偶数时,正数a的n次方根有两个,它们互为相反数,记作± 的形式。
例如:
负数没有偶次方根。
0的任何次方根都是0.
正数a的正的n次方根叫做a的n次算式根。记作 。
将分数指数幂与根式的互化问题进行类比分析,引导学生思考并发现“ ”一式中各字母的对应问题。
练习2、3
鼓励学生用各种方法求出各式的值,使学生能更好地掌握实数指数幂的运算性质。
有理数指数幂的运算、实数指数幂的综合运算
教学难点
有理数指数幂的运算、实数指数幂的综合运算
更新、补
充、删减
内容

课外作业
1.P 96习题。
授课主要内容或板书设计
实数指数幂
概念思考交流例题课堂小结
问题解决练习
教学后记
主要教学内容及步骤
教学过程师生活动设计意图等
一、复习导入:
二、新课:
探究(见课本90页)
2.实数指数幂及其运算法则
(1) ;
(2) ;
(3) ;

中职数学基础模块上册第四章指数、对数函数教案集

中职数学基础模块上册第四章指数、对数函数教案集

4.1.1 分数指数幂【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n(m>n,a≠0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.指数(n N+)4.1.1 实数指数幂及其运算法则【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】一、根式有关概念定义:一般地,若x n=a (n>1,n N),则x叫做a的n次方根.例如:(1) 由32=9知,3是9的二次方根(平方根);由(-3)2=9知,-3也是9的二次方根(平方根);(2) 由(-5)3=-125知,-5是-125的三次方根(立方根);(3) 由64=1 296知,6是1 296的4次方根.有关结论:三、分数指数幂一般地,我们规定:a 1n =na (a >0); a m n=n a m =(n a )m (a >0,m ,n N +,且mn 为既约分数). a -m n=1 a m n (a >0,m ,n N +,且m n为既约分数) . 四、实数指数幂的运算法则 (1) a α a β=a α+β; (2) (a α)β=a α β; (3) (a b )α=a α b α. 以上a α,a β中,a >0,b >0,且α,β为任意实数. 练习1 835×825 =83+25=81=8; 823=(813)2=22=4; 33×33×63=3×312×313×316=31+12+13+16=32=9; (a 23b 14)3=(a 23)3·(b 14)3=a 2b 34. 例1利用函数型计算器计算(精确到0.001): (1)0.21.52;(2)3.14-2;(3)3.123. 例2利用函数型计算器计算函数值. 已知f (x )=2.71x ,求f (-3),f (-2),f (-1),f (1),f (2),f (3)(精确到0.001). 请同学们结合教材在小组内合作完成. 练习2 教材 P 73,练习1.2,.4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】 一、幂函数的概念一般地,形如y =x的函数我们称为幂函数.学生回答练习1,进一步理解幂函数的概念.针对学生的回答,教师结合定义点评.在教师的引导下利用指数幂的有关定义,师生共同完成例题.学生寻找规律,形成解题规律.师:由上例我们可以看出,当幂函数的指数为负整数时,一般是先将函数表达式转化为分式形式;当幂函数的指数为分数时,一般是先将函数表达式转化为根式,然后再来求函数的定义域.教师根据学生的解答进行点评,并给予相应评价.师:函数图象可以直观反映函数性质,是研究函数性质的有利工具,请同学们回顾一下,作函数图象分为哪三步?学生回答.学生分组完成列表.4.1.3 指数函数【教学目标】1. 掌握指数函数的定义、图象、性质及其简单的应用.2. 培养学生用数形结合的方法解决问题的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养独立思考等良好的个性品质.【教学重点】指数函数的图象与性质.【教学难点】指数函数的图象性质与底数a的关系.【教学方法】这节课主要采用讲练结合和小组合作的教学方法.本节课由生活中的真实例子导入新课,引入指数函数的定义,并通过一组练习深化指数函数的定义.先通过列表——描点——连线得到指数函数的图象,然后在教师的启发下,充分利用函数的图象来研究函数的性质.为了加强学生对函数性质的应用,增加了一道求函数定义域的例题,然后安排一定数量的练习,体现练为主线,讲练结合的教学方法.【教学过程】则对于x 的某些数值,可使a x 无意义.如 (-2)x,这时对于x =14 ,x =12 ,…等等,在实数范围内函数值不存在. (3) 若a =1, 则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a >0且a 1. 在规定以后,对于任何x ∈R ,a x 都有意义,且 a x >0. 因此指数函数的定义域是R ,值域是 (0,+∞). 练习1 指出下列函数哪些是指数函数: (1) y =4⋅3x ; (2) y =πx ; (3) y =0.3x ; (4)y =x 3. 二、指数函数的图象和性质 在同一坐标系中分别作出函数y =2x 和y =(12)x的图象. (1)列表:略. (2)描点:略. (3)连线:略. xy123-1-2 -3 12 3 45 6789 O y =2x y =(12)x4.2.1 对数【教学目标】1. 理解对数的概念,掌握对数式与指数式的互化.2. 培养学生的类比、分析、转化能力,提高理解和运用数学符号的能力.3. 通过对数概念的建立,明确事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度.【教学重点】对数的概念,对数式与指数式的相互转化.【教学难点】对数概念及性质的理解掌握.【教学方法】这节课主要采用启发式和分组合作教学法.在教学过程中遵循学生是教学的主体的精神,要给学生提供各种可能的参与机会,调动学生学习的积极性,使学生化被动为主动.利用多媒体辅助教学,引导学生从实例出发,认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生积极思维,通过课堂练习、学生讨论的方式来加深理解重点,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.4.2.2 积、商、幂的对数【教学目标】1. 掌握积、商、幂的对数运算法则,并会进行有关运算.2. 培养学生的观察,分析,归纳等逻辑思维能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】积、商、幂的对数运算法则的应用.【教学难点】积、商、幂的对数运算法则的推导.【教学方法】本节教学采用引导发现式教学方法,并充分利用多媒体辅助教学,体现“教师为主导、学生为主体”的教学原则.通过教师在教学过程中的点拨启发,使学生主动思考.通过分组合作的教学方式,使学生在合作中快乐学习,培养学生的团结协作能力和集体主义情操.通过设置三组“低台阶,小坡度”的练习,满足各层次学生的学习需求,从而培养学生的计算能力和学习数学的兴趣.【教学过程】4.2.3 换底公式与自然对数【教学目标】1. 掌握换底公式,了解自然对数,能利用换底公式求对数值.2. 培养学生的逻辑思维能力和应用能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】换底公式.【教学难点】利用换底公式求值、化简及证明.【教学方法】本节采用启发引导式教学,并利用多媒体以体现“教师为主导,学生为主体”的教学原则.通过一个特殊例子导出课题.针对本节课的特点,教师应多引导,多启发,与学生之间进行适当交流和讨论,在应用换底公式时可设定不同层次的题目,让各层次同学都能掌握公式,从而培养学生学习数学的兴趣和运用公式的能力.4.2.4 对数函数【教学目标】1.掌握对数函数的概念,图象和性质,并会简单的应用.2. 培养学生用数形结合的方法去解决问题.注重培养学生的观察,分析,归纳等逻辑思维能力.3. 培养学生发现、探索、创新的精神;培养合作交流、独立思考等良好的个性品质.【教学重点】对数函数的图象、性质及其运用.【教学难点】对数函数图象和性质的发现过程,培养数形结合的思想.【课时】2课时.【教学方法】这节课主要采用启发式和引导发现式的教学方法,结合对数函数的特点,让学生动手做,动脑想,大胆猜,以学生的研究为主体采用,引导发现式的教学方法并充分利用多媒体辅助教学.这样既增强学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣.通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.【教学过程】4.3指数、对数函数的应用【教学目标】1. 能够运用指数函数、对数函数知识解决某些简单的实际应用问题.2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了指数函数、对数函数知识的应用价值.3. 通过对实际问题的研究解决,渗透了数学建模的思想,提高学生学习数学的兴趣.【教学重点】通过指数、对数函数的应用,培养学生分析、解决问题的能力和运用数学的意识.【教学难点】根据实际问题建立相应的指数函数和对数函数模型.【教学方法】这节课主要采用问题解决法和分组合作的教学方法.在教学过程中,从学生身边的实例开始,引起学生的兴趣,体会所学知识的应用和重要性,提高学生学习数学的兴趣,培养学生分析问题和解决问题的能力.通过本节内容让学生体会指数函数与对数函数是解决有关自然科学领域中实际问题的重要工具,是今后进一步学习的基础.教师应当结合学生的专业特点,增设有关例题,突出数学为专业课服务的教学理念.【教学过程】。

