氟化物 的 测 定
氟化物的测定-硝酸银滴定法GB11896-89
氟化物的测定-硝酸银滴定法GB11896-89概述- 本文档介绍了氟化物的测定方法之一,即硝酸银滴定法(GB-89)。
- 该方法适用于水和废水中氟化物的测定。
试剂和仪器- 试剂:- 氟化银溶液(0.02mol/L)- 硝酸银溶液(0.02mol/L)- 硝酸铵标准溶液(0.1mol/L)- 硝酸钾标准溶液(0.1mol/L)- 氨氢溴酸标准溶液(0.1mol/L)- 仪器:- 滴定管- 滴定管架- 称量瓶- 烧杯- 恒温槽- 电子天平- 集气瓶操作步骤1. 样品准备:- 将待测样品取一定量,加入恒温槽中。
如有固体样品,需溶解并稀释到适当浓度。
- 对于废水样品,需先用氨氢溴酸标准溶液进行预处理。
2. 滴定操作:- 取一定量的待测样品,加入称量瓶中,加入硝酸铵和硝酸钾标准溶液,进行预处理。
- 将处理后的样品溶液转移到烧杯中,加入足够的氟化银溶液进行反应。
- 在滴定管中滴加硝酸银溶液,直到溶液变色为止。
- 记录滴定管中加入的硝酸银溶液体积,计算氟化物的浓度。
3. 结果计算:- 根据所滴加的硝酸银溶液的体积计算氟化物的浓度。
- 结果可用公式或计算器进行计算。
4. 结论:- 根据测定结果,得出待测样品中氟化物的浓度。
注意事项- 操作过程中要注意安全,佩戴适当的个人防护装备。
- 严格按照操作步骤进行,避免误差。
- 使用标准溶液进行校准和质控,确保测定结果准确可靠。
参考资料- GB11896-89《水和废水中氟化物的测定-硝酸银滴定法》。
大气固定污染源氟化物的测定离子选择电极法方法确认
大气固定污染源氟化物的测定离子选择电极法方法确认1.仪器设备离子选择电极法测定氟化物的仪器设备主要包括:离子选择电极、参比电极、pH计、电位计等。
离子选择电极可以选择氟化物离子选择电极,参比电极可以选择银/银氯化物电极或玻璃电极。
2.样品处理样品的处理主要包括取样、前处理、稀释等。
首先要确保样品取得代表性,一般可以按照空气质量监测的方法进行采样。
然后,可以先过滤去除悬浮物,进一步获取溶解态氟化物。
对于浓度较高的样品,可以进行适当稀释,以便在测定时落在量程范围内。
3.试剂选择离子选择电极法测定氟化物需要使用的试剂主要有标准溶液、缓冲液等。
标准溶液是用于构建标准曲线的溶液,可以选择氟化钠标准溶液。
缓冲液的选择视具体样品的pH值而定,一般可以选择盐酸-氯化钠缓冲液。
4.实验操作实验操作的步骤主要包括:校正电极、构建标准曲线、样品测定等。
首先,要校正电极,即使电位计和pH计校准。
接下来,构建标准曲线,将不同浓度的标准溶液加入测定容器中,然后测取其电位值,并绘制标准曲线。
最后,进行样品测定,将样品溶液加入测定容器中,测取其电位值,并通过标准曲线确定其氟化物的浓度。
5.数据处理数据处理主要包括标准曲线的绘制和样品浓度的计算。
可以通过标准曲线的外推法或内插法来确定样品浓度。
外推法即将样品的电位值代入标准曲线中,得到相应的浓度值;内插法即通过样品电位值在标准曲线上找到相应浓度值。
最后,可以根据测得的样品浓度进行评估,并与相应的环境标准进行比较。
综上所述,离子选择电极法是一种常用于大气固定污染源氟化物测定的方法。
通过合适的仪器设备、样品处理、试剂选择和实验操作,可以准确快速地测定氟化物浓度,为环境监测提供科学依据。
水中氟化物的测定
三、仪器
1.氟离子选择电极 2.饱和甘汞电极 3.精密pH计 4.磁力搅拌器
四、试剂
1.离子强度缓冲液Ⅱ 2.氟化物标准储备液(1mg/ml)
五、方法步骤
标准加入法 1.吸取50ml水样于200ml烧杯中,加入50ml离子强 度缓冲液Ⅱ,插入氟离子选择电极和饱和甘汞 电极,在匀速搅拌下连续搅拌溶液,待电位稳 定后,在继续搅拌下读取平衡电位值(E1,mV)。
六、结果与评价
《生活饮用水卫生标准》(GB5749-2006)
指标
氟化物(mg/L)
限值
1Hale Waihona Puke 0水中氟化物的测定一、目的要求
掌握氟离子选择电极法检测氟化物的原理及 方法步骤。
二、测定原理
氟化镧单晶对氟离子有选择性,在氟化镧电极 膜两侧的不同浓度氟溶液之间存在电位差,即 膜电位.
膜电位的大小与氟化物溶液的离子活度有关. 氟电极与饱和甘汞电极组成一对原电池,利用 电动势与离子活度负对数值的线性关系直接 求出水样中氟离子浓度.
