人教版七年级数学习题集

合集下载

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.5.3 近似数和有效数字)

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.5.3 近似数和有效数字)

1.5.3 近似数和有效数字5分钟训练(预习类训练,可用于课前)1.台湾是我国最大的岛屿,总面积为35 989.76平方千米.用科学记数法应表示为(保留三个有效数字)()A.3.59×106平方千米B.3.60×106平方千米C.3.59×104平方千米D.3.60×104平方千米答案:D2.填空(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;(2)一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都叫做这个数的_________;(3)除了四舍五入法,常用的近似数的取法还有两种,_______和_______.思路解析:利用近似数完成问题.答案:(1)精确(2)有效数字(3)进一法去尾法3.判断下列各题中哪些是精确数,哪些是近似数.(1)某班有32人;(2)半径为10 cm的圆的面积约为314 cm2;(3)张明的身高约为1.62米;(4)取π为3.14.思路解析:完全准确的数是精确数.如某班有32人,5枝铅笔,73等都是准确数.在解决实际问题时,往往只能用近似数.有时搞的完全准确没有必要;有时测得准确很困难.答案:(1)32人是精确数.(2)(3)(4)都是近似数.10分钟训练(强化类训练,可用于课中)1.用四舍五入法取近似值,0.012 49精确到0.001的近似数是______,保留三个有效数字的近似数是______.思路解析:注意,精确到0.001实际就是精确到千分位,也就是把万分位上的数字用“四舍五入”的方法,去掉千分位以后的数字.保留有效数字时注意计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的.答案:0.012 0.0125.2.用四舍五入法得到的近似值0.380精确到________位,48.68万精确到_______位.思路解析:看最后一位数字在哪一数值上即为精确到该值.答案:千分百3.用四舍五入法取近似值, 396.7精确到十位的近似数是________;保留两个有效数字的近似数是_______.思路解析:本题中,精确到十位以上或保留两个有效数字应用科学记数法.答案:4.0×102 4.0×1024.下列由四舍五入得到的数各精确到哪一位?各有哪几个有效数字?(1)54.9;(2)0.070 8;(3)6.80万;(4)1.70×106思路解析:(1)6.80万不能说精确到百分位,因为6.80万后有个万字.(2)1.70×106也不能说精确到百分位.应先把1.70×106=1 700 000,再看7后的0所在的数位,即精确到万位.答案:(1)54.9精确到十分位(即精确到0.1),有三个有效数字:5,4,9;(2)0.070 8精确到万分位(即精确到0.0001),有三个有效数字:7,0,8;(3)6.80万精确到百位,有三个有效数字:6,8,0;(4)1.70×106精确到万位,有三个有效数字:1,7,0.5.用四舍五入法,求出下列各数的近似数.(1)0.632 8(精确到0.01);(2)7.912 2(精确到个位);(3)47 155(精确到百位);(4)130.06(保留4个有效数字);(5)460 215(保留3个有效数字);(6)1.200 0(精确到百分位).思路解析:本题中(3)(4)(5)先用科学记数法表示出来,再根据要求求出结果,特别注意:47 155精确到百位不能等于472. 1.300×102、4.60×105和1.20中1.300、4.60和1.20后面的零不能省略.解:(1)0.632 8≈0.63;(2)7.912 2≈8;(3)47 155≈4.72×104;(4)130.06≈1.301×102;(5)460 215≈4.60×105;(6)1.200 0≈1.20.6.有玉米45.2吨,用5吨的卡车一次运完,需要多少辆卡车?思路解析:45.2÷5=9.04辆≈10辆,这里用“进一法”来估算卡车的辆数,特别注意这儿9.04≈9是错误的!答案:需要10辆卡车.7.计算:(1)(-1.25)×(-129)×(-2.5)×(+911)×32;(2)(-105)×[35-47-(-53)]-178×6.67-7.67×(-178).思路解析:运用运算律简化计算.解:(1)原式=-54×119×52×911×32=-100;(2)原式=-105×35+105×47-105×53-178(6.67-7.67)=-63+60-175+178=0快乐时光不能怪我老布莱克喜爱猎熊,可偏偏视力又不大好,曾几次差点把人当熊来猎击 这天,老布莱克动身去猎熊前,他的朋友怕他故伎会重演,就找了张白纸,写上“我不是熊”几个斗大的字,贴在自己的背上,可狩猎才开始不一会儿,布莱克就打中了这位朋友的帽子.“难道你没看见我背后有字吗?”又气又怕的朋友喊道.“不,看倒是看见了,”布莱克应道,又凑近仔细看了看,尔后连连道歉:“唉,实在对不起,我没有看清这句话里的那个‘不’字 ”30分钟训练(巩固类训练,可用于课后)1.近似数0.020有_____个有效数字,4.998 4精确到0.01的近似值是_____.思路解析:注意计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的 精确到高分位,如果四舍五入其分位上为0,这个0也要保留,不能省略.答案:2 5.002.地球上陆地的面积为149 000 000平方千米,用科学记数法表示为_____. 思路解析:按照科学记数法定义解题.答案:1.49×108平方千米3.若有理数a,b满足|3a-1|+b2=0,则a(b+1)的值为________.思路解析:显然,|3a-1|和b2都等于0,可求a、b,则代入可求a b+1的值.答案:1 34.年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为________亿美元(四舍五入保留三个有效数字).答案:2.23×1045.下列由四舍五入得到的近似数,各精确到哪一位?(1)29.75; (2)0.002 402; (3)3.7万;(4)4 000; (5)4×104; (6)5.607×102.思路解析:关键看最后一个有效数字的数位.答案:(1)精确到百分位;(2)精确到百万分位;(3)精确到千位;(4)精确到个位;(5)精确到万位;(6)精确到十分位.6.下列各近似数有几个有效数字?分别是哪些?(1)43.8; (2)0.030 800;(3)3.0万; (4)4.2×103思路解析:注意,计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的. 答案:(1)有3个有效数字:4,3,8;(2)有5个有效数字:3,0,8,0,0;(3)有2个有效数字:3,0;(4)有2个有效数字:4,2.7.按四舍五入法,按括号里的要求对下列各数求近似值.(1)3.595 2(精确到0.01);(2)29.19(精确到0.1);(3)4.736×105(精确到千位).思路解析:(1)中的结果3.60不能写成3.6.它们的精确度不同.解:(1)3.595 2≈3.60;(2)29.19≈29.2;(3)4.736×105≈4.74×105.8.把一个准确数四舍五入就可得到一个近似数,这个准确数就是这个近似数的真值.试说明近似数1.80和1.8有什么不同,其真值有何不同?思路解析:根据近似数及其值的意义解题.答案:近似数1. 80和1.8的精确度不同,1.80是精确到百分位,1.8是精确到十分位,它们所表示的真值的范围大小也不相同,近似数1.80的真值大于或等于1.795且小于1.805,而近似数1.8的真值是大于或等于1.75且小于1.85.即近似数1.8的真值范围比近似数1.80的真值范围大得多,反过来近似数1.80比1.8更精确.9.求近似数16.4,1.42,0.387 4,2.561 8的和(结果保留三个有效数字).思路解析:因为和是保留三个有效数字,这里是精确到十分位,因此在计算的过程中,可把超过这个数位的数四舍五入到这个数位的下一位(如0.387 4≈0.39,2.561 8≈2.56),然后进行计算再把算得的结果的末一位四舍五入.解:16.4+1.42+0.387 4+2.561 8≈16.4+1.42+0.39+2.56=20.77≈20.8.10.甲、乙两学生的身高都是1.7×102 cm,但甲学生说他比乙高9 cm.问有这种可能吗.若有,请举例说明.思路解析:根据真值取值范围可得.答案:有这种可能.当甲身高为1.74×102 cm,乙身高为1.65×102 cm时,将他们的身高都四舍五入保留两个有效数字就可以得到.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

人教版七年级数学上册练习题

人教版七年级数学上册练习题

人教版七年级数学上册练习题数轴、相反数、绝对值巩固练习一、填空题:1.若上升5 m 记作+5 m,则-8 m 表示 ;如果-10元表示支出10元,那么+50元表示 ;如果零上5℃记作+5℃,那么零下2℃记作 ;太平洋中的马里亚纳海沟深达11 034 m,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔 ,比海平面低30 m 的地方,它的高度记作海拔 .2.(实验月考)在数轴上大于-4.12的负整数有 .3.(阳光月考)到原点的距离等于3的数是 .4.(外中月考)数轴上表示-2和+10的两个点分别为A,B,则A,B 两点间的距离是 .5. (二中月考 )在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N 表示的数是 .6.(三中月考)已知数轴上点A 与原点的距离为2,则点A 对应的有理数是 ,点B 与点A 之间的距离为3,则点B 对应的有理数是 .7.填空:5.3-= ; 21+= ; 5--= ; 若x<0,则x = ,x -= ; 若m<n,则m n -=. 8.(育才月考)若3a =,则a= ;若3a -=,则a= ; 若2a -=,a<0,则a= ;若a b =,b=7,则a= ; 若a b =,b=7,a ≠b,则a= . 9.填空:(1)311--= -311 ;(2)2.42.4--= - = ; (3)53++-= + = ; (4)22--+=| - |= ; (5)3 6.2-⨯= × = ; (6)21433-÷-= = = . 10.把下列各数填入它所在的集合里: 2,7,32-,0,2 018,0.618,3.14,-1.732,-5,+3①正数集合:{ } ②负数集合:{ } ③整数集合:{ } ④非正数集合:{ } ⑤非负整数集合:{ } ⑥有理数集合:{ } 二、选择题:11.(外中月考)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B-3 C .+3 D .+412.(实验月考)某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10 g B .8 g C .7 g D .5 g13.(市直期末)a,b 为有理数,在数轴上的位置如图所示,则下列关于a,b,0三者之间的大小关系,正确的是( )aA .0<a<bB .a<0<bC .b<0<aD .a<b<014.(三中月考)文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店 B .文具店 C .文具店西边40米 D .玩具店东边60米15.(育才月考)下列各组数中,互为相反数的是( ) A .0.4与-0.41 B .3.8与-2.9 C .)8(--与8- D .)3(+-与(3)+- 16.(实验月考)下列化简不正确的是( ) A .( 4.9) 4.9--=+ B .( 4.9) 4.9-+=- C .[]( 4.9) 4.9-+-=+ D .[]( 4.9) 4.9+-+=+ 17.(外中月考)下列各数中,属于正数的是( ) A .)2(-+ B .3的相反数 C .)(a -- D .-3的相反数 18.(三中月考)有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数 19.(阳光月考)下列说法正确的是( ) A .一个数的绝对值一定大于它本身 B .只有正数的绝对值等于它本身 C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 20.(市直期末)若x x =-,则x 的取值范围是( ) A .1x =- B .0x = C .x ≥0 D .x ≤0 三、解答题:21.(市直期中22.请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示。