高教版中职数学基础模块上册《实数指数幂》教案 (一)

高教版中职数学基础模块上册《实数指数幂》教案 (一)

高教版中职数学基础模块上册《实数指数幂》教案 (一)高教版中职数学基础模块上册《实数指数幂》教案一、教学目标1. 理解实数、指数和幂的基本概念及其性质。

2. 掌握实数的运算法则。

3. 熟练掌握指数和幂的运算法则。

4. 初步掌握实际问题中应用指数和幂的方法。

二、教学重难点1. 指数与幂的定义和性质。

2. 指数与幂的运算法则。

3. 实际问题的应用。

三、教学内容及步骤A. 呈现1. 引出实数的概念及表示法。

2. 引出指数与幂的概念及表示法。

B. 模拟与探究1. 通过教师提问和学生讨论,让学生深入理解指数和幂的定义和性质,并进行探究。

2. 教师引导学生进行实数的基本运算。

3. 教师组织学生练习指数和幂的运算法则。

C. 引申与拓展1. 教师引导学生从实际问题中得出指数和幂的应用方法。

2. 教师提供案例,让学生自己解决问题,并进行讨论和分享。

四、教学方法1. 教师引导学生参与讨论,深化对概念的理解。

2. 教师演示指数和幂的运算方法,引导学生模仿操作。

3. 多媒体课件展示案例,引导学生思考和解决问题。

4. 学生个人或小组探究问题,教师辅导和引导。

五、教学过程设计1. 引入部分学生根据教师提供的问题和资料,思考和分享实数、指数和幂的概念,并探究实数的运算规律。

2. 模拟与探究部分2.1 指数和幂的定义和性质:问题:什么是指数?什么是幂?它们有什么性质?探究:学生分组自主探究指数和幂的定义和性质,并通过PPT展示学习成果。

2.2 实数的基本运算:问题:实数的四则运算规则是什么?探究:教师演示实数的基本运算,然后引导学生独立解决一道题。

2.3 指数和幂的运算法则:问题:如何计算指数和幂的运算?探究:教师演示指数和幂的运算法则,让学生跟随操作并练习。

3. 引申与拓展部分3.1 指数和幂的应用:问题:指数和幂在实际问题中有哪些应用?引申:教师通过多媒体课件展示案例,引导学生思考和解决问题。

3.2 学生自主解决问题:问题:使用指数和幂解决一个实际问题。

高教版中职数学(基础模块)上册4.1《实数指数幂》3

高教版中职数学(基础模块)上册4.1《实数指数幂》3

正数a的正n次方根叫做a的n次算术根
1. 25的3次方根可以表示为 3 25 ,其中根指数
为 3 ,被开方数为 25 ;
2. 12的4次算术根可以表示为 4 14 ,其中根指数
为 4 ,被开方数为 12 ;
3. -7的5次方根可以表示为 5 7 ,其中根指数
为 5 ,被开方数为 -7 ;
4. 8的平方根可以表示为 4 8
( (3) 5 23)5
(4) 4( 3)4
提高组: (1) 4 (3 )4
(2)
( 3 - 5)2;
10
(1) 5 a10 5 (a 2 )5 a 2 a 5
12
(2) 4 a12 4 (a 3 )4 a 3 a 4
仿照上述,填空:
(1)3 a2
2
_a_3__
The End
(1)3 (5)2
1 (3) 5 a3
(2) 5 b7
3.将下列各根式写成分数指数幂的形式:
基础组:
(1) 3 9
(2) 3 4
1 (3) 7 a4
(4) 4 4.35
提高组:
(5)
6 3 a8
聪明的你不 会被考住吧
有一点难度,
4.将下列各分数指数幂写成根式的形式:
(1)
3
45
(3)
2
(8) 5
3
3 (2) 2
3
(4) 1.2 4
1.根式的推广和相关性质. 2.分数指数幂和根式的相互转换.
及时巩固,收获的 东西才真正属于你!
基础题: 1、课本P95习题:1、2做在作业本上 2、《学习指导用书》P75 A组 1、2、3、4、5
提高题:《学习指导用书》P76 B组 1

