人教版八年级下册数学概念定义公式

合集下载

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结Jenny was compiled in January 2021八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。

通分一般要找各分式的最简公分母。

()5.6.7.8.9.10.11.12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

13.题设、结论正好相反的两个命题称为互逆命题。

其中一个叫原命题,另一个叫逆命题。

14.平行四边形的性质:①对边平行且相等②对角相等,邻角互补③对角线互相平分15.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④一组对边平行且相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

16.矩形的性质:①两组对边平行且相等。

②四个角都是直角。

③对角线互相平分且相等17.矩形的判定方法:①一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③三个角都是直角的四边形是矩形。

18.菱形的性质:①四条边都相等②对角相等,邻角互补③对角线互相垂直平分,且每一条对角线平分一组对角19.菱形的判定方法:①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四边相等的四边形是菱形。

20.正方形的性质:①四条边都相等,对边平行②四个角都是直角③对角线相等且互相垂直平分,且每一条对角线平分一组对角21.正方形的判定方法:①一组邻边相等的矩形是正方形。

人教版数学八年级下册《一次函数》19.1.1 函数的概念

人教版数学八年级下册《一次函数》19.1.1  函数的概念

y 与x的关系为y =


.
应用概念
(3)变量x、y满足|y|=x,则y是x的函数. (×)
当x=1时, =1,∴ y=±1.
应用概念
(4)在 =



中, 是常量,π和r是自变量,


V是r的函数. (× )
π是常量.
应用概念
例2. 汽车的油箱中有汽油50 升,如果不再加油,那
数),相对应的收费为y(元).
(2)并直接写出当x=2和x=6时,对应的y值.
解:当x=2时, y=8;
当x=6时, y= 1.8×6+2.6=13.4.
巩固练习
练习2. 某地白天乘坐出租车收费标准如下:乘坐里程不超
过3公里,一律收费8元;超过3公里时,超过3公里的部分,
每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整
么油箱中的油量y(单位:升)随行驶里程x(单位:
千米)的增加而减少,汽车行驶过程中的平均耗油量
为0.1 升/千米.
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 千米时,油箱中还有多少油?
应用概念
例2. 解:
(1) y与x的函数关系为 y = 50 − 0.1x .
w t
(3) = π
π
S r
>
10 -1
y x
0<x<10的整数

y n
n为正整数
(4) y = 10 – x
(5) =


的整数
【问题3】 在每个变化过程中,对每个变量的取
值范围有限制吗?
关系式

人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)

人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)

八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。

同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。

分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。

常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。

(2)找出其中的同类二次根式。

(3)合并同类二次根式。

3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

八年级下册书数学知识点

八年级下册书数学知识点

八年级下册书数学知识点在八年级下册的数学学习中,同学们需要掌握多个知识点,本文将围绕几个重点内容进行讲解。

一、平面图形与立体图形的计算在平面图形与立体图形的计算中,需要掌握图形的特征和相关计算公式。

例如,对于矩形,其特征为有四条边,相邻两条边长度相等,对角线相等且垂直相交;其面积计算公式为长乘以宽。

对于正方体,其特征为六个面都是正方形;其表面积计算公式为六倍边长的平方,体积计算公式为边长的立方。

二、函数初步函数是数学中的一个重要概念,涵盖了函数的定义、概念和基本性质等方面。

学生需要通过练习掌握函数的常见形式,如一次函数和二次函数等,并熟悉其图像特征和解析式的表示方式。

在解题中,需要理解函数的自变量与函数值之间的关系和如何求出函数值。

三、三角函数初步三角函数是三角学中的重要内容之一,在八年级下册的学习中也会有重点涵盖。

同学们需要了解正弦函数、余弦函数、正切函数等三角函数的基本概念,并学会根据角度大小计算函数值。

此外,三角函数在解决实际问题中也起到重要作用,例如船只航线问题、建筑工地斜坡问题等。

四、方程与不等式在方程和不等式的学习中,需要理解其基本概念、性质和解法,并在练习中掌握解题技巧。

同时,方程和不等式在数学的应用中也十分广泛,包括化学化学方程式、物理运动问题等许多领域。

五、统计学初步统计学作为一门应用数学,重点研究数据的收集、整理、描述、分析等内容。

在学习中,需要了解数据的类型与特征、常见统计指标的计算方法、表格和图表的制作等。

对于实际问题,统计学也有着广泛的应用,例如市场调查、人口普查等。

以上是八年级下册数学的主要知识点,同学们可以通过反复练习和深入思考来掌握这些知识,不断提高自己的数学能力。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