2.于上述溶液中加入0.5ml氟化物标准溶液,在搅 拌下读取平衡电位(E2,mV)
3.计算
V1 1 (F 1) V2 1 E 2 E1 Log( ) 1 K
(F 1)
——水样中氟化物的质量浓度(mg/L)
——加入标准贮备液的质量浓度(mg/L)
1
V1 ——加入标准贮备液的体积(ml) V2 ——加入水样的体积(ml) K ——测定水样的温度t℃时的斜率,其值为0.1985(273+t℃)
实验4水中氟化物的测定--离子选择电极法
实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为1.0mg ·L-1。
测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。
本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。
一.实验目的和要求1. 掌握用离子活度计或pH 计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。
2. 复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。
二.仪器1. 氟离子选择电极(使用前在去离子水中充分浸泡)。
2. 饱和甘汞电极。
3. 精密pH 计或离子活度计、晶体管毫伏计,精确到0.1mV。
4. 磁力搅拌器和塑料包裹的搅拌子。
5.100mL、50mL 容量瓶。
6.10.00mL、5.00mL 移液管或吸液管。
7.100mL 聚乙烯杯。
三.试剂所用水为去离子水或无氟蒸馏水。
1. 氟化物标准贮备液:称取0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃ 烘干约40min,冷却),用水溶解后转入1000mL 容量瓶中,稀释至标线,摇匀。
贮存在聚乙烯瓶中。
此溶液每毫升含氟离子100μg。
2. 乙酸钠溶液:称取15g 乙酸钠(CH3COONa)溶于水,并稀释至100mL。
3. 盐酸溶液:2mol ·L-1。
4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL 容量瓶中,稀释至标线,摇匀。
5. 水样① ,② 。
四.测定步骤1. 仪器准备和操作:按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。
全氟化物的测量技术
全氟化物的测量技术
全氟化物是一类化合物,通常指的是含有全氟烷基或全氟烷基
衍生物的化合物,如全氟辛烷磺酸(PFOS)和全氟辛烷酸(PFOA)。
这些化合物在环境中具有持久性和生物富集性,因此对其测量技术
的研究具有重要意义。
测量全氟化物的技术包括但不限于以下几种:
1. 高效液相色谱-串联质谱(HPLC-MS/MS),这是一种常用的
测定全氟化物含量的方法。
样品经过适当的前处理后,使用HPLC分
离出目标化合物,然后通过串联质谱进行定量分析。
2. 气相色谱-串联质谱(GC-MS/MS),对于一些挥发性较强的
全氟化物,可以使用GC-MS/MS进行分析。
这种方法通常需要对样品
进行适当的提取和富集处理。
3. 气相色谱-质谱(GC-MS),对于一些较短链全氟化物的测定,可以使用GC-MS进行分析。
这种方法同样需要对样品进行适当的前
处理。
4. 其他方法,除了色谱-质谱方法外,还有一些其他测定全氟
化物的方法,如离子色谱法、电化学法等。
这些方法各有优缺点,
适用于不同类型的样品和不同的分析要求。
需要指出的是,测量全氟化物的技术在实际应用中需要考虑到
样品的特性、分析的灵敏度要求、分析的准确性要求等因素。
同时,样品的前处理步骤也是非常重要的,对于不同的样品可能需要针对
性地选择合适的前处理方法。
总的来说,测量全氟化物的技术涉及到多个方面的知识,需要
综合考虑样品特性、分析要求和实验条件等因素,选择合适的分析
方法进行测定。
氟化物测定方法
精心整理氟 化 物氟化物(F ﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L (F ﹣)。
当长期饮用含氟量高于1-1.5mg/L 的水时,则易患斑齿病,如水中含氟量高于4mg/L 时,则可导致氟骨病。
12以上,预 蒸 馏通常采用预蒸馏的方法,主要有水蒸气蒸馏和直接蒸馏两种。
直接蒸馏法的蒸馏效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。
水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。
1.水蒸气蒸馏法水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。
仪器蒸馏装置试剂50ml)蒸馏装置试剂(1)硫酸:ρ=1.84g/ml.(2)硫酸银。
步骤(1)取400 ml蒸馏水于蒸馏瓶中,在不断摇动下缓慢加入200 ml浓硫酸,混匀。
放入5—10粒玻璃球,连接装置。
开始缓慢升温,然后逐渐加快升温速度,至温度达180℃时停止加热,弃去接收瓶中馏出液,此时蒸馏瓶中酸与水的比例为2+1,此操作的目的是除去蒸馏装置和酸液中氟化物的污染。
待蒸馏瓶中的溶液冷至120℃以下,加入250ml样品混匀,按上述加热方式加热至180℃时止(不得超过180℃,以防带出硫酸盐)。
此时接收瓶中馏出液的体积约为250ˉ)。
干扰:Clˉ30; SO42ˉ5.0; NO3ˉ3.0; B4O72ˉ2.0; Mg2+ 2.0; NH4+1.0; Ca2+0.5。
下述离子含量(μg)亦不干扰测定:PO43ˉ200; SiO32ˉ100; Cr6+40; Cu2+10; Pb2+10; Mn2+10; Hg2+5; Ag+5; Zn2+5; Fe3+2.5; Al3+2.5; Co2+2.5; Ni2+2.5; Mo6+2.5。