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案

教案名称:中职数学基础模块上册《实数指数幂及其运算法则》word教案教案编写:教学目标:1. 理解实数指数幂的概念及其运算法则。

2. 能够运用实数指数幂及其运算法则进行相关计算。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:一、实数指数幂的概念1. 引入实数指数幂的概念,讲解正整数指数幂、零指数幂和负整数指数幂的定义。

二、实数指数幂的运算法则1. 讲解实数指数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

2. 讲解实数指数幂的除法法则:同底数幂相除,底数不变,指数相减。

3. 讲解实数指数幂的乘方法则:底数不变,指数相乘。

4. 讲解实数指数幂的幂的法则:底数不变,指数相除。

三、实数指数幂的应用1. 举例讲解实数指数幂在实际问题中的应用,如计算幂的值、求解指数方程等。

四、练习与巩固1. 安排相关练习题,让学生巩固实数指数幂的概念和运算法则。

2. 引导学生运用所学知识解决实际问题。

2. 评价学生的学习效果,对学生在学习中遇到的问题进行解答和指导。

教学方法:1. 采用讲授法,讲解实数指数幂的概念和运算法则。

2. 运用案例教学法,引导学生运用所学知识解决实际问题。

3. 设计练习题,让学生通过自主练习巩固所学知识。

4. 采用小组讨论法,促进学生之间的交流与合作。

教学资源:1. PPT课件:展示实数指数幂的概念和运算法则。

2. 练习题:用于巩固所学知识。

3. 案例材料:用于讲解实数指数幂在实际问题中的应用。

教学评价:1. 课堂问答:检查学生对实数指数幂概念和运算法则的理解程度。

2. 练习题:评估学生对实数指数幂运算法则的掌握情况。

3. 实际问题解决:评价学生运用实数指数幂知识解决实际问题的能力。

六、教学活动设计1. 导入新课:通过复习幂的概念,引导学生自然过渡到实数指数幂的学习。

2. 讲解实数指数幂的概念:详细讲解正整数指数幂、零指数幂和负整数指数幂的定义。

3. 讲解实数指数幂的运算法则:逐一讲解乘法、除法、乘方和幂的法则。

中职数学-幂函数教案设计

中职数学-幂函数教案设计

4.1.3 幂函数举例一、教材分析幂函数选自新课标职业高中数学基础模块上册第四章实数指数幂的第四课时,是基本初等函数之一,它不仅有着广泛的应用,而且起着承前启后的作用,从教材的整体安排看,学习了幂函数是为了让学生进一步获得比较系统的函数知识和函数研究方法,为今后学习指数函数,对数函数,三角函数打下良好的基础,在初中曾经研究过21,1,x y x xy x y ====三种幂函数,这节内容是对初中有关内容的进一步概括、归纳与发展,是与幂函数有关知识的高度升华,通过本节课的学习,使学生进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。

二、学情分析在知识储备方面,学生学习幂函数之前,在初中已经掌握的一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在第三章接触过函数,已经确立了利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。

由于幂函数的情况比较复杂,学生在对图像共性的归纳概括方面可能遇到困难,在思维水平方面,所授班级是中职学生,学生的数学基础普遍薄弱,学生层次参次不齐,个体差异比较明显,虽然前面学生已经学会用描点列表连线画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。

三、教学设计四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。

为了调动学生学习的积极性,使学生化被动为主动。

本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中归纳出幂函数的模型,在教学重难点上,步步设问、启发学生的思维,通过探究活动,学生讨论,课堂练习的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

(完整word)高教版中职数学(基础模块)上册4.1《实数指数幂》.docx

(完整word)高教版中职数学(基础模块)上册4.1《实数指数幂》.docx

课题名称 4.1 实数指数幂授课班级13机电 1授课时间课题序号授课课时第到授课形式启发、类比使用教具课件1. 识记 n 次方根的概念,能区分奇次方根、偶次方根和n 次根算式根。

教学目的 2. 能描述分数指数幂的定义,会进行根式与分数指数幂的互化。

3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。

教学重点有理数指数幂的运算、实数指数幂的综合运算教学难点有理数指数幂的运算、实数指数幂的综合运算更新、补充、删减无内容课外作业1. P 96 习题。

实数指数幂授课主要思考交流例题课堂小结概念内容或板书设计问题解决练习教学后记教学过程师生活动设计意主要教学内容及步骤图等一、复入:二、新:探究(本 90 )引学生回初中1.概念学的平方根、立方根的一般地,如果 x n a( n N , 且 n1) ,称x a桂梅概念,启学生思考当指数分取 4,5 ,⋯,的 n 次方根。

x 的名称确定,例如:指数分取奇数和偶数底数的异同。

当n 奇数,正数的n 次方根是一个正数,数的n次方根是一个数。

, a 的 n 次方根只有一个,作n a 。

例如:当 n 偶数,正数 a 的 n 次方根有两个,它互相反数,作±n a的形式。

数没有偶次方根。

0 的任何次方根都是0.正数 a 的正的 n 次方根叫做 a 的 n 次算式根。

作n a 。

当n a 有意,把n a 叫做根式,其中n叫做根指数,a 叫做被开方数。

性:(1)(na) n(,且n1)a n N(2)当 n 奇数,(n a)n a ;当 n 为偶数时, (n a )na (a 0 ), | a |a( a 0).m(3) a nna m ;m11 (4) anmna ma n例 1 将下列各分数指数幂写成根式的形式:22(1) a 3 ;(2) b 3 .例 2 将下列各根式写成分数指数幂的形式:(1)5a 2; (2)1.3a 5思考交流1. 0 的正分数指数幂是。