人教版七年级上册数学课后习题与答案

人教版七年级上册数学课后习题与答案

答案仅供参考,学习还需同学努力!人教版七年级数学课后习题与答案七年级上册习题1.1分析:大于0的数叫做正数,在正数前加上符号“-”的数叫做负数.P5,2、某蓄水池的标准水位记为0 m,如果用正数表示水面高于标准水位的高度,那么(1)0.08 m.和-0.2 m各表示什么?(2)水面低于标准水位0.1 m和高于标准水位0.23 m各怎样表示?解:(1)0.08 m表示水面高于标准水位0.08 m,-0.2 m表示水面低于标准水位0.2 m.(2)水面低于标准水位0.1 m用-0.1 m表示,高于标准水位0.23 m用0.23 m表示.P5,3、“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?为什么?解:不对,因为0既不是正数也不是负数P5,4、如果把一个物体向后移动5 m记作移动-5 m,那么这个物体又移动+5 m是什么意思?这时物体离它两次移动前的位置多远?解:这个物体又移动+5 m表示又向前移动5 m,这时物体距离它两次移动前的位置是0 m,即回到它两次移动前的位置.P6,5、测量一幢楼的高度,七次测得的数据分别是:79.4 m,80.6 m,80.8 m,79.1 m,80 m,79.6 m,80.5 m.这七次测量的平均值是多少?以平均值为标准,用正数表示超出部分,用负数表示不足部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=80.它们对应的数分别是-0.6,0.6,0.8,-0.9,0,-0.4,0.5.P6,6、科学实验表明,原子中的原子核与电子所带电荷是两种相反的电荷.物理学规定,原子核所带电荷为正电荷.氢原子中的原子核与电子各带1个电荷,把它们所带电荷用正数和负数表示出来.解:氢原子钟的原子核所带电荷可以用+1表示,电子所带电荷可以用-1表示.P6,7、某地一天中午12时的气温是7℃,过5 h气温下降了4℃,又过7 h气温又下降了4℃,第二天0时的气温是多少?解:相当于过12 h气温下降了8℃,那么第二天0时的气温是-1℃.P6,8、某年,一些国家的服务出口额比上年的增长率如下:这一年,上述六国中哪些国家的服务出口额增长了?哪些国家的服务出口额减少了?哪国增长率最高?哪国增长率最低?解:中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额减少了,意大利的增长率最高,日本的增长率最低.人教版七年级数学课后习题与答案习题1.2P14,2解:P14,3、在数轴上,点A 表示-3,从点A 出发,沿数轴移动4个单位长到达点B ,则点B 表示的数是多少?解:向左移动4个单位长到达-7,向右移动4个单位长到达1, 所以点B 表示的数是1或-7.3 2-人教版七年级数学课后习题与答案P14,5、写出下列各数的绝对值:-125,+23,-3.5,0,23,32-,-0.05.上面的数中哪个数的绝对值最大?哪个数的绝对值最小?解:各数的绝对值是125,23,3.5,0,23,32,0.05.所给的各数中,-125的绝对值最大,0的绝对值最小.P14,6、将下列各数按从小到大的顺序排列,并用“<”号连接:-0.25,+2.3,-0.15,0,231,,322---,0.05.解:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.根据以上两个原则可知:3210.250.1500.05 2.3232-<-<-<-<-<<<+.P14,7、下面是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.北京武汉广州哈尔滨南京-4.6℃ 3.8℃ 13.1℃-19.4℃ 2.4℃解:根据有理数比较大小的原则可知从高到低的顺序为:13.1℃,3.8℃,2.4℃,-4.6℃,-19.4℃.P14,8、如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球最接近标准?解:与标准的克数误差最小的球最接近标准,因为|-0.6|<|+0.7|<|-2.5|<|-3.5|<|+5|,所以最右边的球最接近标准.P15,9、某年我国人均水资源比上年的增幅是-5.6%.后续三年各年比上年的增幅分别是-4.0%,13.0%,-9.6%.这些增幅中哪个最小?增幅是负数说明什么?解:因为-9.6%<-5.6%<-4.0%<13.0%,所以在这些增幅中,-9.6%最小.-40 4+2-2-1.5 1.513-1394-94增幅为负数说明人均水资源是减少的.P15,10、在数轴上,表示哪个数的点与表示-2和4的点的距离相等?解:-2和4之间的距离为6,那么所求的点与-2和4之间的距离都是3,那么这个点表示的数是1.P15,12、如果|x|=2,那么x一定是2吗?如果|x|=0,那么x等于几?如果x=-x,那么x等于几?解:如果|x|=2,那么x不一定是2,还可以是-2;如果|x|=0,那么x=0;如果x=-x,那么x=0.人教版七年级数学课后习题与答案习题1.3P25,3、计算:(1)(-8)-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;(5)0-6;(6)0-(-6);(7)16-47;(8)28-(-74);(9)(-3.8)-(+7);(10)(-5.9)-(-6.1).解:(1)(-8)-8=-16;(2)(-8)-(-8)=0;(3)8-(-8)=16;(4)8-8=0;(5)0-6=-6;(6)0-(-6)=6;(7)16-47=-31;(8)28-(-74)=102;(9)(-3.8)-(+7)=-10.8;(10)(-5.9)-(-6.1)=0.2.(5)71113 (4)(5)(4)(3)682484 ---+--+=-;(6)2151()|05||4|(9)0 3663-+-+-+-=.P25,6、如图,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差多少?解:8844.43-(-415)=9259.43(m)答:两处高度相差9259.43 m.P26,7、一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少摄氏度?解:(-7)+11-9=-5(℃).答:半夜的气温是-5℃.P26,8、食品店一周中各天的盈亏情况如下(盈余为正):132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周总的盈亏情况如何?解:132+(-12.5)+(-10.5)+127+(-87)+136.5+98=383.5(元).答:一周总盈利为383.5元.P26,9、有8筐白菜,以每筐25 kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?解:1.5+(-3)+2+(-0.5)+1+(-2)+(-2)+(-2.5)=-5.5,25×8-5.5=194.5(千克).答:这8筐白菜一共194.5千克.P26,10、某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大?哪天的温差最小?星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃-1℃-4℃-5℃-5℃解:10-2=8;12-1=11;11-0=11;9-(-1)=10;7-(-4)=11;5-(-5)=10;7-(-5)=12.故星期日的温差最大,星期一的温差最小.P26,11、填空:(1)________+11=27;(2)7+________=4;(3)(-9)+________=9;(4)12+________=0;(5)(-8)+________=-15;(6)________+(-13)=-6.解:(1)27-11=16;(2)4-7=4+(-7)=-3;(3)9-(-9)=9+9=18;(4)0-12=-12;(5)(-15)-(-8)=-7;(6)(-6)-(-13)=7.P26,12、计算下列各式的值:(-2)+(-2),(-2)+(-2)+(-2),(-2)+(-2)+(-2)+(-2),(-2)+(-2)+(-2)+(-2)+(-2).猜想下列各式的值:(-2)×2,(-2)×3,(-2)×4,(-2)×5.你能进一步猜出负数乘正数的法则吗?解:(-2)+(-2)=-4;(-2)+(-2)+(-2)=-6;(-2)+(-2)+(-2)+(-2)=-8;(-2)+(-2)+(-2)+(-2)+(-2)=-10.猜想:(-2)×2=(-2)+(-2)=-4;(-2)×3=(-2)+(-2)+(-2)=-6;(-2)×4=(-2)+(-2)+(-2)+(-2)=-8;(-2)×5=(-2)+(-2)+(-2)+(-2)+(-2)=-10.进一步猜想:负数乘正数得负数,积的绝对值等于两个乘数的绝对值的积.P26,13、一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.解:第一天,0.3-(-0.2)=0.5(元);第二天,0.2-(-0.1)=0.3(元);第三天,0-(-0.13)=0.13(元).这些差的平均值为(0.5+0.3+0.13)÷3=0.31(元).答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元,这些差的平均值为0.31元.人教版七年级数学课后习题与答案习题1.4P37,1、计算:(1)(-8)×(-7);(2)12×(-5);(3)2.9×(-0.4);(4)-30.5×0.2;(5)100×(-0.001);(6)-4.8×(-1.25).解:(1)(-8)×(-7)=56;(2)12×(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5×0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.解:(1)-15的倒数为-;(2P39,9、用计算器计算(结果保留两位小数):(1)(-36)×128÷(-74);(2)-6.23÷(-0.25)×940;(3)-4.325×(-0.012)-2.31÷(-5.315);(4)180.65-(-32)×47.8÷(-15.5).解:(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.8;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.P39,10、用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是________元;(2)小商店每天亏损20元,一周的利润是________元;(3)小商店一周的利润是1400元,平均每天的利润是________元;(4)小商店一周共亏损840元,平均每天的利润是________元.解:(1)250×30=7500(元);(2)(-20)×7=-140(元);(3)1400÷7=200(元);(4)(-840)÷7=-120(元).P39,11、一架直升机从高度为450 m的位置开始,先以20 m/s的速度上升60 s,后以12 m/s的速度下降120 s,这时直升机所在高度是多少?解:450+20×60-12×120=210(m).答:这时直升机所在高度是210m.P39,14、利用分配律可以得到-2×6+3×6=(-2+3)×6.如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?解:-2a+3a=(-2+3)a=a.人教版七年级数学课后习题与答案习题1.5P47,2、用计算器计算:(1)(-12)8;(2)1034;(3)7.123;(4)(-45.7)3.解:(1)(-12)8=429981696;(2)1034=112550881;(3)7.123=360.944128;(4)(-45.7)3=95443.993.(4)322(10)[(4)(13)2](1000)32968-+---⨯=-+=-;P47,4、用科学记数法表示下列各数: (1)235 000 000; (2)188 520 000; (3)701 000 000 000; (4)-38 000 000. 解:(1)235000000=2.35×108; (2)188520000=1.8852×108; (3)701000000000=7.01×1011; (4)-38000000=-3.8×107.P47,5、下列用科学记数法表示的数,原来各是什么数? 3×107,1.3×103,8.05×106,2.004×105,-1.96×104. 解:3×107=30000000;1.3×103=1300;8.05×106=8050000; 2.004×105=200400;-1.96×104=-19600.P47,6、用四舍五入法对下列各数取近似数: (1)0.003 56(精确到0.000 1); (2)566.123 5(精确到个位); (3)3.896 3(精确到0.01); (4)0.057 1(精确到千分位). 解:(1)0.00356≈0.0036; (2)566.1235≈566; (3)3.8963≈3.90; (4)0.0571≈0.057.P47,7、平方等于9的数是几?立方等于27的数是几? 解:平方等于9的数是3或-3;立方等于27的数是3.P47,8、一个长方体的长、宽都是a ,高是b ,它的体积和表面积怎样计算?当a =2 cm ,b =5 cm 时,它的体积和表面积是多少?解:体积V=a ×a×b=a 2b ,表面积S=2×a×a +2×a×b +2×a×b=2a 2+4ab ; 当a=2 cm ,b=5 cm 时,V=22×5=20 cm 3,S=2×22+4×2×5=48 cm 2.P48,9、地球绕太阳公转的速度约是1.1×105 km /h ,声音在空气中的传播速度约是340 m /s ,试比较两个速度的大小.解:因为5351.110101.110//30556/6060km h m s m s ⨯⨯⨯=≈⨯, 所以地球绕太阳公转的速度大于声音在空气中的传播速度.P48,10、一天有8.64×104 s ,一年按365天计算,一年有多少秒(用科学记数法表示)? 解:8.64×104×365=3.1536×107(s ). 答:一年有3.1536×107 s .P48,11、(1)计算0.12,12,102,1002.观察这些结果,底数的小数点向左(右)移动一位时,平方数小数点有什么移动规律?(2)计算0.13,13,103,1003.观察这些结果,底数的小数点向左(右)移动一位时,立方数小数点有什么移动规律?(3)计算0.14,14,104,1004.观察这些结果,底数的小数点向左(右)移动一位时,四次方数小数点有什么移动规律? 解:(1)0.12=0.01,12=1,102=100,1002=10000.可以发现,底数的小数点向左(右)移动一位时,平方数小数点向左(右)移动两位.(2)0.13=0.001,13=1,103=1000,1003=1000000.可以发现,底数的小数点向左(右)移动一位时,立方数小数点向左(右)移动三位.(3)0.14=0.0001,14=1,104=10000,1004=100000000.可以发现,底数的小数点向左(右)移动一位时,四次方数小数点向左(右)移动四位.P48,12、计算(-2)2,22,(-2)3,23.联系这类具体的数的乘方,你认为当a <0时下列各式是否成立? (1)a 2>0;(2)a 2=(-a )2;(3)a 2=-a 2;(4)a 3=-a 3. 解:(-2)2=4,22=4,(-2)3=-8,23=8. (1)成立;(2)成立;(3)不成立;(4)不成立.人教版七年级数学课后习题与答案复习题1解:由数轴图可知,-P51,2、已知x 是整数,并且-3<x <4,在数轴上表示x 可能取的所有数值. 解:3-如图,x可能取-2,-1,0,1,2,3.P51,3解:|a|=2,a的相反数为2,a的倒数为2-;|b|=23,b的相反数为23,b的倒数为32-;|c|=5.5,c的相反数为-5.5,c的倒数为2 11.P51,4、互为相反数的两数的和是多少?互为倒数的两数的积是多少?解:互为相反数的两数的和是0,互为倒数的两数的积是1.P51,5、计算:(10)139 ( 6.5)(2)()(5)35-⨯-÷-÷-=;(11)16()2( 1.5) 5.35+----=;(12)-66×4-(-2.5)÷(-0.1)=-289;(13)(-2)2×5-(-2)3÷4=22;(14)-(3-5)+32×(1-3)=-16.P51,6、用四舍五入法,按括号内的要求,对下列各数取近似值:(1)245.635(精确到0.1);(2)175.65(精确到个位);(3)12.004(精确到百分位);(4)6.537 8(精确到0.01).解:(1)245.635≈245.6;(2)175.65≈176;(3)12.004≈12.00;(4)6.5378≈6.54.P51,7、把下列各数用科学记数法表示:(1)100 000 000;(2)-4 500 000;(3)692 400 000 000.解:(1)100000000=108;(2)-4500000=-4.5×106;(3)692400000000=6.924×1011.P51,8、计算:(1)-2-|-3|;(2)|-2-(-3)|.解:(1)-2-|-3|=-2-3=-5;(2)|-2-(-3)|=1.P52,9、下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81.先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.解:观察这组数据,发现在80附近的居多,所以估计平均成绩约为80.将成绩超过80的部分记作正数,不足的部分记作负数,那么10个成绩对应的数分别是2,3,-2,-14,15,-5,-24,13,2,1.2+3+(-2)+(-14)+15+(-5)+(-24)+13+2+1=-9.所以平均成绩是(10×80-9)÷10=79.1.P52,10、a,b是有理数,它们在数轴上的对应点的位置如图所示.把a,-a,b,-b按照从小到大的顺序排列,正确的是().A.-b<-a<a<b B.-a<-b<a<bC.-b<a<-a<b D.-b<b<-a<a解:在数轴上标出-b和-a的位置,可知-b<a<-a<b,故选C.解:458-(-27.8)-(-70.3)-200-138.1-(-8)-188=38.答:星期六盈利了38元.P52,12、当温度每上升1℃时,某种金属丝伸长0.002 mm.反之,当温度每下降1℃时,金属丝缩短0.002 mm.把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?解:金属丝先伸长后缩短.因为0.002×(60-15)+(-0.002)×(60-5)=-0.02,所以最后的长度比原长度伸长-0.02mm.P52,13、一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.试用科学记数法表示1个天文单位是多少千米.解:1个天文单位=1.4960亿km=1.4960×108km.P52,14、结合具体的数的运算,归纳有关特例,然后比较下列数的大小:(1)小于1的正数a,a的平方,a的立方;(2)大于-1的负数b,b的平方,b的立方.解:(1)举特例12a=,则2311,48a a==,可得出a3<a2<a;(2)举特例12b=-,则2311,48b b==-,可得出b<b3<b2.P52,15、结合具体的数,通过特例进行归纳,然后判断下列说法的对错.认为对,说明理由;认为错,举出反例.(1)任何数都不等于它的相反数;(2)互为相反数的两个数的同一偶数次方相等;(3)如果a大于b,那么a的倒数小于b的倒数.解:(1)错,比如0的相反数是0;(2)对,互为相反数的两个数字的同一偶数次方符号相同,绝对值相等;(3)错,比如2>-3,但2的倒数12大于-3的倒数13-.P52,16、用计算器计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1 111×1 111=________.(1)你发现了什么?(2)不用计算器,你能直接写出111 111 111×111 111 111的结果吗?解:(1)1×1=1;11×11=121;111×111=12321;1111×1111=1234321;可以发现,1111111112(1)(1)21n n n n n ⨯=--个个.(2)111111111×111111111=12345678987654321.答案仅供参考,学习还需同学努力!人教版七年级数学课后习题与答案七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】