当干扰离子超过上述含量时,可通过直接蒸馏或水蒸气蒸馏而消除。
3.方法的适用范围水样体积为25ml,使用光程为30mm比色皿,本法的最低检出浓度为0.05mg/L 氟化物;测定上限为1.80 mg/L。
实验三 水中氟化物的测定
实验三水中氟化物的测定(离子选择电极法)一.实验目的1.通过实验,了解离子选择电极法测定氟化物的基本原理。
2.掌握氟度计的使用方法。
二.实验原理氟离子选择性电极的传感膜为氟化镧(LaF3)单晶片,与含氟试液接触时,电池的电动势(E)随溶液中氟离子活度的变化而改变(遵守能斯特方程)。
当溶液的总离子强度为定值时服从下述关系式:E与lga F-成直线关系,2.303RT/F为该直线的斜率,亦为电极的斜率。
即电池的电动势与试液中氟离子活度的对数成线性关系。
本方法的检测限范围为0.05-1900 mg/L,水样的颜色、浊度不影响测定,适用于地表水、地下水和工业废水中氟化物的测定。
三.实验仪器、设备1.氟离子选择电极。
2. 饱和甘汞电极。
3.精密氟度计(精确到0.01pF)。
4.磁力搅拌器(带塑料包裹的搅拌子)。
5.100mL聚乙烯杯。
6.容量瓶。
7.50mL移液管、10mL吸管四.实验试剂1.0.01mol/L(pF=2.00)定位标准溶液:称取0.4198g基准氟化钠(NaF)(预先在105~110℃干燥2h,或者在500~650℃干燥约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀,贮存于聚乙烯瓶中。
此溶液氟离子(F-)摩尔浓度为0.01mol/L,pF=2.00。
2.0.0001mol/L(pF=4.00)斜率标准溶液:移取10.00mL0.01mol/L 定位标准溶液于1000mL 容量瓶中,稀释至标线,摇匀,贮存于聚乙烯瓶中。
此溶液氟离子(F-)摩尔浓度为0.0001mol/L,pF=4.00。
3.乙酸钠溶液:称取15g乙酸钠(CH3COONa)溶于水,并稀释至100mL。
4.盐酸溶液:2mol/L。
5.总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。
五.实验步骤1.仪器准备:仪器功能开关至pF档,温度补偿旋钮至溶液温度值,将清洁的氟离子选择电极(电极组)接入仪器。
空气中氟化物的测定
三、测定方法
• 测定空气中氟化物的方法有:
分光光度法 离子选择性电极
简便 准确 灵敏
氟离子选择电极
原理
晶体膜电极的响应机理包括两个方面: ★晶膜表面与溶液两相界面上响应离子的扩散形成界面电位 (道南电位)――响应离子进入晶体中可能存在的晶格离子空 穴,而晶膜中的晶格离子也会扩散进入溶液而在膜中留下空穴, 平衡时在界面上形成双电层而产生电位。 ★晶膜内部离子的导电机制形成了扩散电位――由于膜、液 界面上响应离子的扩散,使膜内晶格离子分布不均匀,即空穴 不均匀,引起晶格离子的扩散,空穴的移动,如LaF3晶体中F -的扩散 LaF3 + 空穴 → LaF2+(新空穴) + F-
氟化物的测定
2016
采 样
测 定
内容提要
•一、氟化物污染物的存在形式及来源 •二、采样方法 滤膜-氟离子选择电极法 石灰滤纸-氟离子选择电极法 •三、测定方法
一、氟化物污染物的存在形式及来源
• 空气中氟化物有气态氟和尘态氟两种。空气中的气态氟
化物主要是氟化氢、也可能有少量氟化硅和氟化碳。含 氟粉尘主要是冰晶石、萤石、氟化铝及磷灰石。 • 主要来源于铝厂、冰晶石和磷肥厂、使用氟化物、氢氟 酸等部门排放或逸散的气体和粉尘。
二、采样方法
滤膜法
石灰滤纸法
滤膜法
共三层滤膜
材质为玻璃纤维
第一层经柠檬酸溶液 浸泡,用于测定尘态 氟化物 第二三层经磷酸二氢 钾溶液浸泡,用于测 定气态氟化物
用水浸取
测水溶性氟化物
滤 膜
用盐酸浸取测酸Biblioteka 性氟化物用水蒸气热 解法处理
测总氟化物
石灰滤纸法
滤 纸
浸 无需动力 渍 氢 采样时间长( 7-30 天) 自然暴露空气中采样 氧 能较好反应平均污染水平 化 化 钙
水质中氟化物的检测方法比较分析
水质中氟化物的检测方法比较分析
氟化物是一种广泛存在于水体中的污染物,过高的氟化物含量对人体健康和环境造成
了严重的影响。
对水质中氟化物含量进行准确、快速的检测具有重要意义。
本文将对常用
的氟化物检测方法进行比较分析,包括电极法、离子选择电极法、光度法和氟化物选择性
电极法等。
1. 电极法:电极法是一种常用的氟化物检测方法,其原理是利用特定电极对水样中
的氟化物进行电位测定。
这种方法简单、快速,且结果准确可靠。
电极法需要专业的仪器
设备,并且对于含有其他杂质的水样,容易产生干扰,因此需要进行预处理。
2. 离子选择电极法:离子选择电极法也是一种常用的氟化物检测方法,其原理是利
用专门的离子选择电极对水样中的氟化物进行电位测定。
与电极法相比,离子选择电极法
具有更高的选择性和更低的灵敏度。
离子选择电极法价格较高,使用寿命相对较短,需要
经常更换。
不同的氟化物检测方法各有优缺点。
电极法和离子选择电极法具有较高的准确性和稳
定性,但需要专业的仪器设备。
光度法操作简单,适用范围广,但容易受到干扰。
氟化物
选择性电极法操作简单,且具有较高的选择性和灵敏度,但对于干扰物质的影响较为敏感。
在选择检测方法时,应根据实际情况综合考虑各种因素,选择合适的方法进行氟化物检
测。
氟化物的测定
取84 盐酸溶于lo 1 于 。 .m1 om 去离 水中
31 氢氧化钠溶液: 1 f . 0 m / o L。 称取 4 分析纯氢氧化钠溶于lo 去离子 g o m] 水中。
4 仪器
一 般实验室仪器和: 4 1 分光光度计:光程3m 的比色皿。 . 0 m 42 H计。 p .
钠溶液调节p H为41 .,用去离子水稀释至10m 00 1 , 3 7 4 缓冲溶液 H 1 . p .