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计4.1实数指数幂(1)教学目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.教学过程:120.、且∈Nn+这样就将整数指数幂推广到有理数指数幂.44.1实数指数幂(2)教学目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点. 教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.5教学过程:0.将下列各根式写成分数指数幂:;20将下列各分数指数幂写成根式:79过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结这些点,分别得到函数y =x 3和函数21xy =的图像,如下图所示.总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1). 例7 指出幂函数2y x -=的定义域,并作出函数图像.分析 考虑到221x x-=,因此定义域为00-∞+∞(,)(,),由于2211()x x =-,故函数为偶函数.其图像关于y 轴对称,可以先作出区间(0,)+∞内的图像,然后再利用对称性作出函数在区间(,0)-∞内的图像.解 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函数为偶函数.在区间(0,)+∞内,设值列表如下:x 0 41 1 4 9 … y =21x21123…x…121 2 …y… 4 114… 讲解 引领 归纳质疑分析强调 讲解领会 了解 观察 体会 思考 理解 主动 求解特点 引导 学生 掌握 描点 作图 的方 法 突出 数形 结合 的数 学思 想 注意 是否 理解 知识 点 可以 适当10过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结各点,得到函数在区间(0,)+∞内的图像.再作出图像关于y 轴对称图形,从而得到函数2-=x y 的图像,如下图所示.总结:这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1). 引领 归纳领会 观察 体会交给 学生 自我 探究 引导 学生 总结 函数 图像 的特点*理论升华 整体建构一般地,幂函数y x α=具有如下特征:(1) 随着指数α取不同值,函数y x α=的定义域、单调性和奇偶性会发生变化;(2) 当α>0时,函数图像经过原点(0,0)与点(1,1);当α<0时,函数图像不经过原点(0,0),但经过(1,1)点.引领 总结 强调 领会 理解 记忆 及时 总结 例题 中的 规律*运用知识 强化练习 教材练习4.1.31.用描点法作出幂函数4y x =的图像并指出图像具有怎样的对称性?2.用描点法作出幂函数3y x =的图像并指出图像具有怎样的对称性?提问 巡视 指导 动手 求解 交流了解 学生 知识 掌握 情况*归纳小结 强化思想 本次课学了哪些内容? 重点和难点各是什么?引导回忆培养 学生 总结114.2指数函数教学目标:⑴ 理解指数函数的图像及性质; ⑵ 了解指数模型,了解指数函数的应用.教学重点:⑴指数函数的概念、图像和性质; ⑵ 指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.教学过程:13过 程活动 活动 意图归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x 2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势.推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数. 归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点*巩固知识 典型例题例1 判断下列函数在(),-∞+∞内的单调性: (1) 4xy =; (2)3xy -=; (3)32xy =. 说明观察通过 例题 进一 步理14x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).164.3 对数教学目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.教学重点:指数式与对数式的关系.教学难点:17对数的概念.课时安排:2课时.教学过程:19204.4 对数函数教学目标:(1)了解对数函数的图像及性质特征;(2)了解对数函数的实际应用.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.教学过程:2224过 程活动 活动 意图(,)x y ,用光滑曲线依次联结各点,得到函数12log y x =的图像,如下图所示:观察函数图像发现:1.函数2log y x =和12log y x =的图像都在x 轴的右边;2.图像都经过点()1,0;3.函数2log y x =的图像自左至右呈上升趋势;函数12log y x =的图像自左至右呈下降趋势.展示 分析观察 体会引导 学生 细观 函数 象的 特点*动脑思考 探索新知一般地,对数函数log a y x =( a >0且a ≠1)具有下列性质:(1)函数的定义域是(0,)+∞,值域为R ;(2)当1x =时,函数值0y =;(3)当a >1时,函数在(0,)+∞内是增函数;当0<a <1时,函数在(0,)+∞内是减函数. 引导 总结 强调体会 理解 记忆结合 图形 自我 归纳*运用知识 强化练习 例1 求下列函数的定义域:(1)2log (4)y x =+; (2)ln y x =. 分析 要依据“对数的真数大于零”求函数的定义域. 解 (1)由x +4>0得4x >-,所以函数2log (4)y x =+的定义域为(4,)-+∞;说明 强调 引领观察 思考 主动通过 例题 进一 步理 解对 数函0, 0. >得1,0.xx⎧⎨>⎩,ln x的定义域为[1,强化练习252627。

4.1.2中职数学-实数指数幂的运算法则

4.1.2中职数学-实数指数幂的运算法则

4.1.2 实数指数幂及其运算法则一、教材分析本节课是新课标职业高中数学基础模块上册第四章实数指数幂第二课时,也是指数函数的入门课程。

指数函数对于学生来说是一个全新的函数模型,学习起来比较困难。

而实数指数幂的运算是指数函数的基础,是认识指数函数的先遣队。

我们通过初中学习整数指数幂的运算,进一步推广到实数指数幂的运算,为我们的指数函数铺路搭桥。

实数指数幂的运算是高中数学中的一类重要运算,需要理解运算对象,掌握运算法则,探究运算思路,选择运算方法,是培养学生具备运算能力的重要载体。

通过本节课的学习,可以让学生重新认识幂运算,为指数函数做铺垫。

从而更清晰,深刻地认识和理解指数函数模型,培养学生的逻辑思维能力。

二、学情分析学生进入高中学习时间短,运算能力,逻辑思维能力,探究能力,合作学习能力还不够成熟。

需要在我们的教学过程中继续强化,引导。

初中已经学习《整数指数幂及其运算法则》。

本节课是在初中学习基础上继续深入学习,将幂指数的限定由整数推广到实数,运算法则不变,所以学生有前面的基础,我们的探究过程会显得更加从容,学生能够通过合作交流完成猜想与探究。