人教版七年级数学上册精品练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点此日的温差是6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请给予它实际的意义:___________________。

9、绝对值大于1而小于4的整数有____________,其和为_________。

10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。

11、若0|2|)1(2=++-b a ,则b a +=_________。

12、数轴上表示数5-和表示14-的两点之间的距离是__________。

13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、若是0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值必然是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为()(A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几回数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次考试的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再宣称以8折(80%)大拍卖,那么该商品三月份的价钱比进货价………………………………………()A 、高%B 、低%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

人教版初一数学练习题

人教版初一数学练习题

⼈教版初⼀数学练习题⼈教版初⼀数学七年级数学上练习题四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

(7分) 26、若x>0,y<0,求32---+-x y y x 的值。

(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm cb mn --++-2的值(7分) 28、现规定⼀种运算“*”,对于a 、b 两数有:ab a b a b 2*-=, 试计算2*)3(-的值。

(7分)整式⼀.判断题(1)31+x 是关于x 的⼀次两项式. ( )(2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) ⼆、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有()A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是()A .⼆次⼆项式B .三次⼆项式C .四次⼆项式D 五次⼆项式 3.下列说法正确的是() A .3 x 2―2x+5的项是3x 2,2x ,5B .3x-3y 与2 x 2―2xy -5都是多项式C .多项式-2x 2+4xy 的次数是3D .⼀个多项式的次数是6,则这个多项式中只有⼀项的次数是6 4.下列说法正确的是() A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是⼀次⼆项式 5.下列代数式中,不是整式的是()A 、23x -B 、745b a -C 、xa 523+ D 、-20056.下列多项式中,是⼆次多项式的是()A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平⽅的差,⽤代数式表⽰正确的是() A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬⼀楼梯,从楼下爬到楼顶后⽴刻返回楼下。