称取3g 5 无水乙酸钠 ( H 0 0 a C , 0 N )溶于80 1 0m 去离f 水中,加7m 5 I 冰乙酸 ( H 0 0 ) C ,0 H , 用去离子水稀释至1 0 I 0 m 0 ,以酸度计调节p H为41 . 0
。 精密度和准确度
间 对 准 差 1 % 相 误 为一. 。 相 标 偏 为. , 对 差 0 % 2 8
3 验室分析含氟化物05 个实 .m盯L 的统一分发标准溶液决验室内相对标准偏差为12 . r .% 实i* - l
一
G A 748 8一 87
附 录 A
使用方法的补充说明
取30 I 0m 硫酸放人50 1 0m 烧杯中,置电 热板上微沸 1 h ,冷却后放人瓶中备用。 33 氟化物标准贮备液:称取已于15 烘 F h的优级纯氟化钠 ( a 021&溶于去离子 . 0' C 2 NF . 0 ) 2 水中,移人1 0 量瓶中,稀释至标线,贮于聚乙烯瓶中备用,此溶液每毫升含氟1 ". 0 M] 0 0g 0 34 氟化物标准溶液:吸取氟化 . 钠标准贮备液 (. 2m1 33 0 ,移人1 0 1 ) 0 m 0 量瓶,用去离 子水稀 释至标线,贮于聚乙烯瓶中,此溶液每毫升含氟2OP . . Og
32 ),用1 l H0 m / 盐酸溶液调节p oL H至50 .,用去离子 水稀释至50 ,贮于棕色瓶中。 0 m 1
大气固定污染源 氟化物的测定 离子选择电极法
大气固定污染源氟化物的测定离子选择电极法1. 适用范围本方法适用于大气固定污染源有组织排放中氟化物的测定。
不能测定碳氟化物,如氟利昂。
当采样体积为150L时,检出限为6×10-2mg/m3;测定范围为1〜1000 mg/m3。
2. 定义氟化物系指气态氟与尘氟的总和。
本标准中的气态氟用氟氧化钠溶液吸收,尘氟指溶于盐酸溶液的与颗粒物共存的氟化物。
3. 原理使用滤筒、氟氧化钠溶液为吸收液采集尘氟和气态氟,滤筒捕集尘氟和部分气态氟,用盐酸溶液浸溶后制备成试样,用氟离子选择电极测定;当溶液的总离子强度为定值而且足够大时,其电极电位与溶液中氟离子活度的对数成线性关系。
4. 试剂本标准所用试剂除另有说明外均为分析纯试剂,所用水为去离子水。
4.1 盐酸(HCl):ρ=l.18g/ml4.1.1 盐酸溶液0.25mol/L取21.0ml盐酸(4.1)用水稀释到1000ml。
4.1.2盐酸溶液l.0mol/L取84.0ml盐酸(4.1)用水稀释到1000ml。
4.2氢氧化钠(NaOH)4.2.1氢氧化钠溶液0.3mol/L将氧氧化钠(4.2)12g溶于水并稀释至1000ml。
作为吸收液。
4.2.2氢氟化钠溶液l.0mol/L将氢氟化钠(4.2)40g溶于水并稀释至1000ml。
4.3氟化钠标准贮备液1.000mg/ml称取0.2210g氟化钠(优级纯,于110℃烘干2h放在干燥器中冷却至室温)溶解于水,移人100 ml容量瓶中,用水定容至标线,贮存于聚乙烯瓶中。
在冰箱内保存,临用时放至室温再用。
4.4氟化钠标准溶液将氟化钠标准贮备液(4.3)用水稀释成 2.5µg /ml、5.0 µg/ml、10.0 µg/ml、25.0µg/ml、50.0µg/ml、100.0µg/ml的标准溶液。
临用现配,上述溶液均贮存于聚乙烯瓶中。
4.5溴甲酚绿指示剂0.1g/100ml称取100mg溴甲酚绿于研钵中。
氟化物的测定
氟化物的测定
氟化物的测定是一种常见的化学分析方法,用于确定样品中氟化物离子的含量。
氟化物是一种常见的阴离子,存在于许多自然和人工产物中,如水中的氟化物、食盐中的氟化钠等。
高浓度的氟化物对人体有害,因此准确测定氟化物的含量对于环境保护和人类健康具有重要意义。
常用的氟化物测定方法包括离子选择性电极法、荧光法、离子色谱法等。
离子选择性电极法是一种简便快速的测定方法,通过测量氟离子与特定电极之间的电势差来确定氟化物的含量。
荧光法基于氟化物与某些物质形成荧光化合物的性质,利用荧光强度与氟化物浓度之间的关系来测定氟化物的含量。
离子色谱法则是通过将氟化物与其他离子分离开来,再使用检测器检测氟化物的浓度。
在实际的氟化物测定过程中,需要合理选择测定方法,并根据样品中氟化物的含量确定适当的测定范围。
同时,还需使用适当的试剂和仪器,严格控制实验条件,以确保测定结果的准确性和可靠性。
总之,氟化物的测定是一项重要的化学分析工作,对于环境保护和人类健康至关重要。
合理选择测定方法、优化实验条件和仔细操作是确保测定结果准确的关键。
环境监测中固定污染源废气氟化物的测定方法
环境监测中固定污染源废气氟化物的测定方法
固定污染源废气中含有氟化物的情况比较常见,如果废气中的氟化物浓度过高,就会
对周围环境和人体健康造成威胁。
因此,对于固定污染源废气中的氟化物进行准确测定十
分必要。
下面将针对环境监测中固定污染源废气氟化物的测定方法做详细介绍。
一、前处理
1、氟化物溶出
将收集器内的氟化物与1mol/L的NaOH溶液混合,使其溶出。
2、处理后的氟化物的浓度计数
将处理后的样品经过滤后,倒入量筒中,加入适量的试剂(约为0.5mL)并溶解,然后使用紫外分光光度计,根据氟化物的生成量计算出其初始浓度。
3、校准
根据放射性同位素法进行校准。
将碳酸钠转化为氟离子,然后将吸收系数与浓度关系
图形成氟化物的校准图。
二、测定方法
1、封闭结构
固定污染源废气环境的监测中,采用封闭式测定方法。
先将氟化物涂在吸收膜上,然
后用铝箔和胶带反复贴合,使氟化物牢固地黏在吸收膜上。