通过对不等式的学习,已有一定的运算基础,同时对相互转化的思想,探究能力、逻辑思维能力得到了一定的锻炼。

因此,学生已具备了探索发现研究新知的认识基础,故应通过指导,教会学生独立思考、团结协作、大胆猜测和灵活运用类比、转化、归纳等学习方法。

三、教学设计0.,且a≠时,规定四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。

为了调动学生学习的积极性,使学生化被动为主动。

本节课我采用学生独立完成加小组合作交流,分享小组成果等方式调动学生主动参与的积极性。

在教学重难点上,循序渐进、启发学生的思维,通过课堂练习、学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

中职教材数学(基础模块 高教版)上册电子教案 实数指数幂(优秀版)word资料

中职教材数学(基础模块 高教版)上册电子教案 实数指数幂(优秀版)word资料
说明
分析
引领
讲解
质疑
引领
讲解
归纳
强调
观察
思考
主动
求解
领会
思考
理解
明确
记忆
通过
例题
进一Βιβλιοθήκη 步明确分数指数幂
的定
义式
注意
观察
学生
是否
掌握
知识

可以
交给
学生
自我
总结
70
*运用知识强化练习
教材练习
1.将下列各根式写成分数指数幂的形式:
(1) ;(2) ;(3) ;(4) .
2.将下列各分数指数幂写成根式的形式:
(1)读书部分: 教材章节4.1;
(2)书面作业: 学习与训练4.1;
(3)实践调查: 了解计算器的其他计算使用方法.
说明
记录
90
第三章 基本初等函数
指数与指数函数
3
【学习要求】
1.了解根式与方根的概念及关系;
2.理解分数指数幂的概念;
3.掌握有理数指数幂的运算性质,能运用性质进行化简计算.
【学法指导】
【课题】4.1实数指数幂(1)
【教学目标】
知识目标:
⑴复习整数指数幂的知识;
⑵了解n次根式的概念;
理解分数指数幂的定义.
能力目标:
⑴掌握根式与分数指数幂之间的转化;
⑵会利用计算器求根式和分数指数幂的值;
培养计算工具使用技能.
【教学重点】
分数指数幂的定义.
【教学难点】
根式和分数指数幂的互化.
【教学设计】
答疑
思考
动手
求解
交流
及时
了解

职高实数指数幂教案

职高实数指数幂教案

4.1根式及分数指数幂(第一课时)
教学目标:掌握根式的概念和性质,灵活应用。

教学难点:根式的概念.
4.1分数指数幂的运算和性质(第二课时)
教学目的:(1)规定分数指数幂的意义;
(2)学会根式与分数指数幂之间的相互转化;
(3)理解有理指数幂的含义及其运算性质;
(4)了解无理数指数幂的意义
教学重点:分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质教学难点:根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂.
4.2实数指数幂运算。

中职数学(基础模块)教案

中职数学(基础模块)教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。

2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。

教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1。

3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1。

4充要条件知识目标:了解“充分条件"、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件"、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“"的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2。