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】

人教版七年级数学上册精品练习题(附答案)有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。

9、绝对值大于1而小于4的整数有____________,其和为_________。

10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。

11、若0|2|)1(2=++-b a ,则b a +=_________。

12、数轴上表示数5-和表示14-的两点之间的距离是__________。

13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

人教版七年级上册数学课时同步练习题及答案57页

人教版七年级上册数学课时同步练习题及答案57页

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

最新人教版七年级数学上册全套同步练习题(课课练)及答案

最新人教版七年级数学上册全套同步练习题(课课练)及答案

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

人教版七年级上册数学课后习题答案全集

人教版七年级上册数学课后习题答案全集

习题1.1第2题答案(1)0.08 m表示水面高于标准水位0.08 m;-0.2 m表示水面低于标准水位0.2 m(2)水面低于标准水位0.1 m,记作-0.1 m;高于标准水位0.23 m,记作+0.23 m(或0.23 m)习题1.1第3题答案不对O既不是正数,也不是负数习题1.1第4题答案表示向前移动5m,这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置习题1.1第5题答案这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m)以平均值为标准,七次测量的数据用正数、负数表示分别为:-0.6 m,+0.6 m,+0.8 m,-0.9 m,Om,-0.4m十0.5m习题1.1第6题答案氢原子中的原子核所带电荷可以用+1表示,氢原子中的电子所带电荷以用-1表示习题1.1第7题答案由题意得7-4-4= -1(℃)习题1.1第8题答案中国、意大利服务出口额增长了;美国、德国、英国、日本服务出日额减少了;意大利增长率最高;日本增长率最低习题1.2第1题答案正数:{15,0. 15,22/5,+20,…)负数:{-3/8,-30,-12.8,-60,…}习题1.2第2题答案如下图所示:习题1.2第3题答案当沿数轴正方向移动4个单位长时,点B表示的数是1当沿数轴反方向移动4个单位长时,点B表示的数是-7习题1.2第4题答案各数的相反数分别为4,-2,1.5,0,-1/3,9/4在数轴上表示如下图所示:习题1.2第5题答案丨-125丨=125,丨+23丨=23,丨-3.5丨=3.5,丨0丨=0,丨2/3丨=2/3,丨-3/2丨=3/2,丨-0.05丨=0.05-125的绝对值最大,0的绝对值最小习题1.2第6题答案-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3习题1.2第7题答案各城市某年一月份的平均气温(℃)按从高到低的顺序排列为:13.1;3.8;2.4;-4.6;-19.4习题1.2第8题答案因为丨+5丨=5,丨-3.5丨=3.5,丨+0.7丨=0.7,丨-2.5丨=2.5,丨-0.6丨=0.6所以从左向右数,第五个排球的质量最接近标准习题1.2第9题答案-9.6%最小;增幅是负数说明人均水资源占有量在下降习题1.2第10题答案表示数1的点与表示-2和4的点的距离相等,都是3 习题1.2第11题答案(1)有;如-0.1,-0.12,-0.57,…有;如-0. 15,-0. 42,-0. 48,…(2)有,-2;-1,0,1(3)没有(4)如:-101,-102,-102.5习题1.2第12题答案不一定,x还可能是-2;x=0;x=0习题1.3第1题答案(1)-4(2)8(3)-12(4)-3(5)-3.6(6)-1/5(7)1/15(8)-41/3习题1.3第2题答案(1)3(2)0(3)1.9(4)-1/5(1)-16(2)0(3)16(4)0(5)-6(6)6(7)-31(8)102(9)-10.8(10)0.2习题1.3第4题答案(1)1(2)1/5(3)1/6(4)-5/6(5)-1/2(6)3/4(7)-8/3(8)-8习题1.3第5题答案(1)3.1(2)3/4(3)8(4)0.1(5)-63/4(6)0两处高度相差:8 844.43 -(- 415)=9 259.43(m)习题1.3第7题答案半夜的气温为:-7+11- 9=-5(℃)习题1.3第8题答案解:132-12.5-10.5+127-87+136.5+98=383.5(元)答:一周总的盈亏情况是盈利383.5元习题1.3第9题答案解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194. 5(kg) 答:这8筐白菜一共194.5 kg习题1.3第10题答案解:各天的温差如下:星期一:10-2=8(℃)星期二:12-1=11(℃)星期三:11-0 =11(℃)星期四:9-(-1)=10(℃)星期五:7-(-4)=11(℃)星期六:5-(-5)=10(℃)星期日:7-(-5)=12(℃)答:星期日的温差最大,星期一的温差最小习题1.3第11题答案(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)7习题1.3第12题答案解:(-2)+(-2)=-4(-2)+(-2)+(-2)=-6(-2)+(-2)+(-2)+(-2)=-8(-2)+(-2)+(-2)+(-2)+(-2)=-10(-2)×2=4,(-2)×3=-6(-2)×4=8,(-2)×5=-10法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积习题1.3第13题答案解:第一天:0. 3-(-0.2)=0.5(元)第二天:0.2-(-0.1)=0.3(元)第三天:0-(-0.13)=0.13(元)平均值:(0.5+0.3+0.13)÷3=0.31(元)题1.4第1题答案(1)(-8)×(-7)=56(2)12×(-5)=-60(3)2.9×(-0.4)=-1.16(4)-30.5×0.2=-6.1(5)100×(-0.001)=-0.1(6)-4.8×(-1.25)=6习题1.4第2题答案(1)1/4×(-8/9)=-2/9(2)(-5/6)×(-3/10)=1/4(3)-34/15×25=-170/3(4)(-0.3)×(-10/7)=3/7习题1.4第3题答案(1)-1/15(2)-9/5(3)-4(4)100/17(5)4/17(6)-5/27习题1.4第4题答案(1)-91÷13=-7(2)-56÷(-14) =4(3)16÷(-3)=-16/3(4)(-48)÷(-16)=3(5)4/5÷(-1)=-4/5(6)-0.25÷3/8=-2/3习题1.4第5题答案-5,-1/5,-4,6,5,1/5,-6,4习题1.4第6题答案(1)(-21)/7=-3(2)3/(-36)=-1/12(3)(-54)/(-8)=27/4(4)(-6)/(-0.3)=20习题1.4第7题答案(1)-2×3×(-4)=2×3×4=24(2)-6×(-5)×(-7)=-6×5×7=-210(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5(4)0.1÷(-0.001)÷(-1)=1/10×1 000×1=100(5)(-3/4)×(-1 1/2)÷(-2 1/4)=-3/4×3/2×4/9=-1/2(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28(7)(7)×(-56)×0÷(-13)=0(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11习题1.4第8题答案(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3(4)-丨-2/3丨-丨-1/2×2/3 丨-丨1/3-1/4丨-丨-3丨=-2/3-1/3-1/12-3=-49/12习题1.4第9题答案(1)(-36)×128÷(-74)≈62.27(2) -6.23÷(-0.25)×940=23 424.80(3) -4.325×(-0.012) -2.31÷(-5.315)≈0.49(4)180.65-(-32)×47.8÷(-15.5)≈81.97(1)7 500(2)-140(3)200(4)-120习题1.4第11题答案解:450+20×60-12×120=210(m)答:这时直升机所在高度是210m习题1.4第12题答案(1)<,<(2)<,<(3)>,>(4)=,=习题1.4第13题答案2,1,-2,-1一个非0有理数不一定小于它的2倍,因为一个负数比它的2倍大习题1.4第14题答案(-2+3)a习题1.4第15题答案-2,-2,2(1)(2)均成立,从它们可以总结出:分子、分母以及分数这三者的符号,改变其中两个,分教的值不变复习题1第1题答案如下图所示:-3.5<-2<-1.6<-1/3<0<0.5<2<3.5将整数x的值在数轴上表示如下图所示:复习题1第3题答案a=-2的绝对值、相反数和倒数分别为:2,2,-1/2b=-2/3的绝对值、相反数和倒数分别为:2/3,2/3,-3/2c=5.5的绝对值、相反数和倒数分别为:5.5、-5.5,2/11复习题1第4题答案互为相反数的两数的和是0;互为倒数的两数的积是1复习题1第5题答案(1)100(2)-38(3)-70(4)-11(5)96(6)-9(7)-1/2(8)75/2(9)(-0.02)×(-20)×(-5)×4.5=-0. 02×4.5×20×5=-0.09×100=-9(10)(-6.5)×(-2)÷(-1/3)÷(-5)=6.5×2×3×1/5=7.8(11)6+(-1/5)-2-(-1.5)=6-0.2-2+1.5=5.3(12)-66×4-(-2.5)÷(-0.1)=-264-25=-289(13)(-2)2×5-(-2)3÷4=4×5-(-8)÷4=20-(-2)=22(14) -(3-5) +32×(1-3)=-(-2)+9×(-2)=2+(-18)=-16复习题1第6题答案(1)245.635≈245.6(2)175.65≈176(3)12.004≈12.00(4)6.5378≈6.54复习题1第7题答案(1)100000000=1×108(2)-4500000=-4.5×106(3)692400000000=6.924×1011复习题1第8题答案(1)-2-丨-3 丨=-2-3=-5(2)丨-2-(-3)丨=丨-2+3丨=1复习题1第9题答案(82+83+78+66+95+75+56+93+82+81)÷10=791÷10=79.1复习题1第10题答案C复习题1第11题答案解:星期六的收入情况表示为:458-[-27.8+(-70.3)+200+138.1+(-8)+188]=458-420=38因为38>0所以星期六是盈余的,盈佘了38元复习题1第12题答案解:(60-15)×0.002 =0. 