新人教版八年级数学全册知识点总结

新人教版八年级数学全册知识点总结

新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

数学人教版八年级下册一次函数的概念

数学人教版八年级下册一次函数的概念

6、一个小球由静止开始在一个斜坡上向下滚动,
其速度每秒增加2 m/s,到达坡底时,小球速度 达到40m/s. (1)求小球速度v(m/s )与时间t(s)之间的 函数解析式; (2)求t的取值范围; (3)求3.5 s时,小球的速度; (4)当t为何值时,小球的速度为16m/s.
解:(1)小球速度v与时间t之间的函数解 析式为:v=2t; (2)t的取值范围为:0≤t≤20; (3)当t=3.5 s时,小球的速度v=7m/s; (4)由v=16,得2t=16 t=8. 当t=8s时,小球的速度为16m/s
3 1 y= x2 2
;这时k=
7 2
3 2
,b =
1 3
1 2
; .
当x=-2时,y=
,当y=0时,x=
解析:利用一次函数的概念即可确定k,b的值,
把x=-2代入解析式即可求出y的值,把 y=0代入解析式即可求出x的值.
练习
3.关于x的一次函数y=(m-2)xn-1+n中,m,n
应满足的条件分别是 m≠2,n=2 .
第十九章 一次函数
•19.2.2 一次函数 •第一课时
旧知回顾
Байду номын сангаас
B
1 2 1 2
正比例函数
解析式: y=kx(k是常数,k≠0) 图象:一条经过原点和(1,k)的直线 y y=kx (k>0) y=kx(k<0)
性质:
x
当k>0时,直线y=kx经过第一、三象限,从左向 右上升,即随着x的增大y也增大;
解析:根据一次函数的概念,可知m-2≠0,n-1=1, 求出m,n符合的条件即可.故填m≠2,n=2.
练习
4、已知一次函数 y=kx+b,当 x=1时, y=5;当x=-1时,y=1.求 k 和 b 的值.

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念八年级数学公式及概念第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8/3等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60°等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)。

从数轴上看,互为相反数的两个数所对应的点关于原点对称。

如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数。

若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根21、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。

其中,a被称为被开方数。

最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。

如果两个二次根式的被开方数相同,那么它们就是同类二次根式。

二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。

二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。

应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

直角三角形还有一些其他的性质,需要我们认真研究和掌握。

1.直角三角形的两个锐角互余,即∠A+∠B=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。

4.三角形面积公式为AB•CD=AC•BC。

5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。

6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。

7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。

8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。

9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。

10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。

2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。

4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

八年级下册数学知识点归纳:第十七章勾股定理

八年级下册数学知识点归纳:第十七章勾股定理

人教版八年级下册数学知识点归纳第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a, b, c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°1AB可表示如下:∠C=90°⇒BC=2(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°1AB=BD=AD 可表示如下: D为AB的中点⇒CD=25、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2=CD•AD⇒AB2=ADAC•CD⊥AB AB2=BC•BD6、常用关系式由三角形面积公式可得:AB•CD=AC•BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系2c22a=+,那么这个三角形是直角三角形。

b8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

最新部编人教版初中八年级下册数学知识点总结

最新部编人教版初中八年级下册数学知识点总结

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。

新人教版八年级数学知识点总结归纳

新人教版八年级数学知识点总结归纳

1人教版初二数学全册知识点归纳第十一章三角形1、三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段(2)三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段(3)三角形的高:从三角形一个顶点向它对的边做垂线,顶点和垂足之间的线段叫做三角形的高线3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围③证明线段不等关系。

4、三角形的内角和定理及推论:三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

5、多边形定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形。

6、n边形的内角和等于180°(n-2)。

7、多边形的定理:任意凸形多边形的外角和等于360°n边形的对角线条数等于1/2·n(n-3)8、多边形的对角线:连接多边形不相邻的两个顶点的线段从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

9、多边形的内角和.公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数)10、多边形的外角和公式:多边形的外角和等于360°.第十二章全等三角形1、全等三角形定义:能够完全重合的两个三角形2、全等三角形性质:全等三角形的对应边相等、对应角相等、周长相等、面积相、对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定定理●边边边:三边对应相等的两个三角形全等(可简写成“SSS”)●边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)●角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)●角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)●斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4角的平分线:(性质)角的平分线上的点到角的两边的距离相等.(判定)角的内部到角的两边的距离相等的点在角的平分线上。

人教版七、八年级下册数学知识点公式大全

人教版七、八年级下册数学知识点公式大全

人教版七、八年级下册数学知识点公式大全人教版七年级数学下册知识点公式大全第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,永不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。

内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。

同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.对顶角的性质:对顶角相等。

10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角互补,两直线平行。

第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学概念、定义、公式归纳
1.
2.
3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。

通分一般要找各分式的最简公分母。

()
5.
6.
7.
8.
9.
10.
11.
12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

13.题设、结论正好相反的两个命题称为互逆命题。

其中一个叫原命题,另一个叫逆命题。

14.平行四边形的性质:
①对边平行且相等
②对角相等,邻角互补
③对角线互相平分
15.平行四边形的判定方法:
①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④一组对边平行且相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

16.矩形的性质:
①两组对边平行且相等。

②四个角都是直角。

③对角线互相平分且相等
17.矩形的判定方法:
①一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③三个角都是直角的四边形是矩形。

18.菱形的性质:
①四条边都相等
②对角相等,邻角互补
③对角线互相垂直平分,且每一条对角线平分一组对角
19.菱形的判定方法:
①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四边相等的四边形是菱形。

20.正方形的性质:
①四条边都相等,对边平行
②四个角都是直角
③对角线相等且互相垂直平分,且每一条对角线平分一组对角
21.正方形的判定方法:
①一组邻边相等的矩形是正方形。

②一个角是直角的菱形是正方形。

③对角线相等且互相垂直平分的四边形是正方形。

22.等腰梯形的性质:
①同一底边上的两个角相等。

②两条对角线相等。

23.等腰梯形的判定方法:
①两腰相等的梯形是等腰梯形。

②对角线相等的梯形是等腰梯形。

③同一底上两个角相等的梯形是等腰梯形。

24.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

25.直角三角形斜边上的中线等于斜边的一半。

26.菱形、正方形特有的面积算法:两条对角线长度乘积的一半。

27.
28.
29.
30.一组数据中出现次数最多的数据叫做这组数据的众数。

31.
32.一组数据中最大数据与最小数据的差叫做这组数据的极差。

33.
34.方差越大,数据的波动越大,越不稳定;方差越小,数据的波动越小,越稳定。

相关文档
最新文档