人教版初二下册数学知识点教学教材
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下册)知识点总结
二次根式 【知识回顾】
1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
ab =a ·b (a ≥0,b ≥0);
b b
a a
=
(b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】
1、概念与性质 例1下列各式1)
22211
,2)5,3)2,4)4,5)(),6)1,7)2153
x a a a --+---+, 其中是二次根式的是___1 3 4 5 ______(填序号). 例2、求下列二次根式中字母的取值范围
a (a >0)
a -(a <0)
0 (a =0);
(1)
x x --
+31
5;(2)
2
2)-(x
例3、 在根式1) 222;2)
;3);4)275
x
a b x xy abc +-,最简二次根式是(C ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)
例
4、已知:
的值。求代数式22,211881-+-
+++-+-=x y
y x x y
y x x x y
例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 (B )
A. a>b
B. a
C. a ≥b
D. a ≤b 2、二次根式的化简与计算 例1. 将
根号外的a 移到根号内,得 ( ) A.
; B. -
; C. -
; D.
例2. 把(a -b )
-1
a -
b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
11()b a b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---
4、比较数值 (1)、根式变形法
当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。 例1、比较35与53的大小。 (2)、平方法
当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。 例2、比较32与23的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。 例3、比较
231-与1
21
-的大小。 (4)、分子有理化法
通过分子有理化,利用分母的大小来比较。 例4、比较1514-与1413-的大小。 (5)、倒数法
例5、比较76-与65-的大小。 (6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。 例6、比较73+与873-的大小。 (7)、作差比较法
在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔< 例7、比较2131++与2
3
的大小。
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则: ①1a
a b b
>⇔>; ②1a
a b b
<⇔<
例8、比较53-与23+的大小。 5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证:
;
验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想
4
4
15
的变形结果,并进
行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°⇒∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°
可表示如下: ⇒BC=2
1AB ∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°
可表示如下: ⇒CD=2
1
AB=BD=AD D 为AB 的中点 5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90° BD AD CD •=2
⇒ AB AD AC •=2
CD ⊥AB AB BD BC •=2 6、常用关系式
由三角形面积公式可得:AB •CD=AC •BC