09 (mm)(5-60)×0.002=-0.11(mm)0.09-0.11=-0.02(mm)答:金属丝的长度先伸长了0.09 mm,又缩短了0.11mm,最后的长度比原长度伸长了-0.02mm解:1.4960亿km=1.4960×108km答:1个天文单位是1.4960×108km复习题1第14题答案(1)当a=1/2时,a的平方为1/4,a的立方为1/8,所以a大于a的平方大于a的立方,即a>a2>a3(0<a<1)< p>(2)当b=-1/2时,b的平方为1/4,b的立方为-1/8,所以b的平方大于b的立方大于b,即b2>b3>b(-1<b<o)< p>复习题1第15题答案特例归纳略(1)错,如:0的相反数是0(2)对,因为任何互为相反数的两个数的同—偶数次方符号相同,绝对值相等(3)错,对于一个正数和一个负数来说,正数大于负数,正数的倒数仍大于这个负数的倒数,如2和-3,2>-3,1/2>-1/3复习题1第16题答案1;121;12 321;1 234 321(1)它们有一个共同特点:积的结果各数位上的数字从左到右由1开始依次增大1,当增大到乘式中一个乘数中1的个数后,再依次减小1,直到1(2)12 345 678 987 654 321(1)(t+5)℃(2)3(x-y)km或(3x-3y)km(3)(100-5x)(4)(πR2a-πr2a)cm3习题2.1第3题答案习题2.1第4题答案(1)年数每增加一年,树高增加5cm(2)(100+5n)cm习题2.1第5题答案第2排有(a+1)个座位第3排有(a+2)个座位第n排的座位数为(a+n-1)20+19-1=38(个)习题2.1第6题答案解:V=(1/2a2-πr2)h(cm3)当a=6cm,r=0.5cm,h=0.2cm时V≈(1/2×62-3×0.52)×0.2=3.45(cm3)习题2.1第7题答案(1)2n(2)2n+1或(2n-1)3个球队比赛,总的比赛场数是[3(3-1)]/2=34个球队比赛,总的比赛场数是[4(4-1)]/2=65个球队比赛,总的比赛场数是[5(5-1)]/2=10n个球队比赛,总的比赛场数是[n(n-1)]/2习题2.1第9题答案密码L dp d jlou,破译它的“钥匙”x-3密码的意思是“I am a girl”(注:此题答案不唯一,合理即可)习题2.2第1题答案(1)2x-10.3x=(2-10.3)x=-8.3x(2)3x-x-5x=(3-1-5)x=-3x(3)-b+0.6b-2.6b=(-1+0.6-2.6)b=-3b(4)m-n2+m-n2=(1+1)m+(-1-1)n2=2m-2n2习题2.2第2题答案(1)2(4x-0.5)=8x-1(2)-3(1-1/6x)=-3+1/2x(3)-x+(2x-2)-(3x+5)=-x+2x-2-3x-5=-2x-7(4)3a2+a2-(2a2-2a)+(3a-a2)=3a2+a2-2a2+2a+3a-a2=a2+5a习题2.2第3题答案(1)原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)原式=8xy-x2+y2-x2+ y2-8xy=-2x2+2 y2(3)原式=2x2-1/2+3x-4x+4x2-2=6x2-x-5/2(4)原式=3x2-(7x-4x+3-2x2)=3x2-7x+4x-3+2x2=5x2-3x-3习题2.2第4题答案(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13(1)比a的5倍大4的数为5a+4,比a的2倍小3的数是2a-3(5a+4)+(2a-3)=5a+4+2a-3=7a+1(2)比x的7倍大3的数为7x+3,比x的6倍小5的数是6x-5(7x+3)-(6x-5)=7x+3-6x+5=x+8习题2.2第6题答案解:水稻种植面积为3ah m2,玉米种植面积为(a-5)h m23a-(a-5)=3a-a+5=(2a+5)(h m2)习题2.2第7题答案(1)πa2/2+4a2=(π+8)/2a2 (cm2)(2)πa+2a×3=πa+6a=(π+6)a(cm)习题2.2第8题答案3(a+y)+1.5(a-y)=3a+3y+1.5a-1.5y=4.5a+1.5y习题2.2第9题答案17a,20a,…,(3n+2)a习题2.2第10题答案S=3+3(n-2)=3n-3当n=5时,S=3×5-3=12当n=7时,S=3×7-3=18当n=11时,S=3×11-3=30习题2.2第11题答案(1)10b+a(2)10(10b+a)(3)10b+a+10(10b+a)=11(10b+a)这个和是11的倍数,因为它含有11这个因数习题2.2第12题答案36a2;cm2复习题2第1题答案(1)(t+15)°C(2)nc元,(100- nc)元(3)0.8b元,(0. 8b-10)元(4)a/30m,1 500 m,(a/30-1 500)m复习题2第2题答案复习题2第3题答案(1)-2x2y(2)10. 5y2(3)0(4)-1/12mn+7(5)8ab2+4(6)3x3-2x2复习题2第4题答案(1)原式=4a3 b-10b3-3a2 b2 +10b3=4a3 b- 3a22b2(2)原式=4x2 y-5xy2-3x2y+4xy2=x2y-xy2(3)原式=5a2-(a2+5a2-2a-2a2+6a)=5a2-a2-5a2+2a+2a2-6a=a2-4a(4)原式=15+3-3a-1+a+a2+1-a+a2-a3=18-3a+2a2-a3(5)原式=4a2b-3ab-5a2b+2ab=a2b-ab(6)原式=6m2-4m-3+2m2-4m+1=8m2-8m-2(7)原式=5a2+2a-1-12+32a-8a2=-3a2+34a-13(8)原式=3x2-(5x-1/2x+3+2x2)=3x2-5x+1/2x-3-2x2=x2-9/2x-3 复习题2第5题答案解:原式=(5-3-2)x2+(-5+6)x-1=x-1当x=-3时原式=-3-1=-4复习题2第6题答案(1)5/2(2)(x+y)/10复习题2第7题答案(h+20)m(h-30)m(h+20)-(h-30)=h+20-h+30=50(m)复习题2第8题答案S长方形=2x×4=8x(cm2)S梯形=1/2(x+3x)×5=10x(cm2)S梯形>S长方形S梯形-S长方形=10x-8x-2x(cm2)复习题2第9题答案解:2πr×2-(2πr+2π×r/2+2π×r/6+2π×r/3)=0因此所需材料一样多复习题2第10题答案解:a×(1+22%)=1.22a(元)1.22a×85%=1.037a(元)1.037a-a=0.037a(元)答:按成本增加22%定出价格,每件售价1. 22a元;按原价的85%出售,现售价1.037a元;每件还能盈利0.037a元复习题2第11题答案解:10a+b;10b+a;(10b+a)+(10a+b) =11(a+b)答:这个数能被11整除复习题2第12题答案(1)原式=(4+2-1)(0+6)=5(a+b)= 5a+5b(2)原式=(3+8)(z+y)2+(-7+6)·(x+y)=11(x+y)2-(x+y)习题3.1第1题答案(1)a+5=8(2)1/3b=9(3)2x+10=18(4)1/3x-y=6(5)3a+5=4a(6)1/2b-7=a+b习题3.1第2题答案(1)a+b=b+a(2)a·b=b·a(3)a·(b+c)=a.b+a·c(4)(a+b)+c=a+(b+c)习题3.1第3题答案x=3是方程(3)3x-2=4+x的解x=0是方程(1)5x+7=7-2x的解x=-2是方程(2)6x-8=8x-4的解习题3.1第4题答案(1)x=33(2)x=8(3)x=1(4)x=1习题3.1第5题答案解:设七年级1班有男生x人,有女生(4/5x+3)人,则x+(4/5x+3)=48 习题3.1第6题答案解:设获得一等奖的学生有x人,则200x+50(22-x) =1400习题3.1第7题答案解:设去年同期这项收入为x元,则x·(1+8.3%)=5 109习题3.1第8题答案解:设x个月后这辆汽车将行驶20 800 km,则12 000+800x=20 800习题3.1第9题答案解:设内沿小圆的半径为x cm,则102π-πx2=200习题3.1第10题答案解:设每班有x人,则10x=428+22习题3.1第11题答案10x+1-(10+x)=18,x=3习题3.2第1题答案(1)x=2(2)x=3(3)y=-1(4)b=18/5习题3.2第2题答案例如:解方程5x+3=2x,把2x改变符号后移到方程左边,同时把3改变符号后移到方程右边,即5x-2x=-3,移项的根据是等式的性质1习题3.2第3题答案(1)合并同类项,得4x=-16.系数化为1,得x=-4(2)合并同类项,得6y=5.系数化为1,得y=5/6(3)移项,得3x-4x=1-5.合并同类项,得-x=-4.系数化为1,得x=4(4)移项,得-3y-5y=5-9.合并同类项,得-8y=-4.系数化为1,得y=1/2习题3.2第4题答案(1)根据题意,可列方程5x+2=3x-4.移项,得5x-3x=-4-2.合并同类项,得2x=-6.系数化为1,得x=-3(2)根据题意,可列方程-5y=y+5.移项,得-5y-y=5.合并同类项,得-6y=5.系数化为1,得y=-5/6习题3.2第5题答案解:设现在小新的年龄为x.根据题意,得:3x=28+x移项,得2x=28系数化为1,得x=14答:现在小新的年龄是14习题3.2第6题答案解:设计划生产I型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,计划生产Ⅲ型洗衣机14x台.根据题意得:x+2x+14x=25 500合并同类项,得17x=25 500系数化为1,得x=1 500因此2x=3 000,14x=21 000答:这三种型号洗衣机计划分别生产1 500台、3 000台、21 000台习题3.2第7题答案解:设宽为xm,则长为1.5xm根据题意,得2x+2×1.5x=60合并同类项,得5x=60系数化为1,得x=12所以1.5x=18答:长是18m,宽是12m习题3.2第8题答案(1)设第一块实验田用水xt,则第二块实验田用水25%xt,第三块实验田用水15%xt(2)根据(1),并由题意得:x+25 %x+15 %x=420合并同类项,得1.4x= 420系数化为1,得x=300.所以25%x=75,15%x=45答:第一块实验田用水300t,第二块实验田用水75t,第三块实验田用水45t习题3.2第9题答案解:设它前年10月生产再生纸xt,则去年10月生产再生纸(2x+150)t.根据题意得:2x+150=2 050移项,合并同类项,得2x=1 900系数化为1,得x=950答:它前年10月生产再生纸950 t习题3.2第10题答案在距一端35cm处锯开习题3.2第11题答案解:设参与种树的人数是x.根据题意得:10x+6=12x-6移项,得10x-12x=-6-6合并同类项,得-2x=-12系数化为1,得x=6答:参与种树的人数是6习题3.2第12题答案解:设相邻三行里同一列的三个日期数分别为x-7,x,x+7根据题意,假设三个日期数之和能为30,则(x-7)+x+(x+7)=30去括号,合并同类项,得3x=30系数化为1,得x=10x=10符合题意,假设成立x-7=10-7=3,x+7=10+7=17所以相邻三行里同一列的三个日期数之和能为30.这三个数分别是3,10,17习题3.2第13题答案方法1:设这个两位数的个位上的数为x,则十位上的数为(3x+1),这个两位数为:10( 3x+1)+x根据题意,得x+(3x+1)=9解这个方程,得x=23x+1=3×2+1=7这个两位数为10 (3x+1)+x=10×7+2=72答:这个两位数是72方法2:设这个两位数的个位上的数为x,则十位上的数为(9-x),这个两位数为10(9 -x)+x 根据题意,得3x+1=9-x解这个方程,得x=2这个两位数为10(9 - x) +x=10×(9 -2)+2=72答:这个两位数是72习题3.3第1题答案(1)a=-2(2)b-1(3)x=2(4)y=-12习题3.3第2题答案(1)去括号,得2x+16=3x-3.移项、合并同类项,得-x=-19.系数化为1,得x=19(2)去括号,得8x=-2x-8.移项、合并同类项,得10x=-8.系数化为1,得x=-4/5(3)去括号,得2x-2/3x-2=-x+3.移项、合并同类项,得7/3x=5.系数化为1,得x=15/7(4)去括号,得20-y=-1. 5y-2.移项、合并同类项,得0. 5y=-22.系数化为1,得y=-44习题3.3第3题答案(1)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x= -17.系数化为1,得x=-17/5.(2)去分母,得-3(x-3) =3x+4.去括号,得-3x+9=3x+4.移项、合并同类项,得6x=5.系数化为1,得x=5/6.(3)去分母,得3(3y-1)-12=2(5y-7).去括号,得9y-3-12=10y-14.移项、合并同类项,得y=-1.(4)去分母,得4(5y+4)+3(y-1)=24-(5y- 5).去括号,得20y+16+3y-3=24-5y+5.移项、合并同类项,得28 y=16.系数化为1,得y=4/7习题3.3第4题答案(1)根据题意得:1.2 (x+4)=3.6(x-14)去括号得:1.2x+4.8=3.6x-50.4移项,得1. 