2、样品收集
将氟化物吸收膜固定在工作位置后,通过气流推动氟化物进入收集器中,然后用硫酸
或者1mol/L NaOH溶液消解收集器,将氟离子化合物中的氟离子溶出,制成样品。
3、测定过程
4、测定效果的改进
在测定氟化物的过程中,为了避免因其他因素影响测定效果,可以采用三重采样技术。
将样品分为三份进行测试,根据测试数据去除异常值。
同时,在测试中,注意要求样品收
集器对氟的吸收能力,以便提高测试效果。
以上就是环境监测中固定污染源废气氟化物的测定方法介绍,通过以上步骤可以高效
准确地测定废气中的氟化物浓度。
氟化物的测定
1、目的:为使分析人员在分析过程中做到有方法可依、规范水质分析方法的过程和便于对化验室质量的控制与管理。
2、测定方法:离子选择电极法3、适用范围:实用于环境监测水及废水中氟化物的测定。
测定下限浓度为0.02 mg/L,上限为1999 mg/L。
4、仪器和器皿4.1PH/电导率/离子综合测定仪。
4.2 磁力搅拌器及塑料包裹的搅拌子。
4.3 100ml、1000ml容量瓶。
4.450ml、100ml和500ml烧杯。
4.5 50ml量筒。
4.6 2.00ml、5.00ml和10.00ml吸液管,50.00ml移液管。
4.7 镊子。
5、试剂5.1氟化物标准贮备液:称取0.2210基准氟化钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用去离子水溶解后转入1000ml容量瓶中,稀释至标线,摇匀。
贮存在聚乙烯瓶中。
此溶液每毫升含氟离子100微克。
5.2 0.1mol/L氢氧化钠和0.1mol/L盐酸或0.1mol/L硫酸。
5.3溴百里香酚蓝指示剂,0.05%。
5.4 柠檬酸—柠檬酸钠缓冲溶液:称取24.0克柠檬酸和270.0克柠檬酸钠用去离子水溶解后转入1000ml容量瓶中,稀释至标线,摇匀,存于聚乙烯瓶中。
或总离子强度调节缓冲溶液(TISAB):称取58.8克二水合柠檬酸钠和85.0克硝酸钠,用去离子水溶解,用盐酸调节PH至5~6,转入1000ml容量瓶中,稀释至标线,摇匀,存于聚乙烯瓶中。
6、测定步骤6.1电极的准备:取下电极头部的保护冒,小心不要碰到电极膜。
取下参比填充口橡胶塞,把电极下部的磨口玻璃向上退,排干原参比液,再在参比填充口中加入相应的电解液至填充口下,拧紧磨口,电解液不可渗出过快,可通过磨口调节。
连接离子电极和参比电极至相应的接口,把氟离子电极插入去离子水中活化一小时。
电极的准备:取下电极头部的保护冒,小心不要碰到电极膜。
取下参比填充口橡胶塞,把电极下部的磨口玻璃向上退,排干原参比液,再在参比填充口中加入相应的电解液至填充口下,拧紧磨口,电解液不可渗出过快,可通过磨口调节。
GB5750-85氟化物测定方法
GB5750-85氟化物测定方法 水中氟化物的测定,可采用电极法和比色法。
电极法的适应范围较宽,浑浊度、色度较高的水样均不干扰测定。
比色法适用于较清洁的水样,当干扰物质过多时,水样需预先进行蒸馏。
20.1 离子选择电极法 20.1.1 应用范围 20.1.1.1 本法适用于测定生活饮用水及其水源水中氟离子的含量。
20.1.1.2 色度、浑浊度及干扰物质较多的水样可用本法直接测定。
20.1.1.3 本法的最低检测量随不同的电极性能而稍有不同。
20.1.2 原理 氟化镧单晶对氟离子有选择性,被电极膜分开的两种不同浓度氟溶液之间存在电位差,这种电位差通常称为膜电位。
膜电位的大小与氟溶液的离子活度有关。
氟电极与饱和甘汞电极组成一对原电池。
利用电动势与离子活度负对数值的线性关系直接求出水样中氟离子浓度。
为消除OH-的干扰,测定时通常将溶液pH控制在5.5~6.5之间。
20.1.3 仪器 20.1.3.1 氟离子电极和饱和甘汞电极。
20.1.3.2 离子活度计或精密酸度计。
20.1.3.3 电磁搅拌器。
20.1.4 试剂 20.1.4.1 氟化物标准贮备溶液:将氟化钠(NaF)于105℃烘2h,冷却后称取0.2210g,溶于纯水中,并定容至100ml,贮于聚乙烯瓶中备用。
此溶液1.00ml含1.00mg氟化物。
20.1.4.2 氟化物标准溶液:将氟化物标准贮备溶液(20.1.4.1)用纯水稀释成1.00ml含10.0μg氟化物的标准溶液。
20.1.4.3 离子强度缓冲液I:适用于干扰物浓度高的水样。
称取348.2g柠檬酸三钠(Na3C6H5O7·5H2O),溶于纯水中,用1+1盐酸调节pH值为6,最后用纯水定容至1000ml。
20.1.4.4 离子强度缓冲液Ⅱ:适用于较清洁水。
称取58g氯化钠(NaCl)、3.48g柠檬酸三钠(Na3C6H5O7·5H2O),量取57ml冰乙酸,溶于纯水中,用10mol/L氢氧化钠溶液调节pH值至5.0~5.5,最后用纯水定容至1000ml。
氟化物的测定方法
氟化物的测定方法
氟化物的测定方法有很多种,以下列举一些常用的方法:
1. 离子选择电极法:使用氟离子选择电极直接测定氟化物浓度,该方法简单快捷,但只适用于水溶液中浓度较高的情况。
2. 离子色谱法:将样品中的氟化物分离后,通过色谱柱分离和检测氟离子浓度,该方法准确可靠,适用于不同样品中氟化物浓度的测定。
3. 比色法:使用碘化亚铁溶液与氟化物反应生成氟化亚铁络合物,根据络合物的颜色的强度与氟化物浓度成正比,通过比色测定浓度。