1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2。

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案第一章:指数幂的概念与性质1.1 教学目标1. 理解指数幂的概念2. 掌握指数幂的性质3. 学会运用指数幂的性质解决问题1.2 教学内容1. 指数幂的定义与例子2. 指数幂的性质3. 指数幂的应用1.3 教学重点与难点1. 重点:指数幂的概念与性质2. 难点:指数幂的应用1.4 教学方法与手段1. 讲授法:讲解指数幂的定义与性质2. 案例分析法:分析实际问题中的指数幂应用3. 练习法:巩固所学知识1.5 教学过程1. 引入:通过实际问题引入指数幂的概念2. 讲解:讲解指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的指数幂应用4. 练习:布置相关练习题,巩固所学知识第二章:分数指数幂2.1 教学目标1. 理解分数指数幂的概念2. 掌握分数指数幂的性质3. 学会运用分数指数幂解决问题2.2 教学内容1. 分数指数幂的定义与例子2. 分数指数幂的性质3. 分数指数幂的应用2.3 教学重点与难点1. 重点:分数指数幂的概念与性质2. 难点:分数指数幂的应用2.4 教学方法与手段1. 讲授法:讲解分数指数幂的定义与性质2. 案例分析法:分析实际问题中的分数指数幂应用3. 练习法:巩固所学知识2.5 教学过程1. 引入:通过实际问题引入分数指数幂的概念2. 讲解:讲解分数指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的分数指数幂应用4. 练习:布置相关练习题,巩固所学知识第三章:指数幂的运算3.1 教学目标1. 掌握指数幂的运算法则2. 学会运用指数幂的运算法则进行计算3. 理解指数幂运算的规律3.2 教学内容1. 指数幂的运算法则2. 指数幂运算的规律3. 指数幂运算的应用3.3 教学重点与难点1. 重点:指数幂的运算法则2. 难点:指数幂运算的应用3.4 教学方法与手段1. 讲授法:讲解指数幂的运算法则2. 案例分析法:分析实际问题中的指数幂运算应用3. 练习法:巩固所学知识3.5 教学过程1. 引入:通过实际问题引入指数幂的运算2. 讲解:讲解指数幂的运算法则,举例说明3. 案例分析:分析实际问题中的指数幂运算应用4. 练习:布置相关练习题,巩固所学知识第四章:指数函数4.1 教学目标1. 理解指数函数的概念2. 掌握指数函数的性质3. 学会运用指数函数解决问题4.2 教学内容1. 指数函数的定义与例子2. 指数函数的性质3. 指数函数的应用4.3 教学重点与难点1. 重点:指数函数的概念与性质2. 难点:指数函数的应用4.4 教学方法与手段1. 讲授法:讲解指数函数的定义与性质2. 案例分析法:分析实际问题中的指数函数应用3. 练习法:巩固所学知识4.5 教学过程1. 引入:通过实际问题引入指数函数的概念2. 讲解:讲解指数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的指数函数应用4. 练习:布置相关练习题,巩固所学知识第五章:对数与对数函数5.1 教学目标1. 理解对数的概念2. 掌握对数的性质3. 学会运用对数解决问题5.2 教学内容1. 对数的定义与例子2. 对数的性质3. 对数函数的应用5.3 教学重点与难点1. 重点:对数的概念与性质2. 难点:第六章:对数函数的性质与应用6.1 教学目标1. 理解对数函数的概念2. 掌握对数函数的性质3. 学会运用对数函数解决问题6.2 教学内容1. 对数函数的定义与例子2. 对数函数的性质3. 对数函数的应用6.3 教学重点与难点1. 重点:对数函数的概念与性质2. 难点:对数函数的应用6.4 教学方法与手段1. 讲授法:讲解对数函数的定义与性质2. 案例分析法:分析实际问题中的对数函数应用3. 练习法:巩固所学知识6.5 教学过程1. 引入:通过实际问题引入对数函数的概念2. 讲解:讲解对数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的对数函数应用4. 练习:布置相关练习题,巩固所学知识第七章:指数与对数互化7.1 教学目标1. 理解指数与对数互化的原理2. 掌握指数与对数互化的方法3. 学会运用指数与对数互化解决问题7.2 教学内容1. 指数与对数的互化关系2. 指数与对数互化的方法3. 指数与对数互化的应用7.3 教学重点与难点1. 重点:指数与对数互化的原理与方法2. 难点:指数与对数互化的应用7.4 教学方法与手段1. 讲授法:讲解指数与对数互化的原理与方法2. 案例分析法:分析实际问题中的指数与对数互化应用3. 练习法:巩固所学知识7.5 教学过程1. 引入:通过实际问题引入指数与对数互化的概念2. 讲解:讲解指数与对数互化的原理与方法,举例说明3. 案例分析:分析实际问题中的指数与对数互化应用4. 练习:布置相关练习题,巩固所学知识第八章:指数与对数在实际问题中的应用8.1 教学目标1. 理解指数与对数在实际问题中的应用2. 掌握指数与对数在实际问题中的解题方法3. 学会运用指数与对数解决实际问题8.2 教学内容1. 指数与对数在实际问题中的应用实例2. 指数与对数在实际问题中的解题方法3. 指数与对数在实际问题中的应用案例分析8.3 教学重点与难点1. 重点:指数与对数在实际问题中的应用2. 难点:指数与对数在实际问题中的解题方法8.4 教学方法与手段1. 讲授法:讲解指数与对数在实际问题中的应用实例2. 案例分析法:分析实际问题中的指数与对数应用案例3. 练习法:巩固所学知识8.5 教学过程1. 引入:通过实际问题引入指数与对数在实际问题中的应用2. 讲解:讲解指数与对数在实际问题中的应用实例,举例说明3. 案例分析:分析实际问题中的指数与对数应用案例4. 练习:布置相关练习题,巩固所学知识第九章:复习与拓展9.1 教学目标1. 巩固本模块所学知识2. 提高学生的数学思维能力3. 培养学生解决实际问题的能力9.2 教学内容1. 复习本模块的主要知识点和技能2. 拓展与本模块相关的数学知识3. 分析与解决实际问题9.3 教学重点与难点1. 重点:巩固本模块所学知识2. 难点:拓展与本模块相关的数学知识9.4 教学方法与手段2. 案例分析法:分析与解决实际问题3. 练习法:巩固所学知识9.5 教学过程2. 讲解:讲解与本模块相关的数学知识,举例说明3. 案例分析:分析与解决实际问题4. 练习:布置相关练习题,巩固所学知识第十章:评价与反馈10.1 教学目标1.重点和难点解析第一章:指数幂的概念与性质重点和难点解析:本章节的重点是指数幂的概念与性质,难点是指数幂的应用。

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案教案目录:一、教学目标1.1 知识与技能目标1.2 过程与方法目标1.3 情感态度与价值观目标二、教学内容2.1 实数指数幂的定义与性质2.2 运算法则2.3 指数幂的应用三、教学重点与难点3.1 教学重点3.2 教学难点四、教学方法与手段4.1 教学方法4.2 教学手段五、教学过程5.1 导入新课5.2 知识讲解5.3 例题解析5.4 课堂练习5.5 总结与拓展教案一、教学目标1.1 知识与技能目标通过本节课的学习,使学生掌握实数指数幂的定义与性质,能够运用运算法则进行简单的计算。

1.2 过程与方法目标通过自主学习、合作探讨的方式,培养学生分析问题、解决问题的能力。

1.3 情感态度与价值观目标激发学生对数学的学习兴趣,培养学生的逻辑思维能力。

二、教学内容2.1 实数指数幂的定义与性质实数指数幂是指以实数为底数的指数幂,例如:2^3、3^4等。

2.2 运算法则同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式的乘方再相乘。

2.3 指数幂的应用指数幂在实际生活中有广泛的应用,如计算利息、折扣等。

三、教学重点与难点3.1 教学重点实数指数幂的定义与性质,运算法则的应用。

3.2 教学难点指数幂的运算法则的理解与运用。

四、教学方法与手段4.1 教学方法采用问题驱动法、案例教学法、小组合作学习法等。

4.2 教学手段利用多媒体课件、教学挂图、实物模型等辅助教学。

五、教学过程5.1 导入新课通过复习实数的基本概念,引出实数指数幂的概念。

5.2 知识讲解讲解实数指数幂的定义与性质,运算法则的推导与解释。

5.3 例题解析举例说明实数指数幂的运算法则的应用,引导学生进行思考。

5.4 课堂练习布置一些相关的练习题,让学生巩固所学知识。

5.5 总结与拓展对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》Word教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及其运算法则解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。

3. 情感、态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、积极探索的精神。

二、教学重点与难点1. 教学重点:实数指数幂的概念,实数指数幂的运算法则。

2. 教学难点:实数指数幂的运算法则的应用。

三、教学方法1. 情境创设:通过生活实例引入实数指数幂的概念;2. 自主探究:引导学生观察、分析、归纳实数指数幂的运算法则;3. 合作交流:分组讨论,共同解决问题;4. 巩固练习:设计相关练习题,巩固所学知识。