2x-3.6x=-50.4-4.8合并同类项,得-2.4x= -55.2系数化为1,得x=23(2)根据题意得:1/2(3y+1.5)=1/4(y-1)去分母(方程两边乘4)得:2(3y+1.5)=y-1去括号,得6 y+3=y-1移项,得6y- y= -1-3合并同类项,得5y=-4系数化为1,得y=-4/5习题3.3第5题答案解:设张华登山用了x min,则李明登山所用时间为(x-30)min根据题意得:10x=15(x-30)解得x=90山高10x=10×90=900(m)答:这座山高为900m习题3.3第6题答案解:设乙车的速度为xkm/h,甲车的速度为(x+20) km/h根据题意得:1/2x+1/2(x+20)=84解得x=74x+20=74+20=94答:甲车的速度是94 km/h,乙车的速度是74 km/h习题3.3第7题答案(1)解:设无风时这架飞机在这一航线的平均航速为x km/h,则这架飞机顺风时的航速为(x+24)km/h,这架飞机逆风时的航速为(x-24)km/h根据题意,得2.8(x+24)=3(x-24)解这个方程,得x=696(2)两机场之间的航程为2.8(x+24) km或3(x-24)km所以3(x-24)=3×(696-24)=2 016(km)答:无风时这架飞机在这一航线的平均航速为696 km/h两机场之间的航程是2 016 km习题3.3第8题答案蓝布料买了75m,黑布料买了63m习题3.3第9题答案解:设每个房间需要粉刷的墙面面积为x m2,则(8x-50)/3=(10x+40)/5+10,解得x=52答:每个房间需要刷粉的墙面面积为52m2习题3.3第10题答案解:从10时到12时王力、陈平两人共行驶36+36=72(km),用时2h,所以从8时到10时王力、陈平用时2h也行驶72 km,设A,B两地间的路程为z km,则x-72=36,得x=108答:A,B两地间的路程为108 km解:设两地间的路程为x km,上午10时,两人走的路程为(x-36)km,速度和为(x-36)/2km/h,中午12时,两人走的路程为(x+36) km,速度和为(x+36)/4km/h,根据速度和相等列方程,得(x-36)/2=(x+36)/4,得x=108答:A,B两地之间的路程为108 km习题3.3第11题答案(1)设火车的长度为xm,从车头经过灯下到车尾经过灯下火车所走的路程为xm,这段时间内火车的平均速度为x/10m/s(2)设火车的长度为xm,从车头进入隧道到车尾离开隧道火车所走的路程为(300+x)m,这段时间内火车的平均速度为((300+x)/20)m/s(3)在这个问题中火车的平均速度没有发生变化(4)根据题意,可列x/10=(300+x)/20,解得x= 300,所以这列火车的长度为300m习题3.4第1题答案略习题3.4第2题答案解:设计划用x m3的木材制作桌面,(12-x)m3的木材制作桌腿,才能制作尽可能多的桌子根据题意得:4×20x=400(12-x)解得x=10,12–x=12-10=2答:计划用10m3的木材制作桌面,2m3的木材制作桌腿才能制作尽可能多的桌子习题3.4第3题答案解:设甲种零件应制作x天,乙种零件应削作(30-x)天根据题意得:500x=250(30-x)解得x=10,30-x=30-10=20答:甲种零件应制作10天,乙种零件应制作20天习题3.4第4题答案解:设共需要x h完成,则(1/7.5+1/5)+1/5(x-1)=1解得x=13/3,13/3h=4h 20min答:如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需4h 20min习题3.4第5题答案解:设先由x人做2h,则x/80×2+(x+5)/80×8=3/4解得x=2,x+5=7(人)答:先安排2人做2 h,再由7人做8h,就可以完成这项工作的3/4习题3.4第6题答案解:设这件衣服值x枚银币,则(x+10)/12=(x+2)/7,解得x=9.2答:这件衣服值9.2枚银币习题3.4第7题答案解法1:设每台B型机器一天生产x个产品,则每台A型机器一天生产(x+1)个产品根据题意,得(5(x+1)-4)/8=(7x-1)/11,解得x=19,因此(7×19-1)/11=12(个)答:每箱装12个产品解法2:设每箱装x个产品,根据“每台A型机器一天生产的产品=每台B型机器一天生产的产品+1”根据题意列方程,得(8x+4)/5=(11x+1)/7+1.解得x=12答:每箱装12个产品习题3.4第8题答案(1)由题意知时间增加5min,温度升高15℃,所以每增加1 min,温度升高3℃,则21 min时的温度为10+21X3=73(℃)(2)设时间为x min,列方程3x+10=34,解得x=8习题3.4第9题答案解:设制作大月饼用x kg面粉,制作小月饼用(4 500 - x) kg面粉,才能生产最多的盒装月饼根据题意得:(x/0.05)/2=((4 500-x)/0.02)/4化简,得8x=10(4 500-x)解得x=2 5004 500-x=4 500-2 500=2 000答:制作大月饼应用2 500 kg面粉,制作小月饼用2 000 kg面粉,才能生产最的盒装月饼习题3.4第10题答案解:设相遇时小强行进的路程为x km,小刚行进的路程为(x+24) km,小强行进的速度为x/2km/h,小刚行进的速度为(x+24)/2km/h根据题意得:(x+24)/2×0.5=x解得x=8所以x/2=8/2=4,(x+24)/2=(8+24)/2=16相遇后小强到达A地所用的时间为:(x+24)/4=(8+24)/4=8答:小强行进的速度为4 km/h.小刚行进的速度为16 km/h.相遇后经过8h小强到达A地习题3.4第11题答案解:设销售量要比按原价销售时增加x%.根据题意得:(1-20%)(1+x%)=1解得x=25答:销售量要比按原价销售时增加25%习题3.4第12题答案(1)设此月人均定额是x件,则(4x+20)/4=(6x-20)/5,解得x=45答:此月人均定额是45件(2)设此月人均定额为y件,则(4y+20)/4=(6y-20)/5+2,解得y=35答:此月人均定额是35件(3)设此月人均定额为z件,则(4z+20)/4=(6z-20)/5-2,解得z=55.答:此月人均定额是55件习题3.4第13题答案(1)设丢番图的寿命为x岁,则1/6 x+ 1/12 x+ 1/7 x+5+ 1/2 x+4=x,解得x=84所以丢番图的寿命为84岁(2)1/6x+1/12x+1/7x+5=38(岁),所以丢番图开始当爸爸时的年龄为38岁(3)x-4=80,所以儿子死时丢番图的年龄为80岁复习题3第1题答案(1)t-2/3t=10(2)(n-110)/n×100%=45%或(1-45%)n=110(3)1.1a-10=210(4)60/5-x/5=2复习题3第2题答案(1)移项,得-8x+11/2x=3-4/3.合并同类项,-5/2x= 5/3.系数化为1,得x=-2/3(2)移项,得0.5x+1.3x=6.5+0.7.合并同类项,得1.8x=7.2.系数化为1,得x=4(3)去括号,得1/2x-1=2/5x-3.移项,得1/2x-2/5x=-3+1.合并同类项,得1/10x=-2.系数化为1,得x=-20(4)去分母,得7(1-2x)=3(3x+1)-63.去括号,得7-14x=9x+3-63.移项、合并同类项,得-23x=-67.系数化为1,得x=67/23复习题3第3题答案(1)根据题意得:x-(x-1)/3=7+(x+3)/5去分母得:15x-5(x-1)=105-3(x+3)去括号得:15x- 5x+5=105-3x-9移项、合并同类项,得13x=91系数化为1,得x=7∴当x=7时,x-(x-1)/3的值与7 -(x+3)/5的值相等(2)根据题意得:2/5 x+ (-1)/2=(3(x-1))/2-8/5 x,去分母(方程两边同乘10)得:4x+5 (x-1)=15 (x-1)-16x去括号得:4x+5x-5=15x-15-16x移项得:4x+5x-15x+16x=-15+5合并同类项,得10x=-10系数化为1,得x=-1复习题3第4题答案解:梯形面积公式s=1/2(n+6)h(1)当S=30,a=6,h=4时,30=1/2(6+b)×4去括号,得12十2b=30移项、合并同类项,得2b=18系数化为1,得b=9(2)当S=60,b=4,h=12时,60=1/2(a+4)×12,去括号,得6a+24=60移项、合并同类项,得6a=36系数化为1,得a=6(3)当S=50,a=6,b=5/3a时,b=5/3a=5/3×6=10.50=1/2(6+10)×h去括号,得8h=50系数化为1,得h=25/4复习题3第5题答案解:设快马x天可以追上慢马,根据题意得:240x=150(12+x),解得x=20.答:快马20天可以追上慢马复习题3第6题答案解:设经过x min首次相遇,由题意得:350x+250x=400解得x=2/3答:经过2/3 min首次相遇,又经过2/3min再次相遇复习题3第7题答案解:设有x个鸽笼,原有(6x+3)只鸽子根据题意得:6x+3+5=8x解得x=46x+3=6×4+3=27答:原有27只鸽子和4个鸽笼复习题3第8题答案解:设女儿现在的年龄为x,则父亲现在的年龄为(91-x)根据题意,得2x-1/3(91-x) =91-x-x或2x-(91-x)=1/3(91-x)-x.解得x=28答:女儿现在的年龄是28复习题3第9题答案(1)参赛者F得76分,设他答对了x道题根据题中数据可知,参赛者答错一道题扣6分根据题意,得100-6(20-x)=76去括号,得100-120+6x= 76移项、合并同类项,得6x=96系数化为1,得x=16答:参赛者F得76分,他答对了16道题(2)参赛者G说他得80分,我认为不可能设参赛者G得80分时,他答对了y道题根据题意,得100-6(20-y)=80去括号,得100-120+6y=80移项、合并同类项,得6y=100系数化为1,得y=50/3因为y为正整数所以y=50/3不合题意所以参赛者G说他得80分,我认为不可能复习题3第10题答案解:设去游泳馆为x次,凭会员证去共付y1元,不凭证去共付y2元,所以y1=80+x,y2=3x(1)购会员证与不购会员证付一样的钱,即y1 =y2,即80+x= 3x,解得x= 40答:恰好去40次的情况下,购会员证与不购会员证付一样的钱(2)当所购入场券数大于40对,购会员证合算(3)当所购入场券数小于40时,不购会员证合算复习题3第11题答案解:设这个村今年种植油菜的面积是x h m2,去年种植油菜的面积是( x+3) h m2,则去年种植“丰收1号”油菜的产油量为:2400×40%×(x+3)今年种植“丰收2号”油菜的产油量为(2 400+300)×(40%+10%)x根据题意得:2 400×40%(x+3)=(2 400+300)×(40%+10%)x-3 750化简得:960(x+3)=2 700×0.5x-3 750去括号得:960x+2 880=1 350x-3 750移项、合并同类项得:-390x=-6 630系数化为1,得x=17x+3=17+3=20答:这个村去年种植油菜的面积是20 h m2,今年种植油菜的面积是17h m2习题4.1第1题答案如下图所示:习题4.1第2题答案球、长方体、正方体、圆柱等习题4.1第3题答案三角形、六边形、五边形、圆、正方形、长方形等如下表所示:习题4.1第5题答案A习题4.1第6题答案如下图所示(第一行图形分别用代码①②③④表示,第二行图形分别用代码a,b,c,d表示)习题4.1第7题答案第一行最后一个不是,其余的全是(图略)习题4.1第8题答案含有圆柱、长方体、棱锥等立体图形习题4.1第9题答案从不同的方向看立体图形得到的图形是不同的习题4.1第10题答案D习题4.1第11题答案依次为圆柱、五棱柱、圆锥、三棱柱习题4.1第12题答案如下图所示,取相邻两边BC,CD的中点E,F,沿虚线向同侧折叠,即可折叠出三棱锥习题4.1第13题答案(1)B(2)B、C(3)A略习题4.2第1题答案如笔直的公路可以看成一条直线;手电筒发出的光可以看成一条射线;连接两车站之间笔直的公路可以看成一条线段习题4.2第2题答案如下图所示:习题4.2第3题答案如下图所示,①是线段AB的延长线,②是线段AB的反向延长线习题4.2第4题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题4.2第5题答案提示:画一个边长为已知正方形边长的2倍的正方形即可,图略习题4.2第6题答案AB<ac< p>习题4.2第7题答案要掌握用度量法和圆规截取法比较线段的长短(1)A,B两地间的河道长度变短了(2)能更多地观赏湖面风光.增加了游人在桥上行走的路程,数学原理:两点之间,线段最短习题4.2第9题答案提示:作射线AB,在射线AB上戳取线段AC=a+2b,在线段CA上截取线段CE=C,则线段AE 为求作的线段.图略习题4.2第10题答案当点C在线段AB上时,AC=AB-BC=3-1=2(cm)当点C在线段AB的延长线上时,AC=AB+BC=3+1=4(cm)习题4.2第11题答案解:如下图所示:由于“两点之间,线段最短”,因此,蚂蚁要从顶点A爬行到顶点B,只需沿线段AB爬行即可.同样,如果要爬行到顶点C,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AC,与棱a(或b)交于点D_1(或D_2),蚂蚁沿AD_1→D_1 C (或AD_2→D_2C)爬行,路线最短;类似地,蚂蚁经过面AB和AE爬行到顶点C,也分别有两条最短路线.因此,蚂蚁爬行的最短路线有6条习题4.2第12题答案两条直线相交,有1个交点三条直线相交,最多有3个交点四条直线相交,最多有6个交点规律:n条直线相交,最多有(n(n-1))/2个交点习题4.3第1题答案6h;12h习题4.3第2题答案略(1)116°10\\\\\\\\\\\\\\\'(2)106°25\\\\\\\\\\\\\\\'习题4.3第4题答案=,>习题4.3第5题答案解:因为BD和CE分别是∠ABC和∠ACB的平分线,所以∠ABC=2∠DBC=2×31°=62°,∠ACB=2∠ECB=62°所以∠ABC=∠ACB习题4.3第6题答案(1)∠AOC(2)∠AOD(3)∠BOC(4)∠BOD习题4.3第7题答案延长AO或BO,先量出∠AOB的补角的大小,再计算出∠AOB的大小习题4.3第8题答案(1)如下图所示,射线OA表示北偏西30°(2)如下图所示,射线OB表示南偏东60°(3)如下图所示,射线OC表示北偏东15°(4)如下图所示,射线OD表示西南方向(1)因为OB是∠AOC的平分线,且∠AOB=40°所以∠BOC=∠AOB=40°又因为OD是∠COE的平分线,且∠DOE= 30°所以∠DOC=∠DOE=30°所以∠BOD=∠BOC+∠COD=40°+30°=70°(2)因为∠COD=30°,OD平分∠COE所以∠COE=2∠COD=60°又因为∠AOE=140°所以∠AOC=∠AOE -∠COE=140°-60°-80°又因为OB平分∠AOC所以∠AOB=1/2∠AOC=×80°=40°习题4.3第10题答案解:360°÷15=24°;360°÷22≈16°22\\\\\\\\\\\\\\\'答:齿轮有15个齿时,每相邻两齿中心线间的夹角为24。