4. 滴定法:使用明胶滴定法、铟滴定法或银滴定法,将含氟化物的溶液加入滴定试剂中,根据滴定试剂与氟化物的反应进行滴定,确定氟化物的浓度。
需要注意的是,不同方法适用于不同样品和浓度范围,选择合适的方法需要根据具体情况进行综合考虑。
氟试剂分光光度法测定水中氟化物
氟试剂分光光度法测定水中氟化物氟化物是一种常见的水质污染物,它常存在于自然水体中或者是工业废水中。
高浓度的氟化物会对人体健康产生严重的影响,例如导致骨质疏松、牙齿发生病变等。
因此,对水中氟化物的浓度进行准确的测定具有重要的意义。
目前常用的测定水中氟化物的方法包括离子选择电极法、比色法、荧光法和分光光度法等。
其中,分光光度法是一种准确、快速、经济、可靠的测定方法,具有广泛的应用前景。
分光光度法测定水中氟化物的原理是:氟离子在一定条件下与酸性溴酸钾溶液中的溴酸根离子发生化学反应,生成三氟硼酸钾。
三氟硼酸钾与微量的甲基橙产生络合反应,形成稳定的络合物。
在一定波长范围内测定络合物的吸光度,可以确定水样中氟化物的浓度。
具体的测定步骤如下:1.准备工作:取适量的酸性溴酸钾溶液、甲基橙溶液和氟化钠标准溶液。
2.校准曲线的绘制:取一系列不同浓度的氟化钠标准溶液,分别与酸性溴酸钾溶液和甲基橙溶液混合,反应后测定吸光度。
将吸光度与对应的氟化钠浓度绘制在坐标图上,得到标准曲线。
3.取待测水样:将待测水样取适量置于容器中。
4.添加试剂:向容器中加入一定量的酸性溴酸钾溶液和甲基橙溶液。
5.摇匀反应:将容器中的溶液摇匀,使试剂充分混合。
6.反应时间:在一定的反应时间后,通常为3-5分钟,注意控制好反应时间。
7.测定吸光度:使用光度计在标定的波长下测定溶液的吸光度。
8.查找浓度:根据标准曲线上的吸光度确定水样中氟化物的浓度。
以上就是利用分光光度法测定水中氟化物的基本步骤。
与传统的比色法相比,分光光度法测定水中氟化物的优点主要体现在以下几个方面:1.灵敏度高:分光光度法对氟化物的检测灵敏度高,可以检测到很低浓度的氟化物。
2.准确性高:通过校准曲线的绘制,准确测定水样中氟化物的浓度。
3.快速方便:测定步骤简单,耗时短,适用于大批量样品的分析。
4.经济实用:分光光度法所需的仪器设备简单,使用成本低,非常适合实际应用。
总之,分光光度法是一种准确、快速、经济、可靠的测定水中氟化物的方法。
水中氟化物的测定实验报告
水中氟化物的测定实验报告
一、实验目的
本实验旨在测定水样中氟化物的含量。
二、实验原理
本实验采用肼溶液和格拉斯酸棒试纸法测定水样中的氟化物含量。
首先,加入氟化物标准溶液到比较瓶内,然后,在稀释物中加入一定量的肼溶液,将格拉斯酸棒试纸放入稀释物中,当格拉斯酸棒试纸完全溶解后,可以通过比较变色深浅来比较稀释物与标准溶液的氟化物含量,从而得出水样中氟化物含量的结果。
三、实验材料及试剂
1.水样;
2.肼溶液;
3.氟化物标准溶液;
4.格拉斯酸棒试纸。
四、实验步骤
1.用100ml的稀释物,加入3ml的肼溶液;
2.将格拉斯酸棒试纸放入稀释物中;
3.将氟化物标准溶液加入比较瓶内,放入格拉斯酸棒试纸,比较变色深浅;
4.结合实验原理,算出水样中氟化物的含量。
五、结果
根据上述实验步骤,我们得出了水样中氟化物的含量结果为
0.0075ppm。
六、结论
本实验成功地测定了水样中氟化物的含量,结果为0.0075ppm。
环境空气氟化物的测定作业指导书
环境空气氟化物的测定作业指导书一、执行标准环境空气氟化物的测定滤膜采样氟离子选择电极 HJ480-2009二、适用范围本标准规定了测定环境空气中氟化物的滤膜采集、氟离子选择电极法。
本标准适用于环境空气中氟化物的小时浓度和日平均浓度的测定。
当采样体积为6m3时,测定下限为0.9μg/m3。
三、干扰及消除在测定体系中有Si4+、Fe3+、Al3+存在、其浓度不超过20mg/L时,产生的干扰可采用加入总离子强度调节缓冲液来消除。
四、测定原理已知体积的空气通过磷酸氢二钾浸渍的滤膜时,氟化物被固定或阻留在滤膜上,滤膜上的氟化物用盐酸溶液浸溶后,用氟离子选择电极法测定。
五、仪器设备1、采样器:中流量采样泵,采样头带支撑滤膜的聚乙烯网垫,采样头有效直径为80mm,可以安装直径为92mm的滤膜。
2、离子活度计或精密酸度计:分辨率为0.1mV。
3、氟离子选择电极:a 测量氟离子浓度范围:10-1mol/L~10-6mol/L。
b 测定曲线斜率,在t℃下,为(54+0.2t)mV。
4、甘汞电极:盐桥溶液为饱和氯化钾。
5、磁力搅拌器:具聚乙烯包裹的搅拌子。
6、小型超声波清洗器。
7、聚乙烯塑料烧杯:100ml。
8、聚乙烯塑料瓶:100ml、1000ml。
六、试剂本标准所用试剂除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,实验用水为新制备的去离子水或蒸1、盐酸溶液c(HCl)=2.5mol/L:取1000ml水,加入20.8ml盐酸(优级纯,ρ=1.18g/ml),搅拌均匀。
2、氢氧化钠溶液c(NaOH)=1.0mol/L:称取40.0g优级纯氢氧化钠,溶于水,冷却后稀释至1000ml。
3、氢氧化钠c(NaOH)=5.0mol/L:称取100.0g优级纯氢氧化钠,溶于水,冷却后稀释至500ml。
4、磷酸氢二钾浸渍液:称取76.0g磷酸氢二钾溶于水,移入1000ml容量瓶中,用水定容至标线,摇匀。