四、教学过程1. 导入新课:(1)复习相关知识点,如幂的定义;(2)通过生活实例引入实数指数幂的概念。

2. 自主探究:(1)观察实数指数幂的运算法则;(2)分析、归纳实数指数幂的运算法则。

3. 合作交流:(1)分组讨论,共同解决问题;(2)分享各自的学习心得和方法。

4. 巩固练习:(1)设计相关练习题;(2)学生独立完成,教师点评、讲解。

5. 课堂小结:(2)强调实数指数幂在实际问题中的应用。

五、课后作业1. 复习实数指数幂的概念和运算法则;2. 完成课后练习题;六、教学策略1. 实例引导:通过具体的实例,让学生理解实数指数幂的实际意义和应用。

2. 问题驱动:提出问题,激发学生的思考,引导学生主动探究实数指数幂的运算法则。

3. 互助合作:鼓励学生之间的合作,共同解决问题,提高学生的团队协作能力。

4. 实践操作:让学生通过实际操作,加深对实数指数幂及其运算法则的理解。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对实数指数幂及其运算法则的掌握程度。

中职教材数学(基础模块 高教版)上册电子教案:4

中职教材数学(基础模块 高教版)上册电子教案:4

【课题】4.1 实数指数幂(2)【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点 .能力目标:⑴正确进行实数指数幂的运算;⑵ 培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力 . 【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴ 在复习整数指数幂的运算中,学习实数指数幂的运算;⑵ 通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念 .【教学备品】教学课件.【课时安排】2 课时. (90 分钟)【教学过程】教过*揭示课题4.1 实数指数幂.*回顾知识复习导入知识点整数指数幂,当n N* 时,a n = ;规定当a 0 时,a0 = ; a n =教学意图复习已有知识点做好新教师行为介绍质疑学生行为了解思考学程时间;m 分数指数幂:a n =m ;a0时,a n=其中m、n N*且n>1.当n 为奇数时, a R;当n 为偶数时, a 0.问题1.将下列各根式写成分数指数幂:(1) ; (2) .20 4 32.将下列各分数指数幂写成根式:3(2) (2.3) 3.扩展整数指数幂的运算法则为:(1) a m . a n = ;(2) (a m )n = ;(3) (ab)n = .其中(m、n Ζ).归纳运算法则同样适用于有理数指数幂的情况.*动脑思考探索新知概念当p 、q 为有理数时,有a p . a q = a p+q ;(a p )q = a pq ;(ab)p = a p .b p .运算法则成立的条件是,出现的每个有理数指数幂都有意义.说明可以证明,当p 、q 为实数时,上述指数幂运算法则也成立.*巩固知识典型例题例 4 计算下列各式的值:行为提问巡视解答引导说明总结归纳说明行为回忆求解交流思考领会了解思考理解记忆领会意图知识建构基础了解学生指数运算掌握情况回顾整数指数幂为后续做好准备自然过渡到实数指数幂通过1015 说明观察例题3 2(1) 65 4;a2过间程.13 根 3 6(1) 0.1253; (2) .3 9 根 3 2分析 (1)题中的底为小数,需要首先将其化为分数,有利于 运算法则的利用; (2)题中,首先要把根式化成分数指数幂, 然后再进行化简与计算.解 (1)1 -3根 1 8 21 1 1 1 1(2)3 根 3 6=32 根 (3 根 2)3=32 根 33 根 23 3 9 根 3 2 1 1 2 1(32 )3 根 23 33 根 231 12 1 1 1 1说明 (2)题中,将 9 写成 32 ,将 6 写成 2根3 ,使得式子中只 出现两种底,方便于化简及运算.这种尽可能将底的化同的做 法,体现了数学中非常重要的“化同”思想. 例 5 化简下列各式: (1); (2) (||(a 21 +b 21))|| (||(a 21 -b 21))||;(3) 5a -3b 2合 5a 2合 5 b3 .分析 化简要依据运算的顺序进行,一般为“先括号内,再括 号外;先乘方,再乘除,最后加减”,也可以利用乘法公式. 解 (2a 4b 3 )4= 24 a 4根4b 3根4 = 16a 16b 12 = 16 a 16-6b 12-2 = 16 a 10b 10. (3a 3b )2 32 a 3根2b 1根29a 6b 2 9 9 (||(a 21 + b 21 ))|| (||(a 21 - b 21 ))|| = (||(a 21 ))||2 - (||(b 21 ))||2 = a 21根2 - b 21根2= a - b .1 2 35 a -3b 2 合 5 a 2 合 5 b 3 = (a -3b 2 )5 合 a 5 合 b 5 1 1 2 3 3 2 2 3 = (a -3 )5 (b 2 )5 合 a 5 合 b 5 = a -5 b 5 合 a 5 合 b 5= a (- 53 - 52)b 52 - 53 = a -1b -51.说明 作为运算的结果,一般不能同时含有根号和分数指数行为 分析强调引领 讲解质疑分析强调讲解 行为思考主动 求解领会了解观察思考主动求解领会了解意图 进一 步使 学生 理解指数 幂的 运算 法则引导 学生 体会 化同 的的数学 思想注意 观察学生 是否理解 知识点可以 适当 交给 学生 自我探究= 32 + 3- 3 根 23-3 = 36 根 20 = 36.1 1 1 1过程0.1253 = ( )3 = (2-3 )3 = 2 3 = 2-1 = ;间幂. (3)题的结果也可以写成 1 ,但是不能写成a一 1 ,本章a 5b 5 b中一般不要求将结果中的分数指数幂化为根式.*运用知识强化练习教材练习 4.1.21.计算下列各式:2 1 1 5(1) 3 人3 9 人4 27; (2) (23 42 )3 (2一2 48 )4.2 .化简下列各式:( 2 1 )3 ( 1 5 )4 (1) a3 . a一3 . a2 . a0;(3) 3 b2 . 3 a 政 a3b.a*知识回顾复习导入问题观察函数y = x 、相关性质.探究由于 y = x = x1,y = x2 、y = ,回忆三个函数的图像和xy = = x一1 ,故这三个函数都可以写成xy = x a ( a 仁R )的形式.*动脑思考探索新知概念一般地,形如 y = x a ( a 仁R )的函数叫做幂函数.其中指数 a 为常数,底x 为自变量.*巩固知识典型例题1例 6 指出幂函数 y=x 3 和 y=x 2 的定义域,并在同一个坐标系中作出它们的图像.分析首先分别确定各函数的定义域,然后再利用“描点法”分别作出它们的图像.行为强调提问巡视指导质疑引导分析总结归纳说明分析行为动手求解交流思考体会理解记忆观察思考意图及时了解学生知识掌握情况引导学生用所学的知识进行判断特别强调关键词汇通过例题30455055(2)|a 3 b2|.|2a一2 b8|;( ) ( )1 2程间11过教学 意图 进一 步使学生 感知幂函 引领数的图像…特点y= x 2引导领会掌握描点 作图 的方法观察突出 数形 结合的数 学思 想质疑于 = ,故函数为偶函数.其图像关于 y 轴对称, 可以 注意是否 理解 知识解 y = x 2 的定义域为 (,0) (0,+ ). 由分析过程知道函总结:这两个函数的定义域不同,在定义域内它们都是增函 数.两个函数的图像都经过坐标原点和点 (1,1). 例 7 指出幂函数 y = x 2 的定义域,并作出函数图像.11 1 (x)2 x 2先作出区间 (0, + ) 内的图像, 然后再利用对称性作出函数在区 间 (,0) 内的图像.以表中的每组 x, y 的值为坐标, 描出相应的点 (x, y), 再用 1光滑的曲线依次联结这些点, 分别得到函数y=x 3 和函数 y = x 2 的图像,如下图所示.1解 函数 y =x 3的定义域为 R ,函数 y=x 2 的定义域为 [0,+).分别设值列表如下: 分析 考虑到 x2 = , 因此定义域为 (,0) (0,+ ), 由教师 行为 学生 行为 xy=x 3 主动 求解学 程教 过时 间−2 −8−1 −1… ………1 41 2体会讲解分析学生 思考强调归纳引领了解4 20 09 30 02 81 11 12x…x 1数为偶函数.在区间 (0, + ) 内,设值列表如下:1…2 1…以表中的每组 x, y 的值为坐标, 描出相应的点(x, y), 再用 光滑的曲线依次联结各点,得到函数在区间(0, + ) 内 的图 像.再作出图像关于 y 轴对称图形,从而得到函数 y = x 2的图像,如下图所示.引导 观察学生 总结 函数图像 的特点*理论升华 整体建构及时总结 例题 中的规律75了解 学生 知识一般地,幂函数 y = x a 具有如下特征:(1) 随着指数 a 取不同值,函数 y = x a的定义域、单调性和奇偶性会发生变化;(2) 当 a >0 时, 函数图像经过原点(0,0)与点(1,1); 当 a <0时,函数图像不经过原点(0,0),但经过(1,1)点. *运用知识 强化练习 教材练习 4.1.31.用描点法作出幂函数 y = x 4 的图像并指出图像具有怎样的对 称性?总结: 这个函数在 (0, + ) 内是减函数;函数的图像不经过坐标 原点,但是经过点 (1,1).领会理解 记忆动手求解可以 适当 交给学生 自我 探究引领总结 强调教学 意图 点提问巡视教师行为 学生行为 主动求解学 程教 过时 间x … y …领会体会讲解理解强调归纳引领704421 12.用描点法作出幂函数 y = x3 的图像并指出图像具有怎样的对称性?*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?*继续探索活动探究(1)读书部分:教材章节4.1;(2)书面作业:学习与训练 4.1;(3)实践调查:了解常见幂函数的性质特点.教师行为指导引导提问说明学生行为交流回忆反思交流记录教学意图掌握情况培养学生总结反思学习过程能力808590学程时间教过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数指数幂的运算、实数指数幂的综合运算
教学难点
有理数指数幂的运算、实数指数幂的综合运算
更新、补
充、删减
内容