人教版七年级数学上册第一章有理数1.1.3正负数练习题

人教版七年级数学上册第一章有理数1.1.3正负数练习题
2、现实生活中的相反意义的量可以用正负数来表示。
—4 1、零下15℃,表示为____ ℃ ,比O℃低4℃的温度是____ ℃ 。 —15 2、正表示向西,则负表示为________。 东 3、粮食产量增产11%,记作+11%,则减产6%应记作_______。 —6% 4、某天中午11时的温度是11℃,早晨6时气温比中午11时低7℃, 则早晨6时温度为_____℃,若早晨4时气温比中午11时低13℃, 4 则早晨4时温度为_______℃。 —2
今日作业
课堂练习
练习
• 80m表示向东走+80m,那么-60m表 示 .
• 月球表面的白天平均温度零上126°C. 记 作 °C,夜间平均温度零下150°C, 记 作 °C. • 如果水位升高3m时水位变化记作+3m,那么 水位下降3m时水位变化记作 m.水位不 升不降时水位变化记作 m.
课堂练习
课堂练习
拓展题3
• 观察下列排列的每一列数,研究它的排 列有什么规律?并填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,… (2)-2,4,-6,8,-10, , , ,… (3)1,0,-1,1,0,-1, , , ,…
-8 1.如果向南走5米,记作+5米,那么向北走8米应记作______. 2.如果温度上升3℃记作+3℃,那么下降5℃记作_________. -5 比海平面高1356m 3.海拔高度是+1356m,表示________ ____,海拔高度是 比海平面低254m -254m,表示____________. 4.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表 示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸 0.05 ______毫米,最小不低于标准尺寸______毫米. 0.05 1 5 5.6,2005, ,0,-3,+1, ,-6.8中,正整数和负分数共 5 4 有( C ) A.3个 B.4个 C.5个 D.6个 6.把下列各数分别填在相应的括号里: 3 1 2 +9,-1,+3,0,,-15,1.7, 2 , 2

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.1 有理数)

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.1 有理数)