5、总离子强度调节缓冲溶液(TISAB)(1)总离子强度调节缓冲溶液(TISAB Ⅰ):称取58.0g 氯化钠,10.0g柠檬酸钠,量取冰乙酸50ml,加水500ml。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氟化物氟化物(F-)是人类必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5~1.0mg/L(F-)。
当长期饮用含氟量高于1~1.5 mg/L的水时,则易患斑齿病,如水中含氟量高于4 mg/L时,则可导致氟骨病。
氟化物广泛存在于天然水体中。
有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水中常常都存在氟化物。
方法选择水中氟化物的测定方法主要有:离子色谱法、氟离子选择电极法、氟试剂比色法、茜素磺酸锆比色法和硝酸钍滴定法。
离子色谱法已被国内外普遍使用,其方法简便、快速、相对干扰较少,测定范围是0.02~10mg/L。
电极法选择性好,适用范围宽,水样浑浊、有颜色均可测定,测量范围为0.05~1900mg/L。
比色法适用于含氟较低的样品,氟试剂法可以测定0.05~1.8mg/LF-。
茜素磺酸锆目视比色法可以测定0.1~2.5mg/LF-,由于是目视比色,误差较大。
氟化物含量大于5mg/L时可以用硝酸钍滴定法。
对于污染严重的生活污水和工业废水以及含氟硼酸盐的水样均要进行预蒸馏。
水样的采集与保存必须用聚乙烯瓶采集和贮存水样。
离子选择电极法(GB7484-87)1、方法原理当氟电极与含氟的试液接触时,电池的电动势(E)随溶液中氟离子活度的变化而改变(遵守能斯特方程)。
当溶液的总离子强度为定值且足够时,服从下述关系式:-E=E成直线关系,2.303RT /F为该直线的斜率,亦为电极的斜率。
E与logCF-工作电池可表示如下:‖试液‖外参比电极Ag︱Cl,Cl-(0.33mol/L),F-(0.001mol/L)︱LaF32、干扰及消除本法测定的是游离的氟离子浓度,某些高价阳离子(例如三价铁、铝和四价硅)及氢离子能与氟离子络合而有干扰,所产生的干扰程度取决于络合离子的种类和浓度、氟化物的浓度及溶液的pH值等。
在碱性溶液中氢氧根离子的浓度大于氟离子浓度的1/10时影响测定。
其他一般常见的阴阳离子均不干扰测定。
测定溶液的pH为5~8。
如水样含有氟硼酸盐或污染严重,应预先进行蒸馏。
通常,加入总离子强度调节剂以保持溶液的总离子强度,并络合干扰离子,保持溶液适当的pH,就可以直接进行测定。
3、方法的适用范围本方法适用于测定地表水、地下水和工业废水。
水样有颜色、浑浊不影响测定。
温度影响电极电位和电离平衡,须使试液和标准溶液的温度相同并注意调节仪器的温度补偿装置使之与溶液的温度一致。
每次要检查电极的实际斜率。
本法的最低检出浓度为0.05mg/L氟化物(以氟计);测定上限可达1900mg/L 氟化物(以氟计)。
电极的实际斜率:温度在20~25℃之间,氟离子浓度每改变10倍,电极电位变化58mV±2mV。
4、试剂所用水为去离子水或无氟蒸馏水4.1、氟化物标准贮备液:称取0.2210g基准氟化钠(NaF)(预先于105~110℃干燥2h,或于500~600干燥约40min,冷却),用水溶解后转入1000毫升容量瓶中,稀释至标线,摇匀。
马上转移入干燥洁净的聚乙烯瓶中贮存。
此溶液每毫升含氟离子100µg。
4.2、氟化物标准液:用无分度吸管吸取氟化钠标准贮备液10.00ml,注入100ml容量瓶中,稀释至标线,摇匀。
此溶液每毫升含氟离子10µg。
4.3、总离子强度调节缓冲溶液(TISAB):①0.2mol/L柠檬酸钠-1mol/L硝酸钠(TISABⅠ):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000ml容量瓶中,稀释至标线,摇匀。
②总离子强度调节缓冲溶液(TISABⅡ):量取约500ml水置于1000ml烧杯内,加入57ml冰乙酸,58g氯化钠和 4.0g环已二胺四乙酸(Cyclohexylene dinitriio tetraacetic acid,简称CDTA),或者1,2—环己撑二胺四乙酸(1,2—diaminocyclohexane N,N,N—tetraacetic acid),搅拌溶解,置烧杯于冷水浴中,慢慢地在不断搅拌下加入6mol/L氢氧化钠溶液(约125ml)使pH达到5.0~5.5之间,转入1000ml容量瓶中,稀释至标线,摇匀。
③1mol/L六次甲基四胺—1mol/L 硝酸钾—0.03mol/L 钛铁试剂(TISABⅢ):称取142g六次甲基四胺((CH2)6N4)和85g硝酸钾,9.97g钛铁试剂(C6H4Na2O8S2﹒H2O)加水溶解,调节pH至5~6,转入1000ml容量瓶中,稀释至标线,摇匀。
5、步骤1、依次取氟标准使用液0, 0.50,1.00,2.00,5.00,10.00及20.00毫升至,用水稀释至标线,摇匀。
2、于50毫升比色管中加入10ml总离子强度调节缓冲溶液,用待测水样稀释至标线,摇匀。
3、按测量仪器及电极的使用说明要求测量标准及样品溶液的电位值(E),在半对数坐标纸上绘制E(mV)—logCF-(mg/L)校准曲线。
浓度标于对数分格上,最低浓度标于横坐标的起点线上。
6、精密度和准确度对含1.0mg/LF-,10倍量的Al3+;200倍的Fe3+及SiO32-的合成水样,9次平行测定的铬有二价、三价和六价三种价态,其中以六价铬的化合物在工业中应用较广,其毒性也较大,比三价铬约大一百倍,故在三者之中,以六价铬较受人重视。