课外作业
1.P 96习题。
授课主要内容或板书设计
实数指数幂
概念思考交流例题课堂小结
问题解决练习
教学后记
主要教学内容及步骤
教学过程师生活动设计意图等
一、复习导入:
二、新课:
探究(见课本90页)
课题名称
4.1实数指数幂
授课班级
授课时间
13机电1
课题序号
授课课时
第到
授课形式
启发、类比
使用教具
课件
教学目的
1.识记n次方根的概念,能区分奇次方根、偶次方根和n次根算式根。
2.能描述分数指数幂的定义,会进行根式与分数指数幂的互化。
3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。
教学重点
将分数指数幂与根式的互化问题进行类比分析,引导学生思考并发现“ ”一式中各字母的对应问题。
练习2、3
鼓励学生用各种方法求出各式的值,使学生能更好地掌握实数指数幂的运算性质。
1.概念
一般地,如果 ,则称x为a的n次方根。
例如:
当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。这时,a的n次方根只有一个,记作 。
例如:
当n为偶数时,正数a的n次方根有两个,它们互为相反数,记作± 的形式。
例如:
负数没有偶次方根。
0的任何次方根都是0.
正数a的正的n次方根叫做a的n次算式根。记作 。
2.实数指数幂及其运ห้องสมุดไป่ตู้法则
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
例3求下列各式的值:
(1) ;(2) ;(3) .
例4化简下列各式:
(1). ;(2)
解:
问题解决
(见课本95页)
三、练习:
四、小结:
五、作业:第107页1.
引导学生回顾初中学过的平方根、立方根的桂梅概念,启发学生思考当指数分别取4,5,…时,x的名称确定问题,发现指数分别取奇数和偶数时底数的异同。
当 有意义时,把 叫做根式,其中n叫做根指数,a叫做被开方数。
性质:
(1)
(2)当n为奇数时, ;
当n为偶数时,
(3) ;
(4)
例1将下列各分数指数幂写成根式的形式:
(1) ;(2) .
例2将下列各根式写成分数指数幂的形式:
(1) ;(2) .
思考交流
1. 0的正分数指数幂是。
2. 0的负分数指数幂。
相关文档
最新文档