1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)02.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,________,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{___________…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14∙∙51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括________和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B答案:5.1.8,-42,+0.01,-512,0,-3.1415926,1112,1 整数集合{_________________…};分数集合{_________________…}; 正数集合{_________________…}; 负数集合{_________________…}; 自然数集合{___________________…}; 非负数集合{___________________…}思路解析:利用集合的意义来判别数的分类. 答案:整数集合{-42,0,1,…};分数集合{1.8,+0.01,-512,-3.1415926,1112,…}; 正数集合{1.8,+0.01,1112,1,…};负数集合{-42,-512,-3.1415926,…};自然数集合{0,1,…};非负数集合{1.8,+0.01,0,1112,1,…} 6.计算:13+16+110+115+121+128+136+145.思路解析:若通分相加,本题难以计算,仔细观察各分母,可发现能写成13+123⨯+125⨯+111113537474959++++⨯⨯⨯⨯⨯,而每两个顺次相加可得11111111111(1)()()()32523734945+++++++,进一步可得1111261220+++,又可分成1111111(1)()()()2233445-+++-+-,最后算出结果.解:(1)1111111136101521283645+++++++=11111111323253537474959+++++++⨯⨯⨯⨯⨯⨯⨯=131517193256712920⨯⨯⨯⨯⨯+⨯ =1111261220+++=1111 12233445 +++⨯⨯⨯⨯=1111111 (1)()()()2233445 -+-+-+-=14155-=如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

人教版初中数学七年级上册全册配套习题

人教版初中数学七年级上册全册配套习题

第一章 有理数测试1 正数和负数学习要求:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题:(正确的在括号内画“√”,错误的画“×”)( ) 1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( ) 2.节约4吨水与浪费4吨水是一对具有相反意义的量. ( ) 3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( ) 4.在小学学过的数前面添上“-”号,得到的就是负数.二、填空题:5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______.8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”).9.整数可以看作分母为1的______,有理数包括____________.10.把下列各数填在相应的大括号内:正数集合{_______________________________________________________________…}负数集合{_______________________________________________________________…}非负数集合{_____________________________________________________________…}有理数集合{_____________________________________________________________…}74,6,0,14.3,5.0,432,14,5.8,51,27----综合、运用、诊断一、填空题:11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处.13.是正数而不是整数的有理数是____________________.14.是整数而不是正数的有理数是____________________.15.既不是正数,也不是负数的有理数是______________.16.既不是真分数,也不是零的有理数是______________.17.在下列数中: 11.11111,95.527,0,+2004,-2 ,1.12122122212222,非负有理数有__________________________________________.二、判断题:(正确的在括号里画“√”,错误的画“×”) ( ) 18.带有正号的数是正数,带有负号的数是负数. ( ) 19.有理数是正数和小数的统称.( ) 20.有最小的正整数,但没有最小的正有理数. ( ) 21.非负数一定是正数. ( ) 22.是负分数.三、解答题:23.-3.782 ( ).(A)是负数,不是分数(B)不是分数,是有理数(C)是负数,也是分数(D)是分数,不是有理数24.下面说法中正确的是( ).(A)正整数和负整数统称整数(B)分数不包括整数(C)正分数,负分数,负整数统称有理数(D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加,31-725.95 ,111-311-工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).12345+0.031+0.017+0.023-0.021-0.015(A)1个(B)2个(C)3个(D)5个测试2 相反数数轴学习要求:掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题:1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a的相反数是______.3.规定了______、______和______的______叫数轴.4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学习题集(总25页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一讲 数系扩张--有理数(一)一、训练题1、若||||||0,a b ab ab a b ab+-则的值等于多少?2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a -D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )6、有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a,b 的形式,求20062007a b +。

8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少?9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

二、拔高题1、计算:1+2-3-4+5+6-7-8+…+2005+20062、计算:1×2+2×3+3×4+…+n(n+1)3、计算:5917336512913248163264+++++- 4、已知,a b 为非负整数,且满足||1a b ab -+=,求,a b 的所有可能值。

5、若三个有理数,,a b c 满足||||||1a b c a b c ++=,求||abc abc的值。

第二讲 数系扩充--有理数(二)一、训练题1、 (1)若20a -≤≤,化简|2||2|a a ++- (2)若0x ,化简|||2||3|||x x x x --- 2、设0a ,且||a x a ≤,试化简|1||2|x x +-- 3、a 、b 是有理数,下列各式对吗若不对,应附加什么条件(1)||||||;a b a b +=+ (2)||||||;ab a b =(3)||||;a b b a -=- (4)若||a b =则a b =(5)若||||a b ,则a b (6)若a b ,则||||a b4、若|5||2|7x x ++-=,求x 的取值范围。

5、不相等的有理数,,a b c 在数轴上的对应点分别为A 、B 、C ,如果||||||a b b c a c -+-=-,那么B 点在A 、C 的什么位置?6、设a b c d ,求||||||||x a x b x c x d -+-+-+-的最小值。

7、abcde 是一个五位数,ab c d e ,求||||||||a b b c c d d e -+-+-+-的最大值。

8、设1232006,,,,a a a a 都是有理数,令1232005()M a a a a =++++2342006()a a a a ++++,1232006()N a a a a =++++2342005()a a a a ++++,试比较M 、N 的大小。

二、拔高题1、已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。

2、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值。

3、如果0abc ≠,求||||||a b c a b c++的值。

4、x 是什么样的有理数时,下列等式成立?(1)|(2)(4)||2||4|x x x x -+-=-+- (2)|(76)(35)|(76)(35)x x x x +-=+-5、化简下式:||||x x x-第三讲 数系扩张--有理数(三)一、训练题1、计算:3510.752(0.125)124478⎛⎫⎛⎫⎛⎫+-+++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2、计算:(1)、()()560.9 4.48.11+-++-+ (2)、()+(+)+()+(3)、(-423)+111362324⎛⎫⎛⎫⎛⎫-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3、计算:①()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②111142243⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、 化简:计算:(1)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)35123.7540.1258623⎡⎤⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(3)()()340115477⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4)235713346⎛⎫⎛⎫⎛⎫-⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)×12+×12-36×(79-57618+) 5、计算: (1)()()()3242311-+⨯--- (2)()()219981110.5333⎡⎤---⨯⨯--⎣⎦ (3)22831210.52552142⎛⎫⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 6、计算:()3413312100.51644⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭ 7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- :第四讲 数系扩充--有理数(四)一、训练题1、计算:237970.716.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷ 2、、1111111111(1)()(1)2319962341997231997----⨯++++-----1111()2341996⨯++++ 3、计算:①2232(2)|3.14|| 3.14|(1)ππ-+-------②{}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷--4、化简:111()(2)(3)(9)122389x y x y x y x y +++++++⨯⨯⨯并求当2,x =9y =时的值。

5、计算:2222222221314112131411n n S n ++++=++++---- 6、比较1234248162n n n S =+++++与2的大小。

7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- 8、已知a 、b 是有理数,且a b ,含23a b c +=,23a c x +=,23c b y +=,请将,,,,a b c x y 按从小到大的顺序排列。

1、计算(1)1111142870130208++++ (2)222133599101+++⨯⨯⨯ 2、计算:11111120072006200520041232323-+-+- 3、计算:1111(1)(1)(1)(1)2342006-⨯-⨯-⨯⨯- 4、如果2(1)|2|0a b -++=,求代数式220062005()()2()b a a b ab a b -++++的值。

5、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求2221(12)a b m m cd -+÷-+的值。

第五讲 代数式(一)一、训练题1、用代数式表示:(1)比x y 与的和的平方小x 的数。

(2)比a b 与的积的2倍大5的数。

(3)甲乙两数平方的和(差)。

(4)甲数与乙数的差的平方。

(5)甲、乙两数和的平方与甲乙两数平方和的商。

(6)甲、乙两数和的2倍与甲乙两数积的一半的差。

(7)比a 的平方的2倍小1的数。

(8)任意一个偶数(奇数)(9)能被5整除的数。

(10)任意一个三位数。

2、代数式的求值:(1)已知25a b a b-=+,求代数式2(2)3()2a b a b a b a b -+++-的值。

(2)已知225x y ++的值是7,求代数式2364x y ++的值。

(3)已知2a b =;5c a =,求624a b c a b c+--+的值(0)c ≠ (4)已知113b a -=,求222a b ab a b ab ---+的值。

(5)当1x =时,代数式31Px qx ++的值为2007,求当1x =-时代数式31Px qx ++的值。

(6)已知等式(27)(38)810A B x A B x -+-=+对一切x 都成立,求A 、B 的值。

(7)已知223(1)(1)x x a bx cx dx +-=+++,求a b c d +++的值。

(8)当多项式210m m +-=时,求多项式3222006m m ++的值。

3、找规律:Ⅰ.(1)22(12)14(11)+-=+;(2)22(22)24(21)+-=+(3)22(32)34(31)+-=+(4)22(42)44(41)+-=+,第N 个式子呢? Ⅱ.已知 2222233+=⨯; 2333388+=⨯; 244441515+=⨯; 若21010a a b b+=⨯ (a 、b 为正整数),求?a b +=二、拔高题1、若()m n +个人完成一项工程需要m 天,则n 个人完成这项工程需要多少天?2、已知代数式2326y y -+的值为8,求代数式2312y y -+的值。

3、某同学到集贸市场买苹果,买每千克3元的苹果用去所带钱数的一半,而余下的钱都买了每千克2元的苹果,则该同学所买的苹果的平均价格是每千克多少元?4、已知1111n n a a +=+(1,2,3,,2006)n =求当11a =时,122320062007?a a a a a a +++=第六讲 代数式(二)一、训练题1、 多项式222259337y x xy x nxy my +-++-+经合并后不含有y 的项,求2m n +的值。

2、当250(23)a b -+达到最大值时,求22149a b +-的值。

3、已知多项式3225a a a -+-与多项式N 的2倍之和是324224a a a -+-,求N ?4、若,,a b c 互异,且x y a b b c c aZ ==---,求x y Z ++的值。

相关文档
最新文档