1、水样的保存:一般有关资料都强调含铬水样的保存必须加酸至pH<2,以免瓶壁对其吸附。
但根据笔者的实践,加酸保存的水样中,不仅有时测不出六价铬,且加标回收率很低。
如某次在巢湖水的监测中,六价铬的加标回收率在酸性水样中仅约12%,而在未加酸的相同水样中高达92%。
从理论上分析,六价铬在酸性溶液中是强氧化剂,易被常存于天然水中的还原性物质还原为三价铬。
因此,在六价铬的测定中,水样不应加酸保存。
但为尽量减少瓶壁对其吸附,应注意采样瓶内壁必须很光滑。
不易采用磨口塞瓶,如水样pH值偏高,可加少量酸中和至pH=6—7,并在采样后尽速进行分析。
2、水样的处理:2.1物理干扰:天然水常带土黄色或藻绿色并微显浑浊,这些在比色时都产生一定消光而干扰测定。
为解决此问题,我们曾做了一些实验:2.1.1 用滤纸甚至双层滤纸过滤:多数情况下效果不好,即不能滤除色素,也很难使溶液澄清。
2.1.2 用活性炭吸附:能脱色完全并过滤澄清,其效果非常好,但待测成分也同时被吸附,故此法不可取。
2.1.3 用氢氧化物凝胶助滤:效果较好,能同时吸着色素和悬浮物,使滤液无色澄明。
但使用预先配制好的凝胶加入水样助滤的方法,不如直接在水样中生成凝胶,然后过滤或倾取上清液的效果好。
在采用后一方法时,应注意所加碱液不能过多,以使溶液的pH=6—7为好。
因在碱性介质中,待测成分也会被吸附,其吸附量随pH值的升高而增大。
根据笔者的经验,在一般较清洁的地面水中,每50毫升水样中加入10%硫酸锌溶液0.1毫升和5%氢氧化钠溶液0.05毫升就够了。
操作时先加入前者并搅匀后再加入后者并搅匀,水样中即逐渐析出絮状凝胶。
待其下沉后,如采用过滤法分离,最后可通过滤纸加纯水至滤液达原水样体积;如使用倾泻法取上清液,则最初所取水样体积应稍大些,如取测定量的两倍进行处理,相应地所用试液也应加倍。
这样处理时铬是否也会有损失呢?经试验其加标回收率可高达90%。
虽然如此,在采用此法时,应尽量使标液、空白和水样中所加试液的量保持一致。
2.2化学干扰:用此法测定铬时,如水样成分复杂,可能发生某些阳离子的干扰。
这时可用盐酸将水样调至微酸性,以每分钟3毫升的流量,通过强酸性阳离子交换树脂柱并以等体积去离子水分三次洗涤交换柱,洗液并入交换液,必要时滴加高锰酸钾饱和溶液煮沸消化并浓缩至略少于原水样体积时,滴加1:1盐酸还原剩余的高锰酸钾,放冷后加去离子水至原水样体积,然后进行测定。
离子交换柱的装置可用25毫升酸式滴定管,管底装入少量玻璃棉,预先加入去离子水至管高一半处,随后填装再生处理好的树脂亦至管高一半处,上部也同样装入少量玻璃棉,放出多余的水即成。
但有的分析人员误将六价铬看作是阳离子,因而不敢采用阳离子交换树脂处理水样,实际上六价铬的存在形式,在结晶状态下是Cr2O3、K2Cr2O7等,而在溶液中则为HCrO4- 或CrO42- 阴离子:K2Cr2O7+H2O 2HCrO4- +2K+因此六价铬能随溶液流出,而三价铬等阳离子被交换留在柱上。
用此法消除干扰简单易行,效果很好。
3、容器处理:在很多有关书籍上都强调用于测定铬的玻璃容器切忌用铬酸清洁液浸泡洗涤,以免器壁大量吸附铬影响测定。
但是,对于一些不够洁净的玻璃容器,当使用铬酸清洁液处理时效果非常好。
从理论上考虑,铬被容器器壁吸附的情况也与含铬溶液的pH值有关,它是随溶液pH值的升降而增减的。
当低于一定的pH时,溶液中的铬不仅不被器壁吸附,原已吸附的铬反会溶出。
笔者通过实践证实,当容器用铬酸清洁液处理后,以清水冲洗净,再用6mol/L硝酸浸泡,是可以将已被吸附的铬完全溶出,而对铬的测定毫无影响。
4、试剂稳定性:二苯碳酰二肼显色剂的配制方法有两种,即以丙酮或酒精为溶媒。
使用前者的优点是,它的还原性相对来说较小,不像后者那样,如操作不慎较易使六价铬还原为三价铬而影响显色。
但以稳定性论之,特别是丙酮的质量级别较低时,常不如酒精制剂,即使冷藏保存,有效日期常只有1—2周;而以酒精为溶媒者,正因为它的还原性有利于肼类试剂的保存,在同样保存条件下约可使用一个月。
如将丙酮在加有少量非挥发性还原剂的情况下重蒸精制,其制剂的稳定性可稍延长;当使用酒精制剂时,可在加入显色剂至水样中后立即搅匀,使之迅速反应显色,以尽量减免酒精对六价铬的还原作用。
5、校准曲线的再现性:一些试验表明,配制好铬标准溶液后,在较长时期的使用过程中,发现校准曲线的斜率逐渐变小,即其灵敏度逐渐降低。
这很可能是容器器壁对铬逐渐吸附所致,例如含1ppmCr+6的吡咯烷荒酸盐络合物溶液,在硼硅玻璃或聚乙烯瓶中贮存15天,铬由于吸附而损失达95%。
为此,笔者建议,在配制铬标准溶液时,首先注意不要贮存在带磨口塞的玻璃瓶内,此外,最好在将标液贮于聚乙烯塞光口试剂瓶中2周后(每天摇动一次),完全倾去原标液,原瓶不加洗涤,另再配制一份同样浓度的标液,装入原瓶贮存备用。
这样做可使第一次贮入的标液中的铬与瓶壁间建立起吸附与溶出的动态平衡。
实验表明使用这样的铬标液绘制校准曲线,其斜率的再现性始终很好。
6、显色酸度:二苯碳酰二肼与铬反应而显色时,要求溶液的酸度在0.05—0.3mol/L之间,以0.2mol/L为最好。
酸度过低则显色很慢;酸度过高则显色减弱。
分析人员虽然都是按照操作规程的规定加入一定量的酸液,但常忽略了一个问题,以至反应液不显色,就是所用原瓶装的酸试剂常因贮存或使用不当而浓度逐